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Abstract

Background: Despite the accessibility of blood, identification of systemic biomarkers associated 

with cancer progression has been especially challenging. The aim of this study was to determine a 

difference in baseline serum immune signatures in patients that experienced early pancreatic 

ductal adenocarcinoma (PDAC) metastasis with patients that did not. We hypothesized that 

immune mediators would differ in the baseline serum of these patient cohorts. To test this 

hypothesis, novel approaches of systemic immune analysis were performed.
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Methods: A serum-induced transcriptional assay was used to identify transcriptome signatures. 

To enable an understanding of the transcriptome data in a global sense, a transcriptome index was 

calculated for each patient taking into consideration the relationship of up and downregulated 

transcripts. For each patient, serum cytokine concentrations were also analyzed globally as a 

cytokine index.

Results: A transcriptome signature of innate type 1 interferon inflammation was identified in 

patients that experienced early metastatic progression. Patients without early metastatic 

progression, had a baseline transcriptome signature of TGFβ/IL10 regulated acute inflammation. 

The transcriptome index was greater in patients with early metastasis. There was a significant 

difference in the cytokine index in patients with and without early metastatic progression.

Conclusions: The association of serum-induced transcriptional signatures with PDAC 

metastasis is a novel finding. Global assessment of serum cytokine concentrations as a cytokine 

index is a novel approach to assess systemic cancer immunity.

Impact: These systemic indices can be assessed in combination with tumor markers to further 

define subsets of PDAC that will provide insight into effective treatment, progression and 

outcome.
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Introduction

Recent advances in targeted and immune therapy for the treatment of cancer has created an 

urgency to identify systemic and tumor biomarkers to define carcinoma subsets that 

correlate with disease progression. An understanding of biomarkers will facilitate the 

advancement of personalized treatment by identifying which patients will benefit from 

targeted or immune therapy, monitoring the response to therapy, and predicting disease 

outcome (1). Once identified, systemic biomarkers will be more universally available for 

clinical analysis than tumor biomarkers. This study describes the identification of systemic 

indicators analyzed from serum that associate with pancreatic cancer metastatic progression.

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with a 5-year survival of 

only 27%. However, there are some patients that do not experience PDAC progression for 

years after diagnosis and are long-term survivors (2). Advances in genomic technologies 

have enabled a molecular understanding of PDAC tumor subsets with different underlying 

pathology. Through RNA expression profiling, four subtypes of PDAC tumors (squamous, 

pancreatic progenitor, immunogenic and aberrantly differentiated endocrine/exocrine 

(ADEX)) have been identified (3–6). Each tumor subset is associated with distinct 

histopathological characteristics. Interestingly, a squamous subtype and an immunogenic 

subtype (with a macrophage and T cell co-inhibitory signature) are associated with poor 

prognosis. Recently, a transcriptome analysis of paired pancreatic tumor and adjacent benign 

tissues revealed differentially expressed genes belonging to canonical pathways and 

molecular functions associated with inflammation (7). These data suggest that there are 

inflammatory related differences in tumor and non-tumor pancreatic tissue.
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Despite the accessibility of blood as surrogate biopsy material, identification of systemic 

biomarkers has been especially challenging. Inflammatory mediators present in serum or 

plasma have been associated with aggressive disease. For example, tumor necrosis factor 

(TNF) and IL1β are elevated in advanced breast cancer and with more aggressive 

carcinomas (8). In aggressive inflammatory breast cancer, inflammatory mediators, IL6 and 

CXCL8 (IL8), are produced and secreted at high levels (9). Yet, the anti-inflammatory 

mediator, IL10, has also been elevated and associated with a negative prognosis in multiple 

cancers (10). Overall, the association of serum cytokine concentrations with cancer 

progression is difficult to interpret and remains ill-defined. In this study, we used a novel 

approach to identify systemic inflammatory indicators that associate with PDAC 

progression. Using baseline pre-treatment serum from PDAC patients with and without early 

metastatic progression, we analyzed serum-induced transcriptomes (induced in a normal 

reporter cell) and patient serum cytokine concentrations.

The serum-induced transcriptomes of pancreatic cancer patients with early metastasis (<400 

days from diagnosis) were compared with patients that did not develop metastasis or 

developed metastasis late (>500 days from diagnosis). We hypothesized that at baseline 

(before treatment), immune mediators would differ in PDAC patients that experience early 

metastasis (referred to as progressed or P) as compared to patients that do not experience 

metastasis or experienced metastasis greater than 500 days from diagnosis (referred to as not 

progressed or N). To sensitively and comprehensively capture these differences, we 

employed a serum-induced transcriptome analysis (using pre-treatment baseline serum) to 

induce transcription in a well-controlled reporter cell population consisting of peripheral 

blood mononuclear cells (PBMCs) obtained from a healthy blood donor. This same serum-

based transcriptome assay using PBMCs (obtained from the same PBMC donor as this 

study) has been used to capture inflammatory signatures in patients with Type 1 diabetes and 

cervical cancer. In recent onset Type 1 diabetes patients, longitudinal plasma samples 

identified a signature of high proinflammatory mediators and low anti-inflammatory factors 

which was evident before the onset of Type 1 diabetes (11,12). For cervical cancer, the 

transcriptome signature identified an association of innate immune activation with metastatic 

cervical carcinoma (13).

