
American Journal of Epidemiology
© The Author(s) 2019. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of
Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 188, No. 6
DOI: 10.1093/aje/kwz004

Advance Access publication:
January 10, 2019

Practice of Epidemiology

Evaluating Flexible Modeling of Continuous Covariates in Inverse-Weighted
Estimators

Ryan P. Kyle*, Erica E. M. Moodie, Marina B. Klein, andMichałAbrahamowicz

*Correspondence to Ryan P. Kyle, Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill
University, 1020 Pine AvenueWest, Montréal, QCH3A 1A2, Canada (e-mail: ryan.kyle@mail.mcgill.ca).

Initially submitted December 10, 2017; accepted for publication January 7, 2019.

Correct specification of the exposure model is essential for unbiased estimation in marginal structural models
with inverse-probability-of-treatment weights. However, although flexible modeling is commonplace when estimat-
ing effects of continuous covariates in outcomemodels, its use is less frequent in estimation of inverse probability
weights. Using simulations, we assess the accuracy of the treatment effect estimates and covariate balance ob-
tained with different exposure model specifications when the true relationship between a continuous, possibly
time-varying covariate Lt and the logit of the probability of exposure is nonlinear. Specifically, we compare 4 ap-
proaches to modeling the effect of Lt when estimating inverse probability weights: a linear function, the covariate-
balancing propensity score, and 2 easy-to-implement flexible methods that relax the assumption of linearity: cubic
regression splines and fractional polynomials. Using data from 2 empirical studies, we compare linear exposure
models with flexible exposure models to estimate the effect of sustained virological response to hepatitis C virus
treatment on the progression of liver fibrosis. Our simulation results demonstrate that ignoring important nonlinear
relationships when fitting the exposure model may provide poorer covariate balance and induce substantial bias in
the estimated exposure-outcome associations. Analysts should routinely consider flexible modeling of continuous
covariates when estimating inverse-probability-of-treatment weights.

causal inference; fractional polynomials; marginal structural models; model misspecification; splines

Abbreviations: AIDS, acquired immunodeficiency syndrome; APRI, aspartate aminotransferase:platelet ratio index; AZT,
azidothymidine; CBPS, covariate-balancing propensity score; CI, confidence interval; FP, fractional polynomial; GGT, γ-
glutamyl transferase; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IPTW, inverse-probability-of-treatment
weighting; RMSE, root mean squared error; SMD, standardized mean difference.

Marginal structural models permit estimation of exposure ef-
fects in the presence of time-varying confounders that are also
mediators (1, 2), and they are also useful in point-source treatment
settings when the outcome model is difficult to specify (3). Mar-
ginal structuralmodels are commonlyfitted using inverse-probabil-
ity-of-treatment–weighted regression (4). The resulting estimators
of exposure effects are unbiased, provided that assumptions of con-
sistency, correctmodel specification, exchangeability, nomeasure-
ment error, and positivity are all met (1, 5). Inverse probability
weighting produces a “pseudopopulation” in which covariate
distributions are balanced, that is, similar between exposure
groups (1, 5).

For dichotomous exposures, inverse probabilityweights are typ-
ically estimated using logistic regression, oftenwith untransformed

continuous covariates, which implicitly assumes linear asso-
ciations with the logit of the probability of exposure (6, 7). Yet
important deviations from linearity often occur. For example,
the likelihood of initiating drug therapy may increase steeply
only upon exceeding a threshold for disease activity (8, 9).

