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Abstract

Purpose—Retinal microsurgery requires highly dexterous and precise maneuvering of 

instruments inserted into the eyeball through the sclerotomy port. During such procedures the 

sclera can potentially be injured from extreme tool-to-sclera contact force caused by surgeon’s 

unintentional mis-operations.

Methods—We present an active interventional robotic system to prevent such iatrogenic 

accidents by enabling the robotic system to actively counteract the surgeon’s possible unsafe 

operations in advance of their occurrence. Relying on a novel force sensing tool to measure and 

collect scleral forces, we construct a recurrent neural network with long short term memory unit to 

oversee surgeon’s operation and predict possible unsafe scleral forces up to the next 200 

milliseconds. We then apply a linear admittance control to actuate the robot to reduce the 

undesired scleral force. The system is implemented using an existing “steady hand” eye robot 

platform. The proposed method is evaluated on an artificial eye phantom by performing a ‘vessel 

following” mock retinal surgery operation.

Results—Empirical validation over multiple trials indicate that the proposed active interventional 

robotic system could help to reduce the number of unsafe manipulation events.
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Conclusions—We develop an active interventional robotic system to actively prevent surgeon’s 

unsafe operations in retinal surgery. The result of the evaluation experiments show that the 

proposed system can improve the surgeon’s performance.
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1 INTRODUCTION

High-precision manipulation is essential for retinal surgery due to high level of safety 

required to handle delicate tissue in a small constrained workspace. Factors such as 

physiological hand tremor, fatigue, poor kinesthetic feedback, patient movement, and the 

absence of force sensing could potentially lead to surgeon’s misoperations, and subsequently 

iatrogenic injury. During retinal surgery the surgeon inserts small instruments (e.g. 25Ga, ϕ 
= 0.5mm) through the sclerotomy port (ϕ < 1mm) to perform delicate tissue manipulations 

in the posterior of the eye as shown in Fig.1. The sclerotomy port continuously sustains 

variable tool-to-sclera forces. Extreme tool maneuvers applied to the port could result in 

excessive forces and cause scleral injury. One example of such a challenging retinal surgery 

task is retinal vein cannulation, a potential treatment for retinal vein occlusion. During this 

operation, the surgeon needs to pass and hold the needle or micro-pipette through the 

sclerotomy port and carefully insert it into the occluded retinal vein. After insertion, the 

surgeon needs to hold the tool steadily for as long as two minutes for clot-dissolving drug 

injection. In such a delicate operation, any unintentional movements of the surgeon’s hands 

may put the eye at high risk of injury. Therefore, the success of retinal surgeries is highly 

dependent on the surgeon’s level of experience and skills, a requirement that could be 

relaxed with the help of more advanced robotic assistive technology.

Continuing efforts are being devoted to the development of the surgical robotic systems to 

enhance and expand surgeon’s capabilities in retinal surgery. Current technology can be 

categorized into teleoperative manipulation systems [1–3], hand-held robotic devices [4], 

untethered micro-robots [5], and flexible micro-manipulators [6]. Recently two robot-

assisted retinal surgeries have been performed successfully on human patients [7, 8], 

demonstrating the clinical feasibility of robotic microsurgery.

Our team developed the “steady hand” eye robot (SHER) capable of human-robot 

cooperative control [9]. Surgical tools can be mounted on the robot end-effector and user 

manipulates the tool in a collaborative way with the robot. The velocities of SHER follow 

the user’s manipulation force applied on the tool handle measured by an embedded end-

effector force/torque sensor. Furthermore, our group has designed and developed a series of 

‘smart” tools based on Fiber Bragg Gratings (FBGs) sensors [10, 11], in which the multi-

function sensing tool [12] can measure scleral force, tool insertion depth, and tool tip contact 

force. Scleral force and insertion depth are the key measurements employed in this work. 