Results of this study show a baseline serum-induced transcriptome signature of innate type I 
interferon (IFN) inflammation in PDAC patients that experience early metastasis. This was 

in contrast to a transcriptome signature of regulated acute inflammation identified in patients 

that did not experience early metastasis. In order to correlate cytokine concentrations with 

transcriptome data, a canonical correlation of the transcriptome with serum cytokines was 

performed. From this correlation, both immune activating and immune regulating transcripts 

showed significant positive correlation in the not progressed PDAC group. These data were 

consistent with the transcriptome signature of regulated acute inflammation for this patient 

cohort. Individual serum cytokine concentrations did not correlate with the transcriptome 

data. However, when cytokine concentrations were calculated as a cytokine index (i.e. the 

sum of the concentration of acute inflammatory cytokines divided by the concentration of 

Th2 cytokines and myeloid differentiation factors), there was a Pearson correlation of <0.05 

with the transcriptome index.
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While serum/plasma-induced transcriptomes have previously been applied in the cancer field 

(13), to our knowledge, this is the first analysis of cancer-associated peripheral immunity 

that describes cancer inflammation/immunity in the context of serum-induced transcription 

with serum cytokine concentrations. With further study, the serum-induced transcriptome 

and serum cytokine index have the potential to be used as systemic biomarkers that will 

contribute to the identification of PDAC subsets that associate with disease progression.

Methods

Study Subjects and Samples

Subjects were recruited through the pancreatic cancer program at the Medical College of 

Wisconsin, and blood and serum samples were collected into the Pancreatic Cancer 

Biorepository under an approved Institutional Review Board protocol (PRO00012151; 

Froedtert Memorial Hospital). Early progressed PDAC patients had radiographic evidence of 

metastasis within 400 days of diagnosis. Not progressed or late progressed patients had no 

radiographic evidence of metastasis within 500 days of diagnosis. For patient serum 

preparation, peripheral blood was drawn into non-anticoagulated tubes and serum was 

collected, centrifuged, and frozen at −80oC until analyzed.

Serum-induced Transcriptome Analysis

A serum-induced transcription assay was conducted as previously described (12). For this 

study, commercial cryopreserved PBMCs from a Caucasian HLA-A2 male donor (UPN727, 

Cellular Technology Ltd., Shaker Heights, OH) were thawed and washed per manufacturer’s 

protocol. PBMCs were co-cultured with 40% subject serum in RPMI 1640 medium 

supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin at 37oC in 5% CO2. 

Cultures were prepared in a Costar 24-well plate (Corning) using 500,000 cells in 500 µl/

well. After culture (9 hours), total RNA was extracted using TRIzol reagent (Invitrogen Life 

Technologies). Using purified total RNA (100 ng), cRNA was synthesized and amplified/

labeled using the Affymetrix Express Kit, then fragmented and hybridized to the GeneChip 

Human Genome U133 plus 2.0 array in accordance with the Affymetrix GeneChip 

expression analysis technical manual (Affymetrix, Santa Clara, CA). After hybridization, 

arrays were washed and stained with Affymetrix fluidics protocol FS450_0001 and scanned 

with a 7G Affymetrix GeneChip Scanner. Image data were analyzed with Affymetrix 

Expression Console™ 1.1.2 software and normalized with Robust Multichip Analysis 

(www.bioconductor.org) to determine signal log ratios. The statistical significance of 

differential gene expression was determined though ANalysis Of VAriation (ANOVA) and 

false discovery rates (FDR) using Partek Genomics Suite 6.5. Hierarchical clustering was 

conducted with Genesis (14). Pathway analysis was performed with the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID) (15) and Integrated Pathway 

Analysis (IPA) (16). The transcriptome index was calculated by subtracting the sum of the 

log2 intensity of downregulated transcripts from the sum of the log2 intensity of upregulated 

transcripts (relative to progressed PDAC). The data generated in this investigation are 

MIAME compliant (17) and have been deposited in the NCBI Gene Expression Omnibus 

(18), accessible through GSE107818.
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Multiplex Serum Cytokines

Serum was analyzed in duplicate using the Human Cytokine/Human Chemokine Array 65-

plex Panel (HD65) (Eve Technologies, Calgary, AB, Canada).

Immunohistochemistry

Histological examinations were performed on standard four-micron thick hematoxylin and 

eosin (H & E) stained sections of formalin-fixed, paraffin embedded specimens. The 

pathologic features were evaluated by low power examination of several representative 

slides from each case by a pathologist (A.C.M.). Immunohistochemistry: Paraffin blocks for 

immunohistochemical studies were available in all cases. Four-micron sections were stained 

using a Dako Autostainer Plus according to the manufacturer’s protocol. Slides were dried at 

60oC for one hour and deparaffinized. Heat induced epitope retrieval was performed with 

Dako Envision FLEX target retrieval solution (high pH Tris/EDTA) at 100oC for 20 minutes. 

