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A B S T R A C T

Diffusion MRI and tractography hold great potential for surgery planning, especially to preserve eloquent white matter during resections. However, fiber tract
reconstruction requires an expert with detailed understanding of neuroanatomy. Several automated approaches have been proposed, using different strategies to
reconstruct the white matter tracts in a supervised fashion. However, validation is often limited to comparison with manual delineation by overlap-based measures,
which is limited in characterizing morphological and topological differences.

In this work, we set up a fully automated pipeline based on anatomical criteria that does not require manual intervention, taking advantage of atlas-based criteria
and advanced acquisition protocols available on clinical-grade MRI scanners. Then, we extensively validated it on epilepsy patients with specific focus on language-
related bundles. The validation procedure encompasses different approaches, including simple overlap with manual segmentations from two experts, feasibility
ratings from external multiple clinical raters and relation with task-based functional MRI.

Overall, our results demonstrate good quantitative agreement between automated and manual segmentation, in most cases better performances of the proposed
method in qualitative terms, and meaningful relationships with task-based fMRI. In addition, we observed significant differences between experts in terms of both
manual segmentation and external ratings. These results offer important insights on how different levels of validation complement each other, supporting the idea
that overlap-based measures, although quantitative, do not offer a full perspective on the similarities and differences between automated and manual methods.

1. Introduction

Diffusion-weighted imaging (DWI) has become a fundamental tool
to probe the brain structure, in particular to shed more light on white
matter organization by means of tractography. Beyond the tremendous
applications in research, DWI holds also great clinical potential. In this
perspective, a promising application is in surgery planning, where
tractography can be used to inform surgeons on eloquent pathways to
preserve during resection (Clark et al., 2003; Winston et al., 2014;

Nimsky et al., 2016; Jennings et al., 2018). Although most attention has
been focus so far on motor- and visual-related pathways, especially in
epilepsy surgery (Duncan et al., 2016), one of the still challenging
cognitive functions to preserve is language, given the relatively sub-
jective and complex structures involved (Essayed et al., 2017).

Despite increasing interest in this direction, this use of DWI and
tractography is still relatively limited. The fundamental reason is the
need to often rely on expert manual segmentation of the bundles of
interest: inclusion and exclusion regions of interest (ROIs) are usually
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manually drawn using specific software tools, such as MRTrix, Diffusion
Toolkit or FiberNavigator, to cite a few of the most popular and open-
source solutions. The ROIs may be drawn on the basis of anatomical
scans, or defined as spherical volumes around the coordinates of a
landmark (Wakana et al., 2004). The streamlines for each bundle are
then reconstructed using either deterministic or probabilistic algo-
rithms, and the final result is then qualitative assessed. This is a time-
consuming task that requires detailed knowledge of neuroanatomy and
basic understanding of MRI physics, which is not widely available to
neurosurgery departments.

Several semi-automated approaches have been proposed in the last
years. They can be fundamentally classified in two branches (Sydnor
et al., 2018): the first one is atlas-based (Yendiki et al., 2011;
Wassermann et al., 2016), where atlas-defined grey matter areas are
used as seeds and inclusion/exclusion points to build a list of rules
dictated by anatomical knowledge; the second one is cluster-based
(O'Donnell and Westin, 2007; Garyfallidis et al., 2018; Zhang et al.,
2019), where the streamlines from whole-brain tractography are
grouped in a data-driven fashion in order to differentiate distinct ana-
tomical pathways.

Atlas-based approaches have the advantages of reducing both the
need for specific neuroanatomical knowledge and bias in drawing ROIs,
but they can introduce false positives given that most atlases present
relatively large ROIs. On the other hand, cluster-based approaches can
lead to fiber bundles with very few spurious tracts. However, after the
data-driven subdivision it is still necessary to select which clusters to
combine in a bundle, and true fibers that deviate from the cluster tra-
jectory could end up being removed, introducing false negatives.