The measured force is used for force control, and haptic or audio feedback to the surgeon to 

enhance safety [13, 14].
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The aforementioned robotic devices can give passive support to surgeons, i.e. filtering hand 

tremor, improving tool location accuracy, and providing operation force information to 

surgeons. However, the existing robotic systems can not actively counteract or prevent 

iatrogenic accidents (e.g., from extreme scleral forces) caused by surgeon’s misoperations or 

fatigue, since it is generally difficult to quantify and react on time to the surgeon’s next 

move.

Predicting the surgeon’s following movement based on their prior motions can potentially 

resolve the above mentioned problems. The predicted information can be used to identify 

unsafe manipulations that might occur in the near future. Then robotic system could actively 

take actions e.g., retreating the instruments or pausing the surgeon’s operation to prevent 

high forces applied to delicate tissue. To this end, we propose an active interventional 

robotic system (AIRS) summarized in Fig. 2. For an initial study we focus on scleral safety. 

A force sensing tool is developed to collect scleral force. A recurrent neural network (RNN) 

with long short term memory (LSTM) units is designed to predict and classify the 

impending scleral forces into safe and unsafe, using the notion of a safety boundary. An 

initial linear admittance control taking the predicted force status as input is applied to 

actuate the robot manipulator to reduce future forces. Finally, AIRS is implemented using 

SHER research platform and is evaluated by performing “vessel following”, a typical task in 

retinal surgery, on an eye phantom. The experimental results prove the advantage of AIRS in 

robot-assisted eye surgery, i.e., the unsafe force proportion is kept below 3% with AIRS 

compared to 28.3% with SHER and 26.6% with freehand for all participated users.

2 Background

2.1 Fiber Bragg Gratings sensors

FBGs [15] are a type of fiber optic strain sensors. The Bragg gratings work as a wavelength-

specific reflector or filter. A narrow spectral component at this particular wavelength, termed 

the Bragg wavelength, is reflected, while the spectrum without this component is 

transmitted. The Bragg wavelength is determined by the grating period, which depends on 

the strain generated in the fiber:

λB = 2neΛ

where λB denotes the Bragg wavelength, ne is the effective refractive index of the grating, 

and Λ denotes the grating period.

We use FBGs as force sensor, since they are small enough (60–200 μm in diameter) to be 

integrated into the tool without significantly increasing the tool’s dimensions. Besides, FBG 

sensors are very sensitive, and they can detect strain changes of less than 1 με. They are 

lightweight, biocompatible, sterilizable, multiplexable, and immune to electrostatic and 

electromagnetic noise.
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2.2 Force Sensing Tool

The force sensing tool was previously designed and fabricated as shown in Fig. 3, which is 

employed to measure the scleral force and insertion depth in this work. The tool is composed 

of three parts: tool handle, adapter, and tool shaft (sensing part). The tool shaft is made of a 

stainless steel wire with the diameter of 0.635 mm. It is machined to contain three 

longitudinal V-shape grooves. An optical fiber is carefully glued and positioned inside each 

groove. Each fiber contains three FBG sensors (Technica S.A, Beijing, China) which are 

separately located in segments I, II, and III. Hence nine FBG sensors are embedded in the 

tool shaft in total.

The tool is calibrated using previously developed algorithm [12] to measure sclera force and 

insertion depth. The sclera force can be calculated using Eq. (1) :

Fs =
MII − MI

Δl =
KIIΔSII − KIΔSI

Δl (1)

where Δl = lII – lI is the constant distance between FBG sensors of segment I and II as 

shown in Fig. 3. Fs = [Fx, Fy]T is the sclera force applied at sclerotomy port. Mi = [Mx, My]T 

denotes the moment attributed to Fs on FBG sensors of segment i. Ki (i =I,II) are 3 × 2 

constant coefficient matrices, which are obtained through the tool calibration procedures. 