The primary antibody for CD8 (C8/144B) was obtained from DAKO, Carpinteria, 

California. Antibodies were incubated at room temperature for 60 minutes. Signals were 

detected using a Dako FLEX detection kit. Counterstaining was performed with Envision 

FLEX hematoxylin for 7 minutes at room temperature. Appropriate positive and negative 

controls were run concurrently. Immunohistochemical Analysis: Cytoplasmic and 

membranous expression of immunohistochemical staining was quantified for each case 

using an Automated Cellular Imaging System III (ACIS III, DAKO) as previously described 

(19). For each patient, a portion of pancreatic cancer was quantitatively analyzed by 

scanning a representative whole slide. ACIS software collects individual, overlapping 

images at 400X, and then the software program tiles these images to create a montage of the 

entire scanned specimen. The software evaluates each individual 400X image and combines 

the results into an aggregate quantitative measurement corresponding to the entire tissue 

specimen. The ACIS system measures the intensity of the staining based on three related 

color parameters: the color defined by hue, the “darkness” defined as luminosity, and the 

density of the color defined as saturation. ACIS software for the analysis was programmed 

by an experienced user-pathologist (A.C.M.) by setting the color-specific thresholds to 

determine and calculate staining intensity and the ratio of positively stained cells to the 

entire area of selection. This was used to determine the approximate percentage of positive 

staining tissue in each specimen.

Statistics

Data were compared using paired and unpaired non-parametric Student’s t test and Pearson 

correlation. Analyses were calculated with Prism graph pad 6.0 software (GraphPad, San 

Diego, CA). Canonical correlation analyses between gene expression and cytokines were 

performed using R package CCA, Version 1.2, published 2014.07.02 (http://www.r-

project.org/). A canonical cross correlation was done between the log2 intensity of 66 

transcripts that met the statistical cut off of <20% false discovery rate (n=66) and the 

concentration of 65 serum cytokines for each of the 5 patients in the progressed and not 

progressed PDAC cohorts.
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Results

The serum-induced transcriptome differs in patients with progressed and not progressed 
PDAC

Patients with resectable or borderline-resectable PDAC (i.e. not locally metastatically 

advanced and candidates for surgery) were included in this study. All patients were treated 

with neoadjuvant chemotherapy consisting of chemotherapy or chemotherapy and radiation 

(Table 1). Previous study of resectable PDAC patients treated with neoadjuvant therapy 

showed a mean overall survival of 32 months (933 days from diagnosis) (20). For this study, 

patients with early metastasis (i.e. progressed) were defined as those with radiographic 

evidence of metastasis within 400 days of diagnosis. Patients with late or no metastatic 

progression (i.e. not progressed) had no radiographic evidence of metastasis or had 

radiographic metastatic evidence that appeared 500 days after diagnosis (Tables 1 and 3). We 

hypothesized that mediators in the serum of patients with progressed and not progressed 

PDAC would induce unique transcriptional responses in a reporter population of normal 

PBMCs. A serum-based transcriptome assay extensively used to detect inflammatory 

signatures in Type 1 diabetes was used to interrogate the hypothesis (11,21,22). Specifically, 

baseline serum (obtained at diagnosis and prior to treatment) was co-cultured over PBMCs 

obtained from a standard normal donor. The induced transcription was measured on 

Affymetrix GeneChip Human Genome U133 Plus 2 arrays. An unsupervised principal 

component analysis (utilizing the complete unfiltered data) showed distinct clusters between 

progressed and not progressed samples (Suppl. Fig. 1). Of the greater than 47,000 transcripts 

interrogated, there were 727 unique transcripts that met thresholds of │log2 ratio│of ≥0.05 

(1.2 fold-difference) with a p≤0.01. The heat map in Fig. 1A shows the relative expression of 

the 727 transcripts in 5 progressed (P) and 5 not progressed (N) PDAC patients. The heat 

map of the mean fold-difference in expression shows a distinct segregation of up and down 

regulated transcripts between the 2 patient cohorts (Fig. 1B).

The 727 unique transcripts were uploaded into Database for Annotation, Visualization and 

Integrated Discovery (DAVID) and Integrated Pathways Analysis (IPA) for ontological 

analysis. Putative upstream regulators (up regulators) of gene transcription were identified in 

IPA (Fig. 1A and Table 2). Identification of upstream regulators was of particular interest as 

we hypothesized that mediators/regulators in patient serum are responsible for regulating 

transcription in normal donor PBMCs. Upregulated transcripts in progressed patients 

included those associated with activated innate immunity. Specifically, upstream regulators 

included IFN regulatory factors (IRF3, IRF5, IRF7), stimulator of IFN genes (STING 

(TMEM173)), tank binding kinase (TBK), type 1 IFN (IFNA2), type III IFN (IFNL1 or 

IL29), IFN receptor subunits (IFNLR1, and IFNAR1), and transcription factors associated 

with IFN signaling (STAT1 and STAT2) (Fig. 1A and Table 2). In contrast to the upstream 

regulators identified in progressed PDAC patients, the upstream regulators of upregulated 

transcripts in not progressed PDAC was one of acute inflammation and TGFβ1/IL10 

immune regulation. For this patient cohort, there were upstream regulators associated with 

acute inflammation (IL6, IL1, TNF, IL2, IL17A, MYD88) as well as mediators associated 

with immune regulation (PGE2, TGFβ, SMAD4, IL4, IL10, and FoxP3) (Fig. 1A and Table 

2). In summary, progressed patients have a serum-induced transcriptome signature consistent 
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with activated innate inflammation, whereas not progressed patients have a serum-induced 

transcriptome signature consistent with acute inflammation and TGFβ and IL10 immune 

regulation.