Ignoring nonlinear covariate effects could induce substantial
inaccuracies in estimating inverse probability weights, which
may result in poor balance, residual confounding, and biased
effect estimates (1). For these reasons, many authors have advo-
cated wider use of flexible modeling of continuous covariates
(10–14). However, most of the recently published analyses
which employedmarginal structural models did not use flexible
modeling (see Web Appendix 1 and Web Table 1, available at
https://academic.oup.com/aje), and while explorations of the
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consequences of model misspecification in this context exist
(5, 15–18), few have systematically investigated nonlinear
covariate-treatment relationships in simulations (16, 18).
Pirracchio et al. (16) evaluated ensemble learning for propensity
score estimation and concluded that it improved covariate bal-
ance and reduced bias when the exposure model was incorrectly
specified, although the computational burden was high and im-
provements were modest. Imai and Ratkovic (18) proposed and
assessed the performance of the covariate-balancing propensity
score (CBPS) approach. However, neither study compared the
proposedmethodologywith less computationally intensive flex-
ible modeling techniques that may be easier to implement in
widely available software, such as regression splines (19) and
fractional polynomials (FPs) (12) (Web Figure 1).

Accordingly, we performed comprehensive simulations to
systematically compare several strategies for modeling contin-
uous covariates in inverse-probability–weighted estimators,
under a variety of clinically plausible assumptions. To illustrate
the practical benefits of flexible modeling of real-life clinical
data, we also present results from analyses of 2 empirical studies.

METHODS

Modeling strategies

The motivation for flexible modeling of covariate-outcome
associations is to avoid constraining a priori the functional
form of this relationship to a particular parametric family of
functions, such as conventionally used linear functions. Many
flexible modeling techniques developed over the past 4 decades
help to avoid such constraints, although head-to-head compari-
sons are limited (20–22). In our simulations and empirical studies,
we considered 2 simple, popular flexible techniques: 1) unpena-
lized polynomial regression splines and FPs and 2) a newer alter-
native, the CBPS (18, 23).

Regression splines are piecewise polynomials, joined smoothly
at predefined points termed “knots” (19). Increasing the number
of knots, or the degree of the polynomial, increases flexibility
(24). However, even relatively simple quadratic or cubic splines
with 1–2 knots offer a rich variety of curvilinear shapes (19, 25).
We therefore rely on unpenalized cubic regression B-splines
with a single knot at the median value of the observed covari-
ate distribution.

FPs model the effects of continuous covariates using flexible
parametric models by selecting 1 or 2 simple functions within a
prespecified set, each of which is assigned its own regression
coefficient (12). For a single continuous covariate X, the choice
involves 8 power transformations Xp, where p = [−2, −1, −0.5,
0, 0.5, 1, 2, 3], with =X Xlog0

10 (12). The single best-fitting
function from this set is denoted FP1, the first-order FP, and it
can represent only monotonic relationships (26). Second-order
FPs (FP2), which select the best pair of functions from the same
set of 8 choices, offer greater flexibility and can capture nonmo-
notonic relationships (26). FP2models involve 2 transformations
(powers p and q) and are defined (12) as follows.

≠ β + β + βp q x xIf , .p q
0 1 2

= β + β + β ×p q x x xIf , log .p q
0 1 2 10

The best-fitting of the 36 possible combinations of p and q
(including 8 with p = q) is then selected as the final FP2model
(26). In our analyses, the choice between best-fitting FP1 esti-
mators and FP2 estimators was based on likelihood ratio tests
(12, 26).

The CBPS approach estimates inverse-probability-of-treatment
weights in a data-adaptive fashion with the goal of minimizing
covariate imbalance (18, 23). Themethod prespecifies balancing
conditions for exposuremodel covariates at each time point, within
a method-of-moments framework (18, 23). This approach requires
the analyst to prespecify a functional relationship between the co-
variates and exposure and, thus, is not inherently “flexible.”
Nevertheless, we consider CBPS a potentially useful alterna-
tive to flexible modeling, because in other contexts it has been
shown to be robust to mild misspecification of the exposure
model (23). In the simulations described below, we evaluate
the ability of the CBPS to handle nonlinear covariate effects.

