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This paper presents a new generic approach for developing a Jacobian matrix for use with the optimiza-
tion unit in real-time energy management systems (EMS) for unbalanced smart distribution systems. The
proposed formulation can replace approximated calculations for real-time optimal power flow in an opti-
mization unit while providing greater accuracy and requiring less computational time, which is critical
for real-time EMS. The effectiveness and robustness of the proposed approach have been tested through
simulations with different distribution networks. The simulation results demonstrate a significant reduc-
tion in the computational time with the new proposed formulation. Moreover, the results demonstrate
the scalability of the proposed approach as the reduction in the computational time is more significant
for large practical systems. The proposed approach is characterized by evaluating the scalability and
low computational time; thus, it can be used by grid operators in real-time energy management applica-
tions for large-scale practical distribution systems.
© 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

For a number of environmental and techno-economic reasons,
smart grids have become the subject of significant interest over
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the last few years [1,2]. A particular focus is related to the applica-
tion of smart grids in distribution systems, where most power sys-
tem losses and failures occur. For this reason, distribution systems
are currently undergoing a significant transition to a new structure
with respect to information, control, and power flow.

Power flow represents an essential engine in application soft-
ware for distribution systems [3]. Power flow methods are divided
into two categories based on the state variable that is employed for
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solving the power flow problem: either the node voltage or the
branch current [3]. In the first category, numerous power flow
methods have been developed since the 1960s, including network
equivalence methods [4], Newton-Raphson methods [5], and fast
decoupled methods [6]. The second category is associated with
the development of techniques such as backward/forward sweep
methods [7], which are widely used in commercial software [8,9].

Optimizing distribution system assets is a fundamental function-
ality of smart distribution networks (SDNs). However, even if the
convergence of power flow methods is guaranteed, they are not suit-
able for real-time applications that require an optimal power flow
(OPF). These applications require not only a robust OPF but also a fast
OPF algorithm, which is the main focus of this work.

The OPF problem involves solving for an optimal operating
point for a distribution system that minimizes a predefined cost
function, such as system losses or generation scenarios that are
subject to specific techno-economic and/or environmental con-
straints on system variables [10]. The OPF usually involves two
convergence problems: (1) the convergence of the power flow to
a feasible solution and (2) the convergence of the optimization to
a global optimum.

Many optimization techniques guarantee the feasibility of the
solution, which in turn guarantees the convergence of the power
flow problem [11]. However, with regard to the optimization and
because the unbalance power flow problem is a nonlinear highly
nonconvex problem [12], the convergence to a global optimum is
not guaranteed. To address this limitation, several methods have
been proposed for the global optimization of nonlinear problems,
such as convexification [13] and branch-and-reduce [14] methods.
OPF convergence problems have thus been adequately addressed
in the research.

To perform a real-time process, such as energy storage system
scheduling, the whole process should be completed in the range
of half of a minute up to a few minutes. This process involves
not only OPF but also other algorithms, such as topology process-
ing, load allocation, and forecasting. These algorithms are compo-
nents of the future smart grid energy management systems,
which should be designed to address various grid and customer
technologies. Most of the recent work in the area of smart grids uti-
lizes optimization software for solving OPF problems, but a major
aspect of real-time applications, the computational time required
by the proposed algorithms, has not yet been examined.

Previous works [15-27] proposed a variety of approaches for
coordinating different SDN components/assets in real time: energy
storage systems (charging/discharging), electric vehicle (EV)
charging, distributed generation (DG), volt/var control equipment,
and/or residential load consumption.

Some of the abovementioned research has failed to consider
power flow [15,16]. Other studies considered the power flow con-
straints for balanced distribution systems [17-22]. Linearization of
the power flow constraints was proposed elsewhere [23,24], where
the power flow formulas were linearized around an estimated
operation point. This method can lead to inaccurate results, which
in turn can have severe consequences in real time. For example, the
voltage magnitude or the limits for voltage unbalance could be vio-
lated in the actual distribution system on unmonitored nodes but
not in the linearized approximated model. The work presented
by Maffei et al. [25] proposed a real-time OPF for energy manage-
ment in smart grids utilizing the preceding horizon technique. The
approaches reported previously [26,27] are based on the real-time
energy management of controllable loads and EVs in unbalanced
distribution systems. However, the approaches described earlier
[25-27] utilized commercial software for solving the required opti-
mization problem, which cannot be relied upon in real-time appli-
cations, as explained in this section. Moreover, no mention is made
of the computational time, which is a highly critical aspect and can

be a barrier to the practical implementation of any energy manage-
ment system.