To understand a global relationship of these genes, a transcriptome index was calculated as a 

method to ascribe a numerical value to the upregulated or downregulated transcripts depicted 

in the heat map in Fig. 1A. Relative to progressed patients, the transcriptome index was 

calculated as the sum of the log2 intensity of all downregulated transcripts subtracted from 

the sum of the log2 intensity of all upregulated transcripts. Patients in the progressed cohort 

had transcriptome indices greater than 0 and patients in the not progressed patient cohort had 

transcriptome indices less than 0 (Table 3). Thus, the transcriptome index showed a 

numerical segregation of the patient cohorts.

Analysis of the transcriptome index with an inflammatory transcriptome index segregates 
the PDAC progressed and not progressed patient cohorts

Inflammation is a hallmark of cancer (23), yet markers of immune inflammation are difficult 

to interpret. To analyze transcripts in the context of inflammation, genes listed in IPA and 

DAVID belonging to ontology categories of Inflammatory Response, Cytokine and 

Cytokine-Cytokine Receptor Interaction were identified (Suppl. Table 1). Within the original 

727 transcripts, there were 194 related to inflammation. The heatmap in Fig. 1C shows the 

relative transcript expression of these inflammatory genes for each patient. While there is 

variation of transcript expression between individuals within the progressed and not 

progressed patient cohorts, calculation of the mean fold difference showed a distinct 

segregation of gene expression between the 2 groups (Fig. 1D).

Similar to the transcriptome index calculated from 727 transcripts, an inflammatory 

transcriptome index was calculated from 194 inflammatory-associated transcripts. 

Analogous to the transcriptome signature, each of the progressed patients had an 

inflammatory transcriptome index greater than that of not progressed patients (Table 3). 

When the data from the transcriptome and inflammatory indices were analyzed together, the 

progressed and not progressed patient cohorts segregated (Fig. 1E). These data suggest that 

inflammation is a factor associated with disease progression.

To validate the results of the microarray analysis, quantitative real-time PCR was done from 

cDNA made from the PBMCs (same donor PBMCs as used for the microarray analysis) 

following incubation with patient serum. Supplementary Fig. 2 shows a correlation of the 

log2 intensity (Suppl. Fig. 2A) with PCR amplification (fold change based on ΔΔCT value) 

(Suppl. Fig. 2B) for several genes.

Serum cytokine and transcriptome indices segregate PDAC progressed and not 
progressed patient cohorts

Inflammatory (IL6, CXCL8, TNF, IL1β) and regulatory (IL10, IL1RA) serum cytokine 

concentrations are elevated in patients with aggressive cancers (10), but to date, there are no 

validated serum mediators as markers of cancer progression. For this study, we hypothesized 

that serum immune mediators (cytokines, chemokines and growth factors) analyzed in the 

context of each other would reflect a state of systemic immunity that would correlate with 
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disease progression. For this assay, baseline (pre-treatment) serum was analyzed using a 

luminex-based platform.

To understand serum-mediators in context with the transcriptome, a canonical correlation 

between the log2 intensity of individual transcripts and individual serum cytokine 

concentrations (pg/ml) was done. For this analysis, the transcriptome statistical stringency 

was increased to include a false discovery rate of <20%. These criteria reduced the 

transcriptome list from 727 to 66 transcripts. The log2 intensity of each of the 66 transcripts 

was correlated with the 65 serum cytokine concentrations analyzed for each patient. Fig. 2 

shows the correlation of transcriptome data (X) with serum cytokine concentrations (Y) in 

the progressed patient cohort (Fig. 2A) and the not progressed patient cohort (Fig. 2B). 

Values are translated into colors from blue (negative correlation) to red (positive correlation) 

to generate a correlation map. The maps show distinct differences in the progressed and not 

progressed patient groups. From the list of 66 transcripts subjected to canonical correlation, 

those that correlated significantly (Cor p ≥ 0.94 or Cor p ≤ -0.94) with cytokine 

concentrations in progressed and not progressed PDAC patient cohorts are listed in Table 4.

Interestingly, in the progressed group, there were 2 genes related to mitochondrial metabolic 

function that significantly correlated with serum cytokines (Table 4). With reference to the 

cytokine signature, the electron transfer flavoprotein dehydrogenase gene (ETFDH) was 

negatively correlated and thioredoxin (TXN) was positively correlated. Both transcripts were 

upregulated in the progressed group when compared to the not progressed group with a 

mean fold difference of 1.48 for ETFDH and 1.61 for TXN. ETFDH is a mitochondrial 

enzyme involved in energy production by fat and protein catabolism, and thioredoxin is a 

redox active protein important in the regulation of mitochondrial membrane potential. 