ΔSi = [Δsi1, Δsi2, Δsi3]T denotes the sensor reading of FBG sensors in segment i, which is 

defined as below:

Δsi j = Δλi j − 1
3 ∑

j = 1

3
Δλi j, (2)

where Δλij is the wavelength shift of the FBG, i = I, II is the FBG segment, j = 1, 2, 3 

denotes the FBG sensors on the same segment. The insertion depth can be obtained from the 

magnitude ratio of the moment and the force:

d = li −
Mi
Fs

(3)

where ∥ · ∥ denotes the vector Euclidean norm. When the magnitude of the sclera force Fs is 

small, the insertion depth calculated using Eq. (3) can be subject to a large error, so Eq. (3) 

is only valid when the sclera force Fs is bigger than a preset threshold (e.g., 10 mN).

3 Active Interventional Robotic System

Our proposed system consists of four main parts: the force sensing tool, an RNN, an 

admittance control algorithm and the SHER research platform as depicted in Fig. 2. The tool 

held by the user is attached to the robot which can also manipulate it to intervene when 

needed. The scleral force and the insertion depth are measured by the force-sensing tool in 
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real time. These parameters along with the robot Cartesian velocities are recorded and fed 

into the RNN as input. The network predicts the scleral force a few hundreds milliseconds 

away from the current moment. The predicted results are used to implement the admittance 

control. If the predicted forces are about to exceed the safe boundaries, the admittance 

control is activated and the robot makes an autonomous motion to reduce the forces.

3.1 RNN network Design

RNNs are suitable for modeling time-dependent tasks such as a surgical procedure. Classical 

RNNs typically suffer from the gradient vanishing problem when trained with back 

propagation through time, due to its deep connections over long time periods. To overcome 

this problem the LSTM model [16] was proposed, which can capture long range 

dependencies and nonlinear dynamics and model varying-length sequential data, achieving 

good results for problems spanning clinical diagnosis [17], image segmentation [18], and 

language modeling [19].

We assume that the scleral force characteristics can be captured through a short time history 

of sensor measurements (e.g. the last few seconds). An LSTM network [16] is constructed to 

make predictions based on such history as shown in Fig. 4. The network is based on memory 

cells composed of four main elements: one input gate, one forget gate, one output gate, and 

one neuron with a self-recurrent connection (a connection to itself). The gates serve to 

modulate the interactions between the memory cell itself and its environment. The input gate 

determines whether the current input should feed into the memory, the output gate manages 

whether the current memory state should proceed to the next unit, and the forget gate 

decides whether the memory should be cleared. The following standard equations describe 

recurrent algebraic relationship of the LSTM unit:

f t = σ(W f ⋅ [ht − 1, xt] + b f ), (4)

it = σ(W i ⋅ [ht − 1, xt] + bi), (5)

Ct = ϕ(WC ⋅ [ht − 1, xt] + bC), (6)

Ct = f t ⊙ Ct − 1 + it ⊙ Ct, (7)

ot = σ(Wo ⋅ [ht − 1, xt] + bo), (8)
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ht = ot ⊙ ϕ (Ct), (9)

where ht–1 stands for the memory cells at the previous sequence step, σ stands for an 

element-wise application of the sigmoid (logistic) function, φ stands for an element-wise 

application of the tanh function, and ⊙ is the Hadamard (element-wise) product. The input, 

output, and forget gates are denoted by i, o, and f respectively, while C is the cell state. Wf, 

Wi, WC, and Wo are the weight for forget gate, input gate, cell state, and output state, 

respectively. bf, bi, bC and bo are the bias for forget gate, input gate, cell state, and output 

state, respectively. In this work, the LSTM unit uses memory cells with forget gates but 

without peephole connections.

To perform sensor reading predictions, a fully connected (FC) layer with softmax activation 

function as shown in Eq. 10 is used as the network output layer after the LSTM units, which 

outputs the normalized probabilities for each label.

yi = e
xi

∑ j = 1
n e

x j
(10)

where xi is the output of FC layer, yi is the normalized probability, and n is the number of 

classes, i.e., force status.