Some work utilized different techniques to solve large scale OPF
problems. In Ref. [28], the authors utilized Benders decomposition
to reduce the problem size. The work in [29] proposed using a
genetic algorithm (GA) and fuzzy clustering to increase the compu-
tational speed. Mostafa et al. [30] proposed a multi-objective tech-
nique for optimizing the unbalanced system operation under a
high penetration of renewable DG by minimizing the system losses
and improving the voltage profile. The work presented by others
[29,30] relied on the utilization of a GA to solve the mixed-
integer nonlinear programming (MINLP) problem. However,
meta-heuristic techniques are unsuitable for real-time applications
in smart grids for two reasons: (1) the computational time required
for these techniques is unpredictable, and (2) for large systems in
which the decision variables might be in the range of hundreds
or thousands, these techniques are likely to be slow compared to
the gradient-based techniques.

To solve the unbalanced OPF problem, researchers usually
employ optimization software tools, which normally find a solu-
tion for the optimization problem using a procedure that includes
an evaluation of the approximated values for the constraint deriva-
tives, which is known as the Jacobian matrix. For large networks,
the use of an approximated Jacobian matrix, based, for example,
on finite differences, significantly increases the computational
time. It is well known that providing the derivatives of the con-
straints to the solver produces a more reliable solution and
decreases the computational time. The solver can also find a feasi-
ble point for the problem; however, the finite differences around
that feasible point may result in an infeasible solution that causes
the solver to terminate prematurely without reaching an optimal
feasible solution [31].

The work presented in this paper is focused on the optimization
unit, which is a core element of any energy management system
(EMS). The optimization unit is responsible for solving the assigned
OPF problem by the EMS. In this work, we propose a new general-
ized Jacobian matrix formulation for improving accuracy and
reducing the computational time in an unbalanced OPF for SDNs.

Energy management system for SDN

To optimize the SDN operation in real time, local distribution
companies (LDCs) usually adopt a general procedure, whereby a
central controller receives data from the users and the metering
system via a communication infrastructure. This step is defined
as stage 1 in Fig. 1. These data is preprocessed according to the
measured values, type of measurement, and time stamp of the
measurement; the data is then stored in the database (DB). Further,
the data are processed in stage 2 by the forecasting unit to predict
future consumptions or generations. In stage 3, all the parameters
are sent to the optimization engine to process the real-time OPF to
develop the optimal operation decisions of the SDN, which are
returned back to the DB. These results are then used in stage 4
for (1) updating the situational awareness about the SDN condi-
tions and (2) updating the control actions of the local controllers
(LCs) within the SDN.

For real-time SDN system/market operations, this process
should be completed as quickly as possible; a few seconds for small
systems and up to a few minutes for large systems is considered an
appropriate range. The computational time needed for solving the
OPF problem represents a major challenge. This is the time it takes
for the parameters to be sent to the optimization unit until when
the optimal decisions are received, as shown in Fig. 1. The OPF
run-time increases exponentially as the size of the system
increases. The research presented in this paper addresses Jacobian



M.F. Shaaban et al./Journal of Advanced Research 20 (2019) 51-60 53

Energy Management System

Present and past readings Parameters
Predictions Main controller Variables optimal values
P —
Data collection and storage unit
2  J 3 Y
. . imization
Forecasting Unit Database Optimizatio
Unit
Read Read/Write Write
1
4
09
= &% =
Sensors Operators Local
or users controllers

Fig. 1. Main components of a real-time energy management system that utilizes the OPF in an SDN.

matrix evaluation, which is a core element for solving the OPF
problem. The derivation of the proposed form of the Jacobian
matrix for unbalanced distribution systems is explained in the next
section.