Recent studies have reported that metabolic reprogramming may enable PDAC cells to 

maintain adequate intracellular nutrient levels despite limited supplies (24,25). Furthermore, 

autophagy, microlipophagy and electron transport chain activity were reported to be critical 

for survival of tumor initiating cells (26). Together these data suggest that metabolic states 

may play a role in progression.

In the not progressed group, there was a positive correlation of transcripts related to 

activated inflammation (i.e. SASH1, CXCL5, FCAR, CD14, VCAN, CLEC5A, C5AR1, and 

IL1R). There were also positive correlations of cytokine concentrations with transcripts 

associated with TGFβ activation and signaling (i.e. SMAD4 and ITGB8) in the not 

progressed patient cohort. These data are consistent with the transcriptome data suggesting 

not progressed patients have a regulated acute inflammatory signature (Table 2).

A cytokine index (CI) was calculated as a strategy to globally assess serum cytokine 

concentrations. The CI was calculated as the sum of the concentrations of acute phase 

cytokines (IL1α, IL1β, IL6, IL17A, IL28A, IFNA2, IFNγ, and TNFα) divided by the sum 

of concentrations of T helper Type 2 (Th2) cytokines and myeloid growth factors (IL4, IL5, 

IL10, IL13, GM-CSF, FLT3L, and G-CSF). A Pearson correlation of the CI with the 

transcriptome index was significant at p=0.0332. (R2=0.452) (Figure 3A and Suppl. Table 

2). There was no significance observed when individual serum cytokine concentrations were 

correlated with the transcriptome index (Suppl. Table 2). Figure 3 shows separation of the 
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progressed and not progressed patient cohorts when the CI was graphed with the 

transcriptome index (Fig. 3A) and inflammatory transcriptome index (Fig. 3B). In order to 

substantiate the CI as an indicator for PDAC metastatic progression, it was calculated from 

baseline serum from additional patients (i.e. progressed (n=17) and not progressed (n=18)) 

(Table 3). From this validation cohort, the CI showed statistical significance (p=0.0487) 

between the progressed and not progressed PDAC cohorts (Fig. 3C). The mean CI of the 

progressed group was 2.3 and the mean CI of the not progressed group was 3.9 (Table 3). It 

is important to note that some progressed patients had a CI greater than 3.9 (P8, P15, and 

P16) and some not progressed patients had a CI less than 2.3 (N7, N8 and N17). These data 

suggest that a higher CI may be a favorable indicator of delayed PDAC progression only in 

some patients as the CI did not completely segregate the two patient cohorts. Furthermore, 

this index requires validation with larger cohorts of PDAC early and late metastatically 

progressed patients.

Few CD8+ T cells are detected in tumors from both patient cohorts

Infiltration of CD3+CD8+ cells in the tumor core (CT) and invasive margins (IM) (referred 

to as the immunoscore) has been shown to correlate with overall survival in multiple 

carcinomas including bladder, breast, colorectal, esophagus, head and neck, liver, lung, 

melanoma and ovarian (27). Often there is only 5–20% cellularity within the extracellular 

matrix-rich stroma of pancreatic cancer (28). Despite the presence of patchy disease, a better 

disease-specific survival and overall survival has been associated with the presence of CD8+ 

T cells in the PDAC tumor core and CD3+ T cells in the tumor core and invasive margin 

(29). High tumor infiltration of both CD4+ and CD8+ T cells also correlated with a 

significant increase in survival (30). Thus, for this study, it was of interest to determine if 

CD8+ T cells could be detected in the resected tumors of our PDAC patients. Available 

tumor samples were analyzed in 4 progressed patients (P1, P3, P5 and P6) and 8 not 

progressed patients (N1-N8). Tumor sections were stained with anti-CD8, and the 

percentage of CD8+ T cells was determined in multiple regions of the tissue. The CD8+ T 

cell density score represents the average percent of CD8+ T cells from each case (Table 3). 

Fig. 4 shows the CD8+ T cell density graphed against the inflammatory transcriptome index 

(Fig. 4A) and the cytokine index (Fig. 4B). Figure 4C shows representative tumor sections 

stained with hematoxylin/eosin (panel 1) and anti-CD8 (panel 2) From these limited data, a 

few interesting observations were made. Two of the not progressed patients had few T cells 

detected in tumor (N4 and N7) (Table 3). Patient N4 relapsed with metastasis 1824 days 

since diagnosis and patient N7 is beyond 1000 days without relapse (Tables 1 and 3). The 

average number of CD8+ T cells in patient P6 was greater than patients N4 and N7 (Table 

3). Patient P6 relapsed 308 days from diagnosis. It could be that PDAC T cell infiltration is a 

useful indicator of PDAC progression, but it may not serve as a predictor of PDAC 

progression for all patients. This hypothesis requires further testing.