Overview of simulation studies

In simulations, we assessed bias in treatment effect estima-
tors resulting from various approaches to handling continuous
covariates in the model used to estimate inverse probability
weights, in a range of scenarios (see below). In each scenario,
we simulated 300 data sets, with sample sizes of 250 or 500.We
chose 300 replications to improve computational feasibility after
we determined that the results were comparable to using 1,000
simulated data sets (Web Appendix 2, Web Figure 2). We
analyzed each simulated sample using 5 alternative exposure
models, in which the effect of a continuous covariate was esti-
mated using, respectively, a linear function, regression splines,
FP models, and the CBPS, as well as the true data-generating
function, which provided a benchmark for evaluating the other
approaches. For the spline-based estimates, we specified 4 de-
grees of freedom (implying 1 interior knot), which is roughly
equivalent to the degrees of freedom in FP2 models (12). We
approximated 95% confidence intervals using the 2.5th and
97.5th percentiles of the distribution of the respective treatment
effect estimates across the 1,000 bootstrap resamples (27).

Throughout all simulation scenarios presented below, we
assess bias and variance in exposure effect estimates from the
inverse-probability–weighted outcome model, which is the
parameter of interest when fitting marginal structural models.
We also calculated the standardized mean difference (SMD)
for each covariate, to assess covariate balance across the 2 expo-
sure groups (28). We conducted our simulations and analyses in
R, version 3.3.1 (R Development Core Team, Vienna, Austria),
and used the “splines,” “mfp,” and “CBPS” packages (29).

Single-interval simulation study design

In efforts to enhance clinical relevance and plausibility, we
designed our first simulation study on the basis of an earlier
analysis of the effect of hepatitis C virus (HCV) cure (exposure;
determined by sustained virological response after completion
of HCV therapy) on liver fibrosis (outcome; assessed by com-
puting the aspartate aminotransferase:platelet ratio index (APRI))
in the Canadian HIV–Hepatitis C Co-infection Cohort Study
(30). Using a plasmode-like simulation and a point-treatment set-
ting (31, 32), we sampled vectors of the following covariates
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from study participants, measured at the initial visit after HCV
treatment discontinuation: antiretroviral treatment status for human
immunodeficiency virus (HIV), sex, log-transformed γ-glutamyl
transferase (GGT) level, and age.

We simulated values of exposure status and outcome for
each participant, conditional on these covariates. In 3 distinct
data-generating scenarios, the true functional form of the
relationship between log10(GGT) and the logit of the proba-
bility of exposure was assumed to be linear, quadratic, and
exponential, respectively. For example, assuming linearity,
we generated a dichotomous exposure X from the binomial
distribution with P(X = 1) defined as

( = ) = α + α ( )
+ α ( ) + α ( ) + α ( )

P X 1 Antiretroviral treatment status
log GGT Female sex Age .

0 1

2 10 3 4

For the 2 other scenarios, we replaced the original log10(GGT)
values by their quadratic or exponential transformations. We
provide additional details inWeb Table 2.

In the main scenarios, we generated the continuous outcome
Y as follows, where ε represents normally distributed N[0, 1]
errors:

= β + β ( ) + β ( ) + β ( ) + β ( ) + εY X Sex Age log GGT .0 1 2 3 4 10

WebAppendix 2 outlines the design andmethods of additional,
similar simulations that focus on time-to-event outcomes.

Two-interval simulation study design

In the second study, we generated longitudinal trajectories
across 2 time intervals, composed of (L1, X1, L2, X2, Y2), where
L represents a continuous time-varying covariate, X denotes
time-varying exposure status, and Y2 is a continuous outcome,
measured at the second interval. Subscripts denote the interval.

Web Table 3 provides further details on data generation.
Briefly, we first generated continuous covariates L1 and L2 by
sampling from uniform distributions, in which L2 was condi-
tional on both X1 and L1. We then simulated the interval-
specific exposure status X1 and X2 from the Bernoulli distribu-
tion, conditional on L1 and on both L2 and X1, respectively.
Finally, we generated the outcome Y2 from amultivariable lin-
ear regression model, conditional on L1, X1, L2, and X2.