Proposed generalized OPF

This section presents the derivation of a Jacobian matrix for the
proposed generalized OPF. In general, any OPF problem can be for-
mulated as follows:

Minf (x,,)) (1)
and is subject to

8uwXw) =0 2)
hw) (X)) <0 (3)

where v, u, and w are the indices for the variables, equality con-
straints, and inequality constraints, respectively; f(x,,)) is the objec-
tive function; g(x.,)) and hw,(x,)) are the equality and inequality
constraints, respectively.

Any OPF problem includes the power flow mismatch con-
straints expressed in Eqgs. (4) and (5) as the equality constraints.
The remaining equality and inequality constraints define other
technical, environmental, and economical constraints, which are
selected based on the system requirements. Eqs. (4) and (5) are
as follows:
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where i and j are the buses indices; p, and p, € ® are the buses

indices; P(”ll and Q“’1 are the injected active and reactive power

at bus i for phase p,, respectively; P "‘ and Q("1 are the measured
or known generated active and reactlve power at bus i for phase
p1., respectively; P} and Q are the nominal measured or known
active and reactlve power of the load at bus i for phase p,, respec-
tively; P} and Q , are the nominal unknown active and reactive
power of the load at bus i for phase py, respectively; o;p,) and ;)
are the active and reactive power exponents of the load at bus i,
respectively; V{7’ and 5 are the magnitude and angle of the volt-

age at bus i for phase p,, respectively; Y ’.” 2) and 0 ”’ 2) are the mag-

nitude and angle of the admlttance element m the branch
admittance matrix, respectively; Z is the set of all system buses;
® = {1,2,3} is the set of phases; H; c ® is the subset of the exist-
ing phases at bus i.

The active and reactive power mismatch equations (4) and (5),
are formulated based on a branch admittance matrix, which can be
calculated using Kron’s reduction on Carson’s equations for the self
and mutual impedances [1]. Since some of the load bus quantities
might be measured or known, while others are unknown, it is
assumed that the measured or known quantities are voltage
dependent. In contrast, the unknown quantities are assumed to
be voltage independent because their values are unknown or vari-
able in any case.

Solving this nonlinear programming problem requires three
sets of derivatives: (1) the gradient, (2) the Jacobian matrix, and
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(3) the Hessian matrices. The focus of the research presented in
this paper is the Jacobian matrix parametric definition and the fast
numerical computation for the SDN OPF runs.

In this study, all the SDN active and reactive powers, voltages,
and voltage angles are assumed as variables, and all variables
and parameters are considered in per-unit values. It is assumed
that the Jacobian matrix size is m x n, where m is the number of
constraints and n is the number of variables. Only the power flow
constraints and variables are considered in this paper. The Jacobian
matrix J can be given as in (6). Thus, each entry J(u, v) in the Jaco-
bian matrix is defined as in (7), which corresponds to the differen-
tiation of constraint u with respect to (w.r.t.) variable ». These
considerations mean that each constraint must be differentiated
w.r.t. all variables.

dey . demy
dx1) ax(n)
Sy = | = o (6)
dem . dEm
dxm d)c(,,J
dg(u)
Juv) =J(gu k) =2 Vu<m, v<n (7)
X(v)

Assuming the total number of buses in the system is Ny, the
total number of variables can be defined as 3 x 6 x Np,;, where 3

refers to the number of phases, and 6 refers to Pji}, Q). P&V,

&, v ands®. Moreover, the number of constraints for any
OPF can be identified as 3 x 2 x N, where 3 refers to the number
of phases, and 2 refers to the two type of constraints: the active
Q_(rm
i -
Therefore, the Jacobian matrix would have 6N,,; rows, correspond-
ing to the constraints, and 18Ny, columns, corresponding to the

variables. The Jacobian matrix thus can be defined as in (8), where
the entry J (gw),x(v)) refers to dg(u) /dX(,). The 6Ny,s constraints and

. P . .
power mismatch g(i(;’“ and the reactive power mismatch g

their derivatives, which represent the Jacobian matrix entries, are
defined in (9)-(27), as explained below.

As a first step in forming the Jacobian matrix, the Jacobian
entries are initialized to zero, i.e.,](g(w,x(y)) =0Vu<m,v<n.
This step is included because most Jacobian entries are zeros due
to the radial structure of distribution systems; each bus is usually
connected to two or three buses. For example, assume that bus i is
connected only to buses i+ 1 and i — 1. This arrangement means
that all the entries for the power mismatch constraint for bus i in
the Jacobian matrix will be zeros except for those corresponding
to buses i —1,i,and i + 1.