Discussion

There are multiple indicators that associate with the development and progression of 

pancreatic cancer. The presence of somatic mutations in tumor cells (e.g. KRAS, TP53, 

CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1 and PBRM1) (4), tumor 
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RNA expression profiles (3–6), tumor immune cell infiltration (27,29,30) and metabolic 

function (24–26) all contribute to identifying more and less aggressive subsets of PDAC. 

The main objective of this study was to query the systemic response in PDAC to further 

enhance knowledge of PDAC disease progression.

Identification of systemic indicators such as inflammatory mediators present in the serum 

and their association with PDAC progression has been a difficult task. In this study, serum 

was analyzed using novel strategies that allowed for a global analysis of indicators. An in-

depth analysis of a serum-induced transcriptome and serum cytokine concentrations was 

conducted on a pilot sample of patients with pancreatic ductal adenocarcinoma in order to 

investigate these associations with disease progression. Remarkably, despite the limitation in 

sample size, the baseline serum-induced transcriptome showed a difference in immune 

activation and immune regulation in PDAC patients that do and do not develop early 

metastasis (Figs. 1A and B). Ontological analysis of the baseline serum-induced 

transcriptome from progressed patients that experience early metastasis showed putative 

upstream regulators consistent with induction of type I IFN production through the 

stimulator of IFN genes pathway (STING). The presence of activators of innate immunity in 

this patient cohort is counter intuitive since activation of the STING pathway and the 

secretion of type I IFNs, inflammatory cytokines and chemokines promote maturation of 

dendritic cells which prime cancer antigen-specific T cells to produce an adaptive anti-

cancer response (31). It is possible that these immune upstream regulators are present in 

response to innate activation signals, but there is immune dysregulation that prevents 

activation of Th1 adaptive immunity in this patient cohort. Utilizing the same serum-induced 

transcriptome assay and the same reporter PBMC cells, an innate immune activation 

signature was also identified in patients with metastatic cervical carcinoma (13). 

Remarkably, and similar to progressed PDAC patients, the transcriptome upstream 

regulators for metastatic cervical cancer patients included IRF5, IRF7, IFNL1, IFNA2 and 

IFNL1.

While the transcriptome data is striking, this method of analysis is costly and may not be 

clinically feasible. The ability to identify alternative inflammatory states from serum 

cytokine analysis is of great clinical relevance. To date, serum cytokine analysis has shown 

that both immune stimulatory and immunosuppressive cytokines are present in the serum of 

patients with multiple aggressive cancers (10). Most notably, both high concentrations of the 

acute inflammatory cytokine IL6, as well as the inflammation regulatory cytokine IL10, are 

associated with poor outcome. Our data showed no correlation of individual cytokines with 

the transcriptome index (Suppl. Table 2). Using the upstream regulators identified from the 

transcriptional data as a guide, cytokines were clustered into acute inflammatory cytokines 

and regulatory cytokines and myeloid differentiation factors to mathematically calculate a 

cytokine index. A Pearson correlation of the cytokine index with the transcriptome index 

yielded a correlation of p<0.05 (R2=0.452) (Figure 3A). Analysis from a larger cohort of 17 

progressed and 18 not progressed patients, yielded a mean cytokine index that was 

statistically significant between the progressed and not progressed patient cohorts (Fig. 3C 

and Table 3). It is important to note that not every patient in the progressed cohort had a low 

cytokine index and not every patient in the not progressed cohort had a high cytokine index. 
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With further study, the cytokine index may be shown to be an indicator of favorable outcome 

in some patients within a particular subset of PDAC that is yet to be defined.

To date, most of the information defining subsets of PDAC is derived from tumor. Often, 

tumor samples are not available and mutational, transcriptional, immunogenic and metabolic 

tumor parameters cannot be assessed. Therefore, further investigation of systemic indicators 

of PDAC progression is of critical importance. However, when tumor is available, it is 

conceivable that more and less aggressive subsets of PDAC can be further defined by 

combining tumor analysis with systemic analysis. The subtype of tumor (i.e. squamous, 

pancreatic progenitor, immunogenic and ADEX), tumor immunogenicity (i.e. detection of 

tumor infiltrating CD3+, CD8+ and CD4+ T cells), tumor mitochondrial metabolism, and the 

systemic inflammatory profile (serum-induced transcriptome or cytokine index) may need to 

be assessed together in order to identify specific subsets of PDAC with a predictable 

outcome.

In summary, both the transcriptome index and the cytokine index consider multiple immune-

associated genes or cytokines that reflect a global state of systemic inflammation. The 

ability to segregate PDAC patients that experience early metastasis from those that do not 

through analysis of baseline cytokine concentrations and baseline transcriptome indices is 

conceptually novel. An in-depth analysis of this pilot sample of patients has introduced the 

serum-induced transcriptome and the cytokine index as potential indicators of PDAC 

progression. Further study of these systemic indicators alone or in combination with tumor 

characteristics should lead to a better understanding of subsets of PDAC and their 

association with progression and survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Serum-induced transcriptome.
(A) Heatmap of transcripts with 1.2-fold difference and p≤0.01 showing upstream (up) 

regulators as identified in IPA. n=727 (B) Heatmap of the mean log2 intensity of transcripts 

shown in A. (C) Heatmap of inflammation-related transcripts as identified in IPA and 