Empirical study 1: the Canadian HIV–Hepatitis C
Co-infection Cohort Study

To illustrate a real-life application of themethods used in sim-
ulations, we analyzed data on 460 participants in the Canadian
HIV–Hepatitis C Co-infection Cohort Study (2004–2016), for
whom 1 or more visits occurred after HCV therapy (30). Partici-
pants were at least 16 years of age and had both documented
HIV infection and chronic HCV infection or prior laboratory
evidence of HCV exposure (30). As in a previous analysis (33),
we focused on the association between HCV therapy and pro-
gression of liver disease.

Our exposure of interest was sustained virological response to
HCV treatment, defined as undetectable HCV RNA 12 weeks
after therapy discontinuation (34). Our continuous outcome was
the log-transformed APRI, a noninvasive measure of liver

fibrosis (35). We note that log-transformation of the response in
a linear regression model implies that covariate effects are esti-
mated on a multiplicative scale. Consequently, in both empirical
studies, results reported on the original scale of APRI refer to the
median rather than mean value of the outcome (36), with reduc-
tions in median APRI computed as − β1 10 , where β is the
regression coefficient.

Empirical study 2: theMulticenter AIDSCohort Study

In the second empirical analysis, we considered data from
theMulticenter AIDS Cohort Study (37), corresponding to the
initial 3 follow-up visits (March 1986–1992), after azidothy-
midine (AZT) had become available. In an earlier analysis of
these data, investigators did not apply different flexible regres-
sionmodels (38, 39). Here, we consider the relationship between
AZT treatment status (exposure: currently treated or untreated)
and the continuous outcome, defined as log10 CD4-positive T-
lymphocyte (CD4+) count, in cells/mm3, measured at the third
follow-up visit. We excluded all participants who reported
acquired immunodeficiency syndrome (AIDS)-defining ill-
nesses at their first visit.

RESULTS

Throughout the simulation sections, we focused on 1) accu-
racy of the estimation of the effect of the exposure on the out-
come, as measured by the bias and variance of the corresponding
regression coefficients, obtained using alternativemodeling strat-
egies to estimate inverse-probability-of-treatment weights, and
2) covariate balance in the pseudosamples that resulted from
these alternative exposuremodeling strategies.

Single-interval simulation study results

Figures 1 and 2 and Web Table 4 show results for the single-
interval simulations, where the outcome model included exposure
status, sex, and age. As expected, correctly specified inverse-
probability-of-treatment weighting (IPTW) models yielded
nearly unbiased estimates of the exposure effect. When the
true covariate-exposure relationship was nonlinear, the linear
IPTW models performed poorly, regardless of sample size.
In the quadratic setting, the bias of the linear model was over
an order of magnitude greater than that for each of the flexible
models (Figure 1, Web Table 4); in the exponential scenario,
the resulting bias and covariate imbalance for the model speci-
fying a linear relationship also increased markedly.

The spline- and FP-based exposure models yielded compara-
bly small bias across all scenarios, with slightly more bias when
the true relationship was linear or exponential and the sample
contained 250 simulated observations (Web Table 4). In the
linear scenario, the small additional bias for the spline and FP
models probably reflects overfitting; however, these biases are
much smaller than the bias of the linear model in truly nonlin-
ear scenarios. Relative to the spline and FP specifications,
CBPSestimates exhibited greater bias in each scenario (Figure 1,
Web Table 4). In the linear setting, with n = 250, CBPS effect
estimates were twice as biased on average as FPs or splines.
Increasing sample size consistently reduced the bias of the
CBPS estimates across scenarios; for n = 500, estimates were
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30% less biased on average than for n = 250, and though still
more biased than FPs or splines, they were considerably less
biased than linear estimates when the true relationship was
quadratic or exponential.

In the nonlinear settings, the spline and FP exposure models
yielded similar root mean squared errors (RMSEs) for exposure
status in the inverse-weighted outcomemodel. The resulting es-
timates were comparable to those from the marginal structural
model fitted using weights from the correctly specified expo-
sure model, with RMSEs nearly 2 times smaller than those for
the linear models (Web Table 4). The RMSE for the CBPS esti-
mates was higher relative to both flexible approaches by 30%
in the linear scenarios and 8% higher in the nonlinear scenarios
(Web Table 3).