After all the Jacobian entries have been initialized to zeros, as a
second step, each entry is updated. The active power mismatch
entries are derived first and followed by the reactive power mis-
match entries.

Jacobian matrix entries for active power constraints

To update the Jacobian matrix entries for the active power con-
. . P, . .
straints, i.e., dg(;)”1 ' /dx,), the procedure shown in Fig. 2 can be used,

which is explained as follows. Based on (4), each bus has up to
three active power mismatch constraints, as in (9). The Jacobian

matrix entries corresponding to the variables Pt} and PE} can
thus be derived as in (10) and (11).
As indicated in (9), gﬁg"” is composed of two major terms: a pos-

itive double summation and a negative double summation. Each
summation can be broken down into three components so that

Initiate all the Jacobian
matrix elements to zeros
with size 6Npusx18Np,s as
in (8).

Define the active power
mismatch constraints
g"®V for bus 7and phase
prasin(9).

Y

Use (10), (11), (13), and
(16) to update the
derivatives of g)”("!) w.r.t.

Use (15) and (18) to
update the derivatives of]
go'PY wrt. Vand §,

Use (14) and (17) to
update the derivatives of]
g’V wrt. Vand 8,

respectively. PL;;S‘;EC’CZ’VZ‘C?; 8 respectively.
T -l T
P2=ps+1
% N
Yes

Fig. 2. The procedure to update the Jacobian matrix entries for the active power
constraints.

Py

P . . . .
g(ig"” can be rewritten as in (12), where g™’ is composed of six

terms. The third and sixth terms cancel each other out.
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Results and discussion

For the purpose of evaluation, the proposed Jacobian was tested
on two systems. The first is a simple 4-bus radial system, which is a
small part of a real system located in Ontario, Canada. The system
has a simple structure, as shown in Fig. 3. The second system is the
IEEE 123-bus system [32], which is illustrated in Fig. 4. The load
and line data for the 4-bus system and the 123-bus system are
shown in Table 1 and in [32], respectively. In both cases, it is
assumed that the central controller that hosts the energy manage-
ment system is located at the substation or main grid connection.
For each case, the exact Jacobian Je was generated in a MATLAB®
environment using symbolic differentiation of the power flow mis-
match equations in (12) and (19).

To develop the exact Jacobian, the symbolic differentiation
deals with each single constraint as a whole mathematical formula
while considering the derivatives w.r.t. all possible variables. On
the other hand, the proposed Jacobian Jp s iS customized to
the structure of the distribution system and develops the deriva-
tives as the sum of individual terms. Mathematically, both Jexa
and J,oposeq are identical in their output.

The exact Jacobian development, which is performed off-line,
took 1.5 min for the simple 4-bus system and 13.5 h for the 123-
bus system. On the other hand, the proposed Jacobian can be
implemented directly without the need for preprocessing. For large
practical systems, the computer will run out of memory trying to
perform symbolic differentiation. This was the case when a practi-
cal test-case of a 575-bus unbalanced system was tested.

LR

Fig. 3. 4-Bus distribution test system.
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Fig. 4. 1IEEE 123-bus distribution test system [32].

Table 1
4-Bus system data in p.u.
From (i) 1 2 3
To (j) 2 3 4
?(ﬂ-ﬂ) 25.588/ — 64.25 34118/ - 64.25 51177/ — 64.25
(i)
?(b-b) 26.924/ - 62.51 35.899/ - 62.51 53.849/ - 62.51
(i)
?(C.O 24382/ —65.82 32.510/ — 65.82. 48.764/ — 65.82
(i)
—(ab) —(ba) 9.578/124.31 12.771£124.31 19.1574124.31
Yy or Y
—(a0)  —(ca) 5.496,110.76 7.328/110.76 10.992/110.76
Y orY
—(cb)  —(bo) 7.091,117.80 9.454,117.80 14.182/117.80
Y or Y
p@ 0.309 0.175 0.175
LOGj)
pb) 0.287 0.175 0.175
LOGj)
P 0.079 0.175 0.175
LOGj)
Q%)~ 0.068 0.088 0.168
)
Q%J‘ 0.231 0.088 0.071
)
Q(Lf))' 0.192 0.088 0.001
()

Moreover, for any topology change due to fault clearing or sea-
sonal reconfiguration, Jexe must be developed for the new topol-
ogy, which is very time consuming for large systems and will
cause a considerable delay in the EMS process.