DAVID with 1.2-fold difference and p≤0.01. n=194. (D) Heatmap of the mean log2 intensity 

of transcripts shown in C. (E) Graph showing segregation of progressed and not progressed 

PDAC patient cohorts based on the transcriptome and inflammatory transcriptome indices.
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Figure 2. Canonical correlation of the log2 intensity transcriptome values and cytokine 
concentrations.
(A) Correlation matrices for progressed PDAC: X variables (upper-left panel, the transcript 

log2 intensity), Y variables (upper-right panel, cytokine concentrations (pg/ml)), cross-

correlation X x Y (bottom panel). (B) Correlation matrices for not progressed PDAC. X 

variables (upper-left panel, the transcript log2 intensity), Y variables (upper-right panel, 

cytokine concentrations), cross-correlation X x Y (bottom panel). Values are translated into 

colors from blue (negative correlation) to red (positive correlation).
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Figure 3. Serum cytokine analysis.
Segregation of patient cohorts when the cytokine index is graphed with the transcriptome 

index (A) and inflammatory transcriptome index (B). (C) The cytokine index with standard 

error of the mean (SEM) of progressed and not progressed PDAC patient cohorts. P = 

Progressed, N = Not progressed and C = Normal controls.
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Figure 4. Immunohistochemical analysis of CD8+ T cells in PDAC tumor.
Graph of CD8+ T cell density with the inflammatory transcriptome index (A) and cytokine 

index (B). P = Progressed and N = Not progressed. (C) A representation of tumor tissue 

sections stained with hematoxylin and eosin (panel 1) and anti-CD8 (panel 2). N2 is not 

progressed patient 2 (top) and P1 is progressed patient 1 (bottom).
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Table 1.

Clinical Treatment and Progression

Patient
Number

Age Disease
Burden

Neoadjuvant/
Induction
Chemotherapy

Chemoradiation Therapy
Completed

Surgical
Resection

Days to
Metastatic
Progression

PI 62 BR FOLFIRINOX Gem XRT Yes Yes 249

P2 71 R None Capecitabine XRT Yes No 84

P3 53 R FOLFIRINOX None Yes Yes 307

P4 67 BR FOLFIRI None Unknown No 84

P5 50 R FOLFIRINOX None Yes Yes 398

P6 73 BR Gem/Nab-P Gem XRT Yes Yes 308

P7 71 BR FOLFIRINOX Gem XRT Yes No 150

P8 60 BR FOLFIRINOX None No No 70

P9 84 BR None Capecitabine XRT Yes No 91

P10 80 R None Gem XRT Yes No 97

P11 81 BR Gem/Nab-P Gem XRT Yes No 130

P12 83 R None Gem XRT Yes Yes 201

P13 60 BR FOLFIRINOX Gem XRT Yes No 203

P14 63 BR None Gem XRT Yes No 209

P15 63 BR FOLFIRINOX Capecitabine XRT Yes No 209

P16 84 BR FOLFIRINOX Gem XRT Yes No 343

P17 59 BR FOLFIRINOX Gem XRT Yes Yes 358

N1 70 R None Gem XRT Yes Yes None

N2 52 R None Gem XRT Yes Yes None

N3 60 R FOLFIRINOX None Yes Yes None

N4 66 R FOLFIRI None Yes Yes 1841

N5 56 R None Gem XRT Yes Yes 1092

N6 58 BR FOLFIRINOX Gem XRT Yes Yes None

N7 66 R FOLFIRINOX None Yes Yes None

N8 73 R None Capecitabine XRT Yes Yes None

N9 70 BR FOLFIRINOX Gem XRT Yes Yes 545

N10 66 R None Capecitabine XRT Yes Yes 678

N11 72 BR FOLFIRINOX Gem XRT Yes Yes 803

N12 64 R FOLFIRINOX None Yes Yes 1187

N13 73 BR FOLFOX Gem XRT Yes Yes None

N14 65 BR FOLFIRINOX Capecitabine XRT Yes Yes 1614

N15 65 BR FOLFIRINOX Gem XRT Yes Yes None

N16 70 BR FOLFIRINOX Gem XRT Yes Yes None

N17 74 R None Gem XRT Yes Yes None

N18 86 R None Gem XRT Yes Yes None
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P = Progressed, N = Not progressed, R = Resectable, BR = Borderline resectable, XRT = Radiation therapy, Gem = Gemcitabine, Nab-P = Nab-
paclitaxel
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Table 2.