The spline and FP estimators yielded similar coverage for
the exposure effect estimate that approached the nominal
95% level (Web Table 4). Fitting linear terms for a continu-
ous covariate in the exposure model reduced coverage, some-
times dramatically (to <15% when the true relationship was
exponential).

The spline and FP exposure models slightly improved covar-
iate balance even in the linear scenario, yielding smaller SMDs
relative to the linear model (Figure 2, Web Table 4). We note,
however, that improvements in covariate balance do not neces-
sarily translate to reductions in bias or RMSE. FP and linear ex-
posure models produced similar SMDs in both quadratic settings,
yielding nearly equivalent balance on GGT. Spline models pro-
duced the best balance of all 4 methods, with SMDs only 11%–

19% greater than those based on the true model (Figure 2). As
anticipated, the linearmodel yielded poorer balance in this setting,
with SMDs exceeding those in any of the alternative models,
regardless of sample size. The CBPS provided slightly larger
SMDs than either spline or FP estimators (Figure 2). In the expo-
nential setting, SMDs were consistent across all exposure models
except for the linear specification, whose performance was poor.
The CBPS estimator produced balance comparable to that pro-
vided by the true model, while performance was slightly better
for spline and FPmodels (Figure 2,Web Table 5).

The results of simulations with a time-to-event outcome were
similar and confirmed that flexible modeling of continuous
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Figure 1. Effect estimates and their variability in single-interval simulations, as indicated by 95% bootstrap confidence intervals, for n = 250 (left
column) and n = 500 (right column) when the true covariate-exposure relationship is linear (top row), quadratic (middle row), or exponential (bottom
row). True values are denoted by the vertical line. CBPS, covariate-balancing propensity score; CI, confidence interval; FP, fractional polynomial.
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covariates improved covariate balance and avoided biased esti-
mation of the exposure-outcome associations (data not shown).

Two-interval simulation study results

In the 2-interval simulation study, we performed analyses
similar to those of the single-interval study, except that separate
logistic models regressed 1) X1 on L1 and 2) X2 on (X1, L2). We
stabilized the inverse probability weights for the second interval.

As before, we observed considerably biased exposure effect
estimates from conventional models that imposed linear effects
of L1 in the quadratic and exponential scenarios (Figure 3 and

Web Table 5). RMSEs for first-interval estimates were compa-
rable across linear, spline, and FP models in the linear scenario
but slightly (about 30%) higher for the flexible approaches in
the quadratic case. The RMSE for the CBPS estimates was con-
sistently higher than that for spline or FP models, as in the
single-interval study. In contrast, for the second interval in the
quadratic setting, because of important bias in the linear model
estimates, it yielded very high RMSEs, over 3 times larger than
those for any other model (Web Table 5). The CBPS offered the
worst bias-variance trade-off in the exponential setting, where
theRMSEwas nearly double that of othermethods for both sam-
ple sizes (Web Table 5).
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Figure 2. Balance of covariates across treatment levels in single-interval simulations, as estimated by standardized mean differences, for n =
250 (left column) and n = 500 (right column) when the true covariate-exposure relationship is linear (top row), quadratic (middle row), or exponential
(bottom row). CBPS, covariate-balancing propensity score; FP, fractional polynomial.
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Spline and FP exposure models provided 87%–95% cov-
erage of the 95% confidence intervals in all scenarios, with
slightly better coverage in the first interval (Web Table 5). In
the linear scenarios, the CBPS exposure model provided the
poorest coverage, with only 76% coverage in the first interval
and 67% coverage in the second interval for a sample with 250
observations. In the quadratic setting, spline and FP exposure
models remained comparable, while the CBPS yielded 83%–

88%coverage. In the exponential setting,flexible exposuremod-
els yielded near nominal coverage for X1, whereas the CBPS
provided lower 70%–87%coverage. Covariate balance remained
comparable across all models in the linear scenarios, except for
L2with n = 500,whereCBPS presented the largest improvement
(Figure 4 andWeb Table 5). In both nonlinear scenarios, all non-
linear models markedly improved balance, relative to the con-
ventional linear model, in both intervals.