The proposed RNN network takes the scleral force, the insertion depth, and the robot 

manipulator’s Cartesian velocities in past h timesteps as the input, and outputs the 

probabilities of the future scleral force statuses i.e., safe/unsafe t+n timesteps in the future, 

where t denotes the current time, n is the prediction time in future. Then the one with the 

highest probability is selected as the final force status and is further fed into the admittance 

control. The groundtruth labels are generated based on the forces within a prediction time 

window (t, t + n), as shown in Eq. (11):

label(t) =

0 Fx(t)
∗ < Fgate and Fy(t)

∗ < Fgate

1 Fx(t)
∗ < Fgate and Fy(t)

∗ > Fgate

2 Fx(t)
∗ > Fgate and Fy(t)

∗ < Fgate

3 Fx(t)
∗ > Fgate andFy(t)

∗ > Fgate

(11)

where Fgate is safety threshold of scleral force, which is set as 60 mN referred to our 

previous work [20]. Labels that are assigned as 0 represents safe status, otherwise unsafe 

status. Fx(t)* and Fy(t)* are the maximum scleral forces within the prediction time window 

shown as following:
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Fx(t)
∗ = max( ∣ Fx(t) ∣ , ∣ Fx(t + 1) ∣ , …, ∣ Fx(t + n) ∣ ), (12)

Fy(t)
∗ = max( ∣ Fy(t) ∣ , ∣ Fy(t + 1) ∣ , …, ∣ Fy(t + n) ∣ ) (13)

where ∣ · ∣ denotes the absolute value.

3.2 Admittance Control Method

An admittance robot control scheme is proposed using the approach described in [21] as a 

starting point. During cooperative manipulation, the user’s manipulation force which is 

applied on the robot handle is measured and fed as an input into the admittance control law 

as shown in Eq. (14):

x.hh = αFhh, (14)

x.rh = Adgrh
x.hh, (15)

where x.hh and x.rh are the desired robot handle velocities in the handle frame and in the robot 

frame, respectively. Fhh is the user’s manipulation force measured in the handle frame, α is 

the admittance gain tuned by the robot pedal, Adgrh is the adjoint transformation as shown 

below, it is associated with the coordinate frame transformation grh.

Adgrh
=

Rrh prhRrh

0 Rrh
(16)

where Rrh and prh are rotation and translation component of the frame transformation grh, 

prh is the skew symmetric matrix that is associated with the vector prh.

The linear admittance control scheme is activated when the predicted scleral forces turns to 

the unsafe status. The desired robot handle velocities in Eq. 14 change as following:

x.hh = αWFhh + V (17)

where W is diagonal admittance matrices can be set as diag([0, 0, 1, 1, 1, 1]T), V is 

compensational velocity to reduce scleral force, it can be written as following:
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V = [sign(Fx) ⋅ c, sign(Fy) ⋅ c, 0, 0, 0, 0]T (18)

where c is set as a constant value.

The robot motion mode is switched back to the original control mode as shown in Eq. (14) 

when the predicted forces returns to the safe status.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

The experimental setup is shown as Fig. 5 (a) and includes SHER, the force sensing tool, 

and an eye phantom. Besides, an FBG interrogator (SI 115, Micron Optics Inc., GA, USA) 

is utilized to monitor signals of FBG sensors within the spectrum from 1525 nm to 1565 nm 

at 2 kHz refresh rate. A microscope (ZEISS, Germany) and a monitor are used to provide 

magnified view. A Point Grey camera (FLIR Systems Inc., BC, Canada) is attached to the 

microscope for recording the user’s interaction with the eye. A shared memory architecture 

is implemented to integrate the RNN predictor running in python into the robotic control 

system running in C++. We focus on vessel following as a representative surgical task.

4.1.1 Force sensing tool calibration—The force sensing tool is mounted on SHER 

and used to collect the scleral force and the insertion depth. It is calibrated based on Eq. (1) 

using a precision scale (Sartorius ED224S Extend Analytical Balance, Goettingen, 

Germany) with resolution of 1 mg. The details of the calibration procedure were presented 

in our previous work [12]. The calibration matrices used in Eq. (1) are obtained as below:

KI =
0.1566 −0.2113
0.1059 0.2273

−0.2625 −0.01605
, KII =

0.1853 −0.2315
0.1114 0.2515

−0.2967 −0.0200
,

The tool validation experiment is carried out with the same scale to test the calibration 

results. The validation results of the calculated force and the groundtruth values are shown in 

Fig. 3 (b) and (c). The measurement Root Mean Square (RMS) errors of the sclera force and 

the insertion depth are calculated to be 3.8 mN and 0.3 mm, respectively.