For simplicity, a simple OPF case was considered, in which each
bus had six variables: P*“andQ\**“ for the slack bus and V(*"9)
and 5?9 for all other buses. The slack bus is the reference bus
where the voltage magnitude and the voltage angles are known.
The Jacobian matrix contains the derivative of the power mismatch
equations (six equations for each bus), making the Jacobian matrix
a size of 6Ny,s x 6Nps. The reduction in the Jacobian matrix size

compared to the size considered in the previous section
(BNpys x 18Npys) is due to the assumption that each bus has only
6 variables instead of 18. The simulations were performed on a
3.6 GHz dual core processor with 16 GB of RAM. The optimization
problems for the two case studies were solved using the con-
strained nonlinear optimization tool based on the interior point
method in the MATLAB® environment.

The proposed Jacobian J,,,p.s.¢ Was constructed for each case.
Jexace and Jproposes Were compared to an approximated Jacobian
Japprox, Which was evaluated using a finite difference approximated
derivative, as in (28), for low values of Ax. In each case, a battery
storage system (BSS) is controlled via an online signal from a cen-
tral controller that runs the OPF problem, whereby the optimal
charging/discharging power is determined and the computational
time is evaluated.

df _ flx+a%) - f(x
&S M (28)

4-Bus test system

For the 4-bus test system, the Jacobian size is 24 x 24. For the
sake of comparison, the Jacobian is evaluated for the initial condi-

tion Xo, which corresponds to y@ba _ 1 and

6@ — 0,-2m/3,and27/3. The root mean square error, RMSE,
which is defined in (29), is used for comparing the results:

RMSE = \/—mlX DI (IEwoly, )’ (29)

u<m wv<n

whereEy ,) is the difference between Jouq(y ») and €ither Jo v ) OF

Jpropused(u.v)'
As shown in Fig. 5, as Ax decreases, the value of the RMSE for the
approximate Jacobian is further reduced. However, reducing Ax is
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Fig. 5. The RMSE of the approximate Jacobian versus Ax for the 4-bus test system.

problematic because it approaches the precision limit of the soft-
ware and hardware used for the computations. In this case, as Ax
was reduced below 107°, the value of the RMSE increased to
1.396 x 1072 at xo. On the other hand, for Jproposed, the error was
zero, which shows that J,opseq is identical to Jexact.

The three Jacobian matrices were evaluated at 1000 different
values for xo w.r.t. the computation time, t. The computational time
statistics are shown in Table 2.

As indicated, the proposed Jacobian computational time was
much less than that for the approximate method but very close
to the exact method. The mean computation time for the approxi-
mate Jacobian was 7.4 ms compared to 0.642 ms for the proposed
Jacobian, which is almost 11 times faster. This discrepancy is attri-
butable to two factors: (1) most of the derivatives are zeros, which
is easily identified in Jprposes DUt must be evaluated for Jgpprox; (2)
for each term in the Jacobian matrix, Jgpprx must evaluate a func-
tion twice as in (28), while Jpopesea €valuates only one function.

A comparison of the computational time of Jproposea to that of
Jexace TEVEAlS a slightly faster performance for the proposed formu-
lation, as identified by a 2.4% reduction in the mean computational
time. This decrease is due to the complexity of the form of Jey,
where symbolic differentiation is considered in comparison to
the compact form of Jproposed- As the size and complexity of the sys-
tem increases, this difference is expected to be significant.

To test the proposed Jacobian for solving an OPF problem, a BSS
is presumed to be located at bus 4. To simplify the analysis, the BSS
optimal schedule (to charge and discharge) will be determined by
the OPF run to minimize the overall system losses. The BSS is also
assumed to operate at a unity power factor.