Empirical study 1 results

After weighting, covariate balance improved markedly regard-
less of the exposure model specification (Web Appendix 3, Web
Figure 3). The linear IPTW model yielded SMDs of 0.05 and
0.10 for GGT and log10(HIV RNA), respectively. The spline
and FP models provided identical covariate balance on GGT
and comparable balance on log10(HIV RNA); both improved
balance relative to the linear model (Table 1, Figure 2). In con-
trast, the CBPS specification resulted in slightly worse balance
relative to the linear model.

The linear model estimated a 22% (95% confidence interval
(CI): −0.20, −0.03) reduction in the outcome (median APRI
following sustained virological response), similar to the 3 flexible
models that estimated a 22%–26% decrease (Table 1). Overall,
these results indicate meaningful improvements in liver health
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Figure 3. Effect estimates and their variability in 2-interval simulations, as indicated by 95% bootstrap confidence intervals, for n = 250 (left col-
umn) and n = 500 (right column) when the true covariate-exposure relationship is linear (top row), quadratic (middle row), or exponential (bottom
row). True values are denoted by the vertical lines. CBPS, covariate-balancing propensity score; CI, confidence interval; FP, fractional polynomial.
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after successful HCV treatment and suggest that no substantial
loss of accuracy (e.g., due to overfitting), except for a minor
loss of precision, is incurred by applying a flexible approach
when there is no evidence of nonlinearity in the covariate-
treatment association.

Empirical study 2 results

We identified a nonlinear relationship between log10(CD4+)
andAZT. The FP algorithm selected p = 0 and q = 0 as provid-
ing the optimal fit in the first interval, corresponding to a

logarithmic transformation of log10(CD4+), with a P value of
0.02 for the test of linearity. In the second interval, p = 0.5
and q = 0.5 were selected; the best-fitting FP2 model sug-
gested an inverse J-shaped relationship (data not shown) but
wasmarginally nonsignificant (P= 0.14 relative to linear model),
with a slightly improved Akaike’s Information Criterion value.
However, we selected the best-fitting FP function regardless of
the test of nonlinearity.

In the first interval (Web Figure 4), covariate balance was
best for the spline-based exposure model (SMD = 0.03 for
log10(CD4+)) and second best for the linear model (SMD = 0.10).
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Figure 4. Balance of covariates across treatment levels in 2-interval simulations, as estimated by standardizedmean differences, for n = 250 (left
column) and n = 500 (right column) when the true covariate-exposure relationship is linear (top row), quadratic (middle row), or exponential (bottom
row). CBPS, covariate-balancing propensity score; FP, fractional polynomial.
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In the second interval, splines (SMD = 0.28) narrowly outper-
formed the linear and FP treatment models (SMDs were 0.32
and 0.30), while the CBPS offered by far the best balance
(SMD = 0.03).

Regardless of the exposure model used, the inverse-probabil-
ity-of-treatment–weighted outcomemodel estimated a 20%–40%
decline inCD4+ cell count among persons initiatingAZT therapy
between the first and second study visits, relative to participants
not treated with AZT during this time interval, and an increase
in CD4+ cell count of 80%–200% associatedwithAZT treatment
at the following visit (Table 2). The linear IPTWmodel yielded
both the smallest reduction in CD4+ cell count (−0.10 log10
cells/mm3, 95% CI: −0.89, 0.87) and the largest increase in
CD4+ cell count between the 2 visits (0.47 log10 cells/mm3,
95% CI: −0.12, 1.16). The 3 flexible exposure models yielded
broadly comparable results, with the CBPS providing estimates
slightly closer to the linear model but more precise at both visit
1 (−0.21 log10 cells/mm3, 95% CI: −0.61, 0.20) and visit 2
(0.26 log10 cells/mm

3, 95% CI: −0.13, 0.65). Indeed, the CBPS
approach yielded smaller standard errors than all other models
(Table 2).