4.1.2 Eye phantom—An eye phantom is developed using silicon rubber and is placed 

into a 3D-printed socket as shown in Fig. 5 (b). A printed paper with four curved lines 

representing the retinal vessels is glued on the eyeball inner surface. The curved lines are 

painted with different colors, and all lines intersect at the central point called “home” 

position.

4.1.3 Vessel following operation—Based on the recommendation of our clinical lead, 

“vessel following” which is a typical task in retinal surgery was chosen for the validation 

experiments. Vessel following can be performed using the eye phantom and is mainly 

comprised of 6 phases as shown in Fig 5 (c): (1) moving the tool to approach sclerotomy 
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port, (2) inserting the tool into the eyeball through sclerotomy port to reach the home point, 

(3) following one of the colored curved vessels with the tool tip without touching the vessel, 

(4) tracing the curve backward to the home point, (5) retracting the tool to the sclerotomy 

port, (6) move the tool away from the eyeball.

4.1.4 Shared memory—The RNN network runs in python at 100 Hz, while the robotic 

system runs in C++ at 200 Hz. To integrate the RNN network into the robotic systems, a 

shared memory architecture is used as the bridge to transmit the actual user operation data 

and network prediction results between two programs as shown in Fig. 6. Considering the 

elapsed time per single prediction Δt, the time of predicted results reaching robotic systems 

turns out to be T = t + n – Δ t, where n is the prediction time.

4.2 Network Training

The above-mentioned vessel following operation is performed 50 times by a SHER-familiar 

engineer, the collected data is used to train the RNN. The groundtruth labels are generated 

using Eq. (11). Successful training critically depends on the proper choice of network 

hyperparameters [22]. To find a suitable set of the hyper-parameters, i.e., network size and 

depth, and learning rate, we apply cross validation and random search. The learning rate is 

chosen as a constant number 2e-5, and the LSTM layer is set as 100 neurons. We use the 

Adam optimization method [23] as the optimizer and the categorical cross entropy as the 

loss function. Note that for training the network, we cannot shuffle the sequences of the 

dataset because the network is learning the sequential relations between the inputs and the 

outputs. In our experience, adding dropout does not help with the network performance. The 

training dataset is divided into mini-batches of sequences of size 500. We normalized the 

dataset value into the range of 0 to 1. The network is implemented with Keras [24], a high-

level neural networks API. Training is performed on a computer equipped with Nvidia Titan 

Black GPUs, a 20-cores CPU, and 128GB RAM. Single-GPU training takes 90 minutes.

The performances of different RNN networks are shown as Table 1, where accuracy is the 

true positive of prediction result, and successful rate is the prediction result excluding the 

false negative. Stacked LSTM model with the absolute value of the input data has the 

highest accuracy which is 89% but its single prediction takes longer time which is 25 ms 

than LSTM model, the latter takes 11 ms. We finally apply LSTM model in our experiments 

to get the best trade off between prediction accuracy and timeliness. The chosen LSTM 

model obtains 89% prediction successful rate.

4.3 Active Interventional Robotic System Evaluation

The feasibility of AIRS is evaluated in real time by performing the vessel following 

operations. The research study was approved by the Johns Hopkins Institutional Review 

Board. Three non-clinician users took part in the study. With the assistance of AIRS, users 

are asked to hold the force sensing tool which is mounted on SHER to carry out vessel 

following task on the eye phantom. The operation is repeated 10 times by each user. 