Although the test case study is simple, the proposed Jacobian
formulation is applicable (and scalable) to any OPF case study,
including DER optimal management in microgrids and distribution

Table 2
Computation time (ms) for evaluating the Jacobian matrix for the 4-bus test system.
Jexact ‘J]propused Jﬂppmx
Mean 0.6579 0.6423 7.4060
Minimum 0.6401 0.6250 7.278
Maximum 1.0095 0.9900 8.4856

networks, transactive energy markets modeling, simulation and
analysis.

To determine the optimal power amount injected from the BSS
Py, a simple test was performed before applying the OPF, in which
the injected power from the BSS was varied and the system losses
were evaluated. The test outcomes showed that the system loss for
the base case (Pn, = 0) was 0.0229 p.u., which corresponded to
1.33% of the total system demand. On the other hand, the mini-
mum loss was 0.0082 p.u.,, or 0.48%, which occurred at
Ppee = 1.24 p.u., as shown in Fig. 6.

To test the proposed Jacobian computation method, an OPF
problem was formulated as follows:

N P = 3Pl (30)

is subject to

(P1) (P1) (P1) _ (P1)y/(P2) y(P1.P2) (P1:P2) s(p2) s(p1)
Péiy + Poary = Pry = (Z D VRV Y cos (Onm 0" = 9 ))

JE€T P2

(P1)y/(P2) y(P1.P2) (P1.P2) 5(P2) s(P1)
- (Z > VRIVEYE cos (‘)a.}) Y og - oy ))

JET P2€N;)

VieZ,p, € Hi (31

0.04 -
. 0.035 4
0.03 -
0.025 4

0.02 -
1.2400,

0.015 1 0.0082

0.01 A

Total system losses inp.u

0.005

0 T T T 1 T i
0 0.5 1 1.5 2 25 3

BSS output power in p.u.

Fig. 6. Total system losses for the 4-bus system versus the BSS output power.
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(p1) (p1) _ (P1)y/(P2) y(P1:P2) ¢ (P1.P2) s(p2) s(p1)
Qe — ) **<2jezzmenwvm Vi Y 5’”(0<m 04" — 9 ))

(P1)y(02) y(P1.P2) i (p1.p2) S(p2) s(p1)
+ (ZjezszeHU)v(i) Vir Yy 5’”(0<u> +o57 =9 ))

VieZ,p, € Hy (32)

Pie = > P&y + Py — PGy Py (33)
i

Vinin <V < Viax Vi€ Z,p; € Hy (34)

VI = Vo, 85 = 0,8 = —2?”,55,?; = 2?” Vi € Lyjack (35)

PEY.QE) =0 Vi L (36)

Py = {gbam)/3 Z;hee;i\j;se (37)

where V,andV ,, are the minimum and maximum voltage limits,
respectively, which are set to 0.95 and 1.05, respectively; V. is the
slack bus voltage, which is set to 1.05 p.u.; Iy = {1} and I, = {4}
are the subsets of the slack bus and the BSS bus, respectively.

The nonlinear programming (NLP) OPF problem, defined in
(30)-(37), was solved using an interior-point algorithm in the
MATLAB environment with default settings. The problem was first
solved using finite differences. The optimal solution was

Pt — 0.0082 p.u. at Pyar(a) = 1.2366 p.u., which was very close to
the values indicated in Fig. 6. The computational time was
100.81 ms.

On the other hand, when the gradient of the objective function
and the Jacobian of the constraints were provided, the optimal

solution was PITO"S‘S = 0.0082 p.u. at Ppg4) = 1.2366 p.u., which was
identical to the values derived from using finite differences. The
process took 23.76 ms, which represents a 76.43% reduction in

the computational time.
123-Bus test system

The 123-bus system is assumed to be moderately sized for a
practical distribution system, which may contain more than 500
buses. Closing the switches and removing zero impedance lines
reduces the 123-bus system to 119 buses, in which the size of
the Jacobian matrix is 714 x 714, which is equivalent to 509,796
entries in the matrix.