Taken together, these results demonstrate the potential ben-
efits of AZT treatment, while illustrating the possible variation

between the estimates obtained using alternative approaches to
model a potentially nonlinear relationship between time-varying
covariate(s) and the treatment. Additional results for simulations
given an accelerated failure time model are reported in Web
Appendix 2, Web Tables 6 and 7.

DISCUSSION

We assessed the implications of different approaches to
modeling continuous covariates in the exposure model for
estimates of exposure effects in marginal structural models
and for covariate balance after inverse probability weight-
ing. Our simulation results indicated that failure to capture
the correct functional form of the relationship between a
continuous time-varying covariate and the logit of the prob-
ability of being treated/exposed may result in substantial bias,
because of residual imbalance in the covariate distribution in the
weighted pseudo-population.

These findings illustrate the benefits of flexible modeling of
continuous covariates when fitting inverse-probability–weighted
models. Our comparisons of RMSE suggest that increased flexi-
bility is preferable to parsimonywhenfitting the exposuremodel,
regardless of whether a nonlinear relationship exists.

Table 1. Association Between Sustained Virological Response at 12Weeks and Progression of Liver Disease asMeasured by the Aspartate
Aminotransferase:Platelet Ratio Index, Canadian HIV–Hepatitis C Co-infection Cohort Study, 2004–2016a

Variable

Exposure Model Specification

Linear Splines FP CBPS

β̂ 95%CI β̂ 95%CI β̂ 95%CI β̂ 95%CI

SVR12
b status −0.11 −0.20,−0.03 −0.11 −0.20,−0.03 −0.11 −0.19,−0.02 −0.13 −0.21,−0.04

Female sex −0.09 −0.21, 0.05 −0.09 −0.22, 0.04 −0.09 −0.22, 0.04 −0.08 −0.21, 0.05

BMIc (per 10 units) −0.01 −0.10, 0.07 −0.01 −0.11, 0.08 −0.01 −0.11, 0.08 −0.01 −0.11, 0.08

Age (per 10 years) −0.01 −0.07, 0.04 −0.02 −0.08, 0.04 −0.02 −0.08, 0.04 −0.02 −0.08, 0.05

Injection drug use in preceding 6months −0.05 −0.17, 0.07 −0.05 −0.18, 0.07 −0.05 −0.17, 0.08 −0.04 −0.17, 0.09

Duration of HCV infection (per 10 years) 0.04 0.00, 0.08 0.04 −0.01, 0.08 0.04 −0.01, 0.08 0.04 −0.01, 0.08

HCV genotype of 2, 3, or 4 vs. HCV genotype 1 0.13 0.03, 0.25 0.14 0.03, 0.26 0.14 0.03, 0.26 0.13 0.03, 0.25

Abbreviations: BMI, body mass index; CBPS, covariate-balancing propensity score; CI, confidence interval; FP, fractional polynomial; HCV,
hepatitis C virus; HIV, human immunodeficiency virus; SVR, sustained virological response.

a 95%CIs were computed by means of the nonparametric bootstrap percentiles approach.
b SVR 12weeks after discontinuation of HCV therapy.
c BMI was calculated as weight (kg)/height (m)2.