Meantime, the benchmark experiments are also performed in freehand operation and in 

SHER assisted operation respectively.
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With the assistance of AIRS, the force landscape in one typical vessel following operation is 

depicted as shown in Fig. 7. The tool tip trajectory in the robot coordinate frame during this 

operation is shown accordingly in Fig. 8. When the label turns to be on, the scleral force in 

the next 200 ms will possibly run over the safety threshold Fgate. At this moment AIRS takes 

action to suppress the scleral force to prevent the unsafe forces from happening. The 

evaluation results of AIRS as well as two benchmark group are shown in Table 2. Four 

metrics are calculated including the maximum scleral forces, the unsafe force (force’s 

absolute value is larger than the safety threshold) duration, the total duration of the 

experiments, and the unsafe forces proportion which is the ratio of the unsafe force duration 

and the total duration. It should be mentioned that the metrics are obtained from the conjunct 

data of ten trails for each user in each conditions. The results show that the maximum forces, 

the unsafe force duration and the unsafe forces proportion with AIRS are less than the ones 

with SHER for all three users, and less than the ones with freehand for user 1 and user 2. 

The total duration with AIRS and with SHER are similar, but both of them are larger than 

the one with freehand.

5 DISCUSSION

Robotic assistance could help eliminating hand tremor and improve precision [7,8]. 

However, it could affect surgeon’s tactile perception and in turn cause larger manipulation 

forces compared to freehand due to mechanical coupling and stiffness. Moreover, robotic 

assistant could prolong surgery time compared to freehand maneuver because a robotic 

assistant could restrict the surgeon’s hand dexterity. This is evident from our empirical 

results, where the fraction of unsafe forces with SHER are similar (for user 1) or even larger 

(for user 2 and user 3) than the ones with freehand, and the total procedure durations are 

longer with SHER than that with freehand for all users, as shown in Table 2. These results 

are consistent with our previous study [25]. These phenomena could potentially weaken the 

advantage of robotic assistance in retinal surgery and lower the enthusiasm to robotic 

technology for users who possess unique ability and skills to maintain steady motions with 

their hands (e.g, user 3).

However, the addition of our proposed AIRS system could remedy the limitation of the 

existing robotic assistant by capturing the user’s operation and eliminate potentially 

imminent extreme scleral forces before they occur. As shown in Table 2, the maximum 

forces and the unsafe force proportion with AIRS decrease sharply compared to the ones 

with robot, and are comparable (for user 3) or less than (for user 1 and user 2) the value with 

freehand. These results demonstrate that AIRS could enhance safety of manipulation using 

robotic assistance.

We chose the LSTM model as the predictor in AIRS which obtained 89% prediction 

successful rate. Although the predictor has 11% failure rate to capture the unsafe scleral 

force in advance, which might lead AIRS to omit a small portion of unsafe cases, AIRS 

significantly enhances the existing SHER by keeping keep scleral force in a safe range as 

shown in Table 2. Currently only the manipulation data from a SHER familiar engineer is 

used to train the network, which may lead to improper output for a surgeon’s operation. 

Therefore a remaining limitation is that our system requires larger datasets from multiple 

He et al. Page 10

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



users including surgeons and further development of the learning models in order to provide 

trustworthy confidence intervals during inference. This will be the focus of future work.

6 CONCLUSION

We implemented AIRS by developing a force sensing tool to collect scleral forces and the 

insertion depth, used along with robot kinematics as inputs to an RNN network to learn a 

model of user behavior and predict the imminent scleral force unsafe mode, which are then 

used by an admittance control method to enable the robot to take action to prevent the sclera 

injury. The feasibility of AIRS is evaluated with multiple users in a vessel following task. 

The results show that AIRS could potentially provide safe manipulation that can improve the 

outcome of the retinal microsurgery. The presented method could also be applied in other 

types of microsurgery.