The time required for evaluating the Jacobian matrices was
recorded for 100 different xo values. As shown in Table 3, the mean
time for evaluating Jgpprox Was 24% less than the mean time
required for evaluating Jy, With a zero RMSE value. On the other
hand, forAx = 1072, the RMSE for Jgppror Was 4.806 x 1075 at xo; this
differs significantly from the RMSE for the 4-bus system, which was
1.396 x 10~°. The mean computational time for Japprox Was 4.72 s,
which was 78 times higher than that for Jpposed-

For a moderately sized system, evaluating Jgpprox for a single
iteration may consume more than 4 s, depending on the hardware
and software used to solve for OPF. Thus, for a practical distribu-

Table 3
Computation time (ms) for evaluating the Jacobian matrix for the 123-Bus test
system.

Jexact Jproposed Japprox
Mean 80.22 60.35 4718.97
Minimum 78.68 59.95 4695.60
Maximum 82.90 63.50 4800.86

120 +

100 ¢

(o]
(=]
L

1,666.50,
64.05

Total system losses in kW
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Fig. 7. The total system losses for the 123-bus system versus the BSS output power.

tion system with hundreds of buses, evaluating Jgpprox in real time
is impractical, and the error increases dramatically as the system
becomes larger. In addition, developing Je i very time consum-
ing and may lead to memory limitation errors, as explained previ-
ously. These considerations provide strong evidence of the need for
a closed form Jacobian matrix, which could be easily coded and
applied to solving real-time optimization problems in distribution
systems, such as DER optimal management, transactive energy
market clearing and the optimal pricing of DERs.

It is assumed that a BSS unit operating at a unity power factor is
located at bus 49, which is chosen arbitrarily. Changing the output
power of the BSS helps us in evaluating and minimizing the distri-
bution system losses, as shown in Fig. 7. As indicated in the figure,
the loss for the base case without the BSS was 95.94 kW at point a,
which was very close to the value of the system loss reported in
[32] (95.611 kW). As the injected power from the BESS increases,
the system losses decrease, where the minimum loss was
64.05 KW at Pyy = 1.667 MW, which is shown as point b in Fig. 7.
The decrease in the system losses is attributed to the reduction
in the current flowing from the grid to supply the loads, which
are supplied partially by the BESS. For losses greater than
1.667 MW, increasing the injected power from the BESS causes
an increase in the losses due to reverse power, where the excess
current that flows from the BESS to the grid direction causes higher
losses in the lines.

To test the proposed Jacobian matrix computation method, the
same NLP problem expressed in (30)-(37) was used, with the BSS
connected to bus 49. The minimum system loss was 61.045 kW at
Py, = 1.6151 MW. Although the finite difference and the proposed
Jacobian reached the same optimal solution, the computational
times were 0.82158 and 25.57 s with and without applying the
Jacobian method, respectively. The case study results clearly
showed that applying the proposed Jacobian method could sub-
stantially reduce the OPF computational time.

Moreover, as the size of the system increases, the reduction
becomes even greater, which emphasizes the necessity for provid-
ing the Jacobian of the constraints in real-time DER management
or transactive energy market clearing; this may require solving a
large OPF problem.

Conclusions

The work presented in this paper tackles a core element of any
modern EMS, which is the optimization unit. The proposed
approach targets the computational process for the optimization
unit for real-time unbalanced SDN operations (e.g., smart grid
applications). The proposed approach could help reduce the com-
plexity and computational time associated with the SDN applica-
tions, which usually involve real-time optimal scheduling of the
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system assets (including DERs and demand response/DR). The
paper includes a detailed formulation of the proposed generalized
Jacobian matrix, which can be tailored according to the real-time
measurements and available system data.

The formulation presented for unbalanced SDNs is based on
three sets of derivatives for the power mismatch constraints: (1)
the derivative w.r.t. the same bus and the same phase voltage mag-
nitude, (2) the derivative w.r.t. the same bus and a different phase
voltage magnitude, and (3) the derivative w.r.t. different bus volt-
age magnitudes. The proposed Jacobian matrix formulation can be
applied to any distribution network after adjustments are made
depending on the available equipment, such as voltage regulators
and capacitor banks.

The simulation results demonstrated the effectiveness and scal-
ability of the proposed formulation for evaluating the values of the
Jacobian matrix entries in a timely manner and with zero RMSE
error compared to the exact and approximated Jacobian evaluation
methods. The results also provided enough evidence to support the
need for using the proposed Jacobian matrix formulation in real-
time OPF problem solving for smart grid applications, such as
DER/DR optimal management and transactive energy market
clearing.
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