Table 2. Association Between Treatment With Azidothymidine and CD4+ T-Lymphocyte Count (cells/mm3) Given 4 ExposureModel
Specifications for log10(CD4+), Multicenter AIDSCohort Study, 1986–1992a

Variable

Exposure Model Specification

Linear Splines FP CBPS

β̂ 95%CI β̂ 95%CI β̂ 95%CI β̂ 95%CI

Treated at visit 1 −0.10 −0.89, 0.87 −0.25 −0.99, 1.00 −0.23 −0.91, 0.40 −0.21 −0.61, 0.20

Treated at visit 2 0.47 −0.12, 1.16 0.26 −1.02, 1.03 0.24 −0.47, 1.02 0.26 −0.13, 0.65

Abbreviations: AIDS, acquired immunodeficiency syndrome; CBPS, covariate-balancing propensity score; CD4+, CD4-positive; CI, confidence
interval; FP, fractional polynomial.

a 95%CIs were computed by means of the nonparametric bootstrap percentiles approach.
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In our simulations, flexible modeling improved the bias-
variance trade-off over that of the linear model by yielding only
minimal increases in the variance of effect estimates, relative to
large reductions in bias if the true relationship diverged from
linearity. Overall, the performance of the chosen flexible models
remained comparable to that of the conventional linear model
even when it was used to generate the data, but they yielded
noticeable improvements in RMSE and covariate balance
when the covariate-exposure relationship was nonlinear.

When applying the CBPS, we entered continuous covari-
ates as linear terms and chose to evaluate the method’s per-
formance when naively applied; such use is likely to result in
model misspecification. This may partially explain the poorer
balancing performance of the CBPS when compared with
flexible approaches in the quadratic and exponential simulation
settings. Consequently, in case of uncertainty regarding the true
form of the underlying exposure-covariate relationship, we sug-
gest fitting exposure models using splines and FPs, as these
flexible techniques yield reasonably accurate estimates regard-
less of the true and unknown functional form. Finally, the im-
portant reduction in bias these 2 methods afford makes them
attractive, especially given their limited computational costs in
most settings. Several easily applied solutions to fit both FP and
spline models are available in current statistical packages. How-
ever, as with other methods, users should carefully consider soft-
ware defaults and their sensitivity to features in the data to be
analyzed.

Our simulations were not exhaustive. We explored a range
of plausible relationships between a confounder and an expo-
sure, but other functions could have been considered. In our
survey conducted to assess the frequency with which flexible
modeling was used with inverse weighting, we found that
recent applications of inverse weighting are predominantly
used for continuous outcomes measured at a single time point
or time-to-event outcomes (Web Appendix 1). The exposure
model, from which inverse probability weights are obtained,
is typically fitted by logistic regression. Our review of studies that
used inverse weighting, published in 6 selected epidemiology
or clinical journals in 2017, indicated that only 5 (31%) of these
publications employed flexible modeling of continuous covari-
ates, while in the remaining articles relationships with exposure
were a priori constrained to be linear (Web Appendix 1). These
findings, together with the tremendous computational burden
of the simulations, led us to study only continuous and time-
to-event outcomes. Because the focus of this investigation
was on bias arising due to misspecification of the exposure
model—a violation of the fundamental assumption of correct
model specification required for unbiased estimation in inverse
weighting—wewould expect similar biases to result in the esti-
mated exposure effect regardless of the chosen outcome type.
Further, previous work has illustrated the use of polytomous
logistic regression in estimating inverse-weighted models when
exposures are categorized (40). Again, within this context, the
consequences of ignoring nonlinearity are likely to be similar.

We focused on relatively well-known and easily implemen-
ted approaches to model-fitting. Other approaches to modeling
of covariate-exposure relationships have been proposed, includ-
ing ensemble methods (41); however, prior research suggests
that estimation is highly computationally intensive without sub-
stantial reductions in bias or increases in precision (42). Further,

because of concerns that ensemblemethodsmaynot be appropriate
for modeling exposures in IPTW (16, 42), we chose not to pursue
themhere.

Discussions of potential consequences of ignoring nonline-
arity in the exposure model are infrequent in the marginal struc-
tural model literature, with some notable exceptions (5, 16, 18).
Using simulations, we have demonstrated the benefits of simple
yet flexible approaches to addressing potentially nonlinear rela-
tionships that are widely applicable in analyses using marginal
structural models.
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