This work was only considered sclera forces. Future work will incorporate the predicted 

insertion depth together with the predicted scleral force to implement multiple variable 

admittance control, to enable more versatile modeling of potential tissue damage. It is also 

critical to involve a larger set of users and different surgical tasks. Our force sensing tool can 

also measure the force at the tool tip, which will also be incorporated into the network 

training in future work to provide more information for robot control. Finally, while in this 

initial study we applied a linear non-smooth admittance control in AIRS as the first step to 

evaluate the system feasibility, non-linear admittance control method will be explored in the 

future to achieve smooth robot motion.
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Fig. 1. 
Illustration of retinal microsurgery. (a): Two tools are inserted into eyeball via sclerotomy 

port, the sclera sustains constant manipulation force. (b): The surgeon manipulates the 

instruments under the microscope to perform retinal surgery.
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Fig. 2. 
Active interventional robotic system (AIRS). The robotic manipulator is activated to move 

along the direction of scleral force at a certain velocity once the predicted force status is 

unsafe. The RNN is trained offline in advance as the predictor. A force sensing tool is 

developed to measure scleral force (Fx and Fy) and insertion depth.

He et al. Page 15

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Force sensing tool. (a): Overall dimension of the tool. The sensing part contains nine FBG 

sensors, which are located on three segments along tool shaft. (b): The radial positions of 

FBG fibers on tool shaft. (c): The calibration results of scleral force. The measurement RMS 

errors of sclera force is 3.8 mN. (d): The calibration results of insertion depth. The 

measurement RMS errors of insertion depth is 0.3 mm.

He et al. Page 16

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The proposed RNN. The network gets input from data history with h timesteps in past, and 

outputs the probabilities of each force status at time t+n, where t is the current timestep. 

Then the one with the highest probability is selected as the final force status, which is further 

fed into the admittance control.
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Fig. 5. 
Experimental setup. (a): the sensing tool is mounted on the SHER end-effector, and the eye 

phantom is attached on a stage. (b): the eyeball is made of sillicon rubber and is fixed into a 

socket. (c): The vessel following task consists six phases including approaching sclerotomy 

port, insertion, forward trace the curve, backward trace the curve, retraction and move away 

from the eyeball.
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Fig. 6. 
Data flow of the systems. Real time prediction is n-Δt time ahead, where n is the RNN 

prediction time, Δt is the elapsed time in one prediction.
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Fig. 7. 
Forces landscape with predictions. When “Label = 1” is on, Fx in the imminent 200 ms 

would possibly go over the safety threshold Fgate. Same situation suits for “Label=2” and Fy. 

The linear admittance control is activated to actuate the robot manipulator to reduce scleral 

force when label emerges.
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Fig. 8. 
Typical tool trajectory in vessel following operation. The six phases of the tool tip motion, 

i.e., approaching the eyeball, insertion, forward tracing the curve, backward tracing the 

curve, retraction and move away from the eyeball are drew in different colors.
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Table 1

PERFORMANCE OF THE RNN NETWORKS

Model Input data Prediction
time n Accuracy Successful

rate
Elapsed time/

one prediction t

Stacked LSTM Vanilla value 100 ms 83% 85% 26 ms

Stacked LSTM Derivative value 100 ms 68% 75% 26 ms

Stacked LSTM Absolute derivative value 100 ms 76% 78% 26 ms

Stacked LSTM Absolute value 100 ms 89% 92% 26 ms

LSTM Absolute value 100 ms 87% 91% 10ms

LSTM Absolute value 200 ms 85% 89% 10ms
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Table 2

EVALUATION RESULTS

User Metrics
Experimental conditions

Freehand With SHER with AIRS

1

Maximum (Fx, Fy) (mN) (124.5,114.6) (113.1,113.8) (78.7, 52.4)

Unsafe force duration (s) 32.6 56.1 9.5

Total duration (s) 165.7 313.1 318.7

Unsafe forces proportion 19.6% 17.8% 3.0%

2

Maximum (Fx, Fy) (mN) (124.8,147.4) (75.5,116.8) (74.5, 68.6)

Unsafe force duration (s) 38.1 100.9 3.2

Total duration (s) 143.0 356.5 370

Unsafe forces proportion 26.6% 28.3% 0.84%

3

Maximum (Fx, Fy) (mN) (61.4,58.6) (96.6,151.4) (65.2, 83.5)

Unsafe force duration (s) 2.5 106.1 9.9

Total duration (s) 309.2 434.4 397.6

Unsafe forces proportion 0.8% 24.4% 2.49%
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