Upstream Regulators of the Upregulated Transcripts (n=727) Identified in Top Canonical Inflammatory 

Associated Pathways: IPA

Progressed Upregulated n=364 Not Progressed Upregulated n=363

Top Canonical Pathways p-value Top Canonical Pathways p-value

Pathogenesis of MS 1.31E-05 Role of 17A in Psoriasis 7.81E-05

EIF2 Signaling 3.02E-05 Histamine Degradation 2.57E-03

Role of Hypercytokinemia/Hyperchemokinemia in the Pathogenesis of 
Influenza

8.83E-04 Inhibition of Angiogenesis by TSP1 5.44E-03

IL-9 Signaling 1.36E-03 Neuregulin Signaling 6.43E-03

Communication between Innate and Adaptive Immunity 3.11E-03

Upstream Regulators p-value Upstream Regulators p-value

SAMSN1 1.36E-10 Lipopolysaccharide 8.29E-09

IFNLR1 9.87E-09 TNF 2.21E-08

STAT1 1.33E-09 PGE2 1.68E-07

TBK1 1.35E-09 CSF2 1.84E-07

IRF3 1.42E-09 PD98059 3.33E-07

TLR3 1.46E-10 Immunoglobulin 5.28E-07

Salmonella enterica serotype 1.92E-09 IL2 9.43E-06

IFNA2 5.05E-09 U0126 1.65E-06

TLR9 6.48E-09 TGFB1 2.15E-06

STAT2 7.92E-09 MYD88 2.70E-06

PTPRJ 7.92E-09 IL4 3.40E-06

IRF5 8.35E-09 Diethylstilbestrol 1.25E-05

DOCK8 1.01E-08 EGR1 1.40E-05

IRF7 1.18E-08 EGF 1.46E-05

TMEM173 1.48E-08 9,10-Dimethyl-1,2-benzanthracene 2.15E-05

TREM1 1.97E-08 ATP-gamma-S 2.17E-05

TLR4 2.07E-08 Tretinoin 2.28E-05

IFNAR1 2.16E-08 LY294002 2.53E-05

IFNL1 5.57E-08 Tributyrin 2.74E-05

ELANE 7.47E-05

IL17A 3.53E-05

IL10 4.14E-05

SMAD4 4.31E-05

Methylprenisolone 4.68E-05

IL6 4.89E-05

IL1 4.97E-05

FoxP3 5.12E-05

Alpha catenin 5.56E-05
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Table 3.

Transcriptome Indices, Cytokine Index and Tumor CD8+ T Cell Density

Patient Number and Days to Progression Transcriptome Index n=727 Inflammatory Transcriptome 
Index n=194

Cytokine
Index

CD8+ T Cell Density

P1 249 207 80 1.51 0.66

P2 84 142 41 1.42

P3 307 206 60 0.79 0.65

P4 84 14 −18 3.15

P5 398 79 17 1.30 0.28

P6 308 0.39 1.49

P7 150 1.69

P8 70 5.28

P9 91 3.00

P10 97 2.41

P11 130 0.42

P12 201 3.43

P13 203 1.90

P14 209 0.94

P15 209 4.42

P16 343 4.78

P17 358 2.29

P mean 130 36 2.3 0.77

N1 None −174 −51 5.08 1.55

N2 None −69 −22 2.65 9.52

N3 None −150 −44 3.30 1.86

N4 1841 −134 −33 3.08 0.16

N5 1092 −120 −29 9.30 2.69

N6 None 3.22 1.44

N7 None 1.33 0.52

N8 None 1.41 1.56

N9 545 2.61

N10 678 2.84

N11 803 2.44

N12 1187 4.44

N13 None 2.81

N14 1614 11.00

N15 None 2.40

N16 None 6.87

N17 None 1.61

N18 None 3.03
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N mean −130 −36 3.90 2.41

Average of Cls
normal controls
(n=10)

2.47

P = Progressed and N = Not progressed
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Table 4.

Canonical Correlation of FDR<20% Transcript Log2 intensity (n=66) with Serum Cytokine Concentrations 

(n=65)

Progressed PDAC

Negative correlation
Electron transfer flavoprotein dehydrogenase (ETFDH) −0.97
SMG7 −0.94

Positive correlation

Thioredoxin (TXN) 0.94

Not progressed PDAC

Negative correlation

Cyclin dependent kinase1 (CDK1) −0.97

Positive correlation

SAM and SH3 domain-containing protein 1 (SASH1) 0.99

Epiregulin (EREG) 0.98

Thrombomodulin (THBD) 0.98

Erythrocyte membrane protein band 4.1 like 3 (EPB41L3) 0.98

Myoferlin (MYOF) 0.98

Thrombospondin 1 (THBS1) 0.98

DMX like 2 (DMXL2) 0.98

Macrophage expressed 1 (MPEG1) 0.98

Alanyl aminopeptidase (ANPEP) 0.98

Mitochondrial translocator assembly and maintenance homolog (TAMM41) 0.98

Ras homolog family member U (RHOU) 0.97

CXC motif chemokine ligand 5 (CXCL5) 0.97

Fc fragment of IgA receptor (FCAR) 0.97

Cluster of differentiation 14 (CD14) 0.97

Integrin subunit beta 8 (ITGB8) 0.97

ATP-dependent helicase II (XRCC5) 0.97

CD93 0.96

Versican (VCAN) 0.96

Thioredoxin (TXN) 0.95

C-type lectin domain containing 5A (CLEC5A) 0.95

Tyrosine protein kinase HCK (HCK) 0.95

Interleukin 24 (IL24) 0.95

Complement C5A receptor 1 (C5AR1) 0.94

Neuropilin 1 (NRP1) 0.94

SMAD family member 4 (SMAD4) 0.94
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