Recently, direct segmentation has been proposed as a third ap-
proach, exploiting machine learning techniques to directly segment the
fiber bundles from DWI data (Wasserthal et al., 2018). Direct segmen-
tation simplifies the processing pipeline, reducing potential errors in
intermediate steps (e.g. registration). However, this one-step approach
has the disadvantage of identifying essentially a white matter ROI for
each fiber bundle, therefore losing streamlines' directionality and the
chance of further subdividing the bundles or combining them with
microstructural measures.

These approaches present advantages and disadvantages, but they
fundamentally require validation and therefore manual segmentation to
make comparisons. The most common approach to validation is the use
of overlap-based measures, such as the Cohen's kappa, the Jaccard
index and the Dice coefficient. Other approaches have been proposed
using weighted formulations of those indices or concepts inherited from
information theory (Cousineau et al., 2017; Sydnor et al., 2018). An
alternative way, adopted in several tractography challenges held in the
last years (Pujol et al., 2015; Schilling et al., 2019a), consists of setting
up a panel of experts, who independently rate the quality of the re-
constructed tracts. This approach has the advantage of offering a more
diverse assessment of automated procedures, since an expert can judge
them from several perspectives.

Finally, a missing element in the validation of automated re-
construction is the lacking of functional validation. Although direct
electrical stimulation (dES) may be seen as the ground truth (Borchers
et al., 2011) and has been combined with tractography for validation
purposes (Nimsky et al., 2005; Berman et al., 2007; Leclercq et al.,
2010), taking into account the invasiveness of the procedure and the
time-consuming effort required when needed in surgical operations, it
is not a viable tool in most cases (Essayed et al., 2017). A common
alternative in surgical planning scenarios is given by task-based func-
tional MRI (Brennan et al., 2016), offering a way to more easily validate
the outcomes of DWI-based fiber segmentation.

Here we explored the validation landscape of white matter fiber
bundle segmentation to show the limitations of assessments based only
on overlap measures. First, we implemented an automated parcellation-
based approach that relies on probabilistic tractography and specific
inclusion/exclusion criteria. Then, we focused on temporal lobe

epilepsy (TLE), the most common type of epilepsy with best outcomes
of resective surgery, and we validated the proposed method on re-
constructing language-related tracts of TLE patients, using a three-fold
approach that encompasses overlap, expert rating and the relationship
with fMRI measures. Our main goals are (1) to demonstrate the advange
of extensive validation beyond overlap measures in comparing our
automated tractography to multiple human experts; and (2) to evaluate
tractography performed from a generalisable acquisition protocol and a
tailored automated pipeline compared to human experts.

2. Methods

2.1. Data acquisition and pre-processing

We studied a retrospective dataset of thirty unilateral TLE patients
(mean age(SD): 36.87(11.41); m/f: 12/18; lateralization of focus: 15
left/15 right; additional details in the supplementary materials). These
patients were scheduled for resection and underwent the MRI protocol
as part of the clinical procedures, that included: 3D T1-weighted se-
quence (MPRAGE) and multi-shell DWI (2mm isotropic resolution,
gradient directions: 11, 8, 32, and 64 at b-values: 0, 300, 700, and
2500 s/mm2, single b=0-image with reverse phase-encoding). The
patients also underwent task-based fMRI (gradient-echo planar T2*-
weighted images with TE/TR=22/2500ms, 50 contiguous 2.4mm
slices (0.1 mm gap) with a 24 cm field of view, 64× 64 matrix, in-plane
pixel size of 3.75× 3.75mm). Three tasks were employed (Trimmel
et al., 2018): auditory naming (AN), picture naming (PN) and verbal
fluency (VF) (details provided in the supplementary materials). The
study was approved by the National Hospital for Neurology and Neu-
rosurgery and the UCL Queen Square Institute of Neurology Joint Re-
search Ethics Committee.

The acquired data were processed using a tailored pipeline as-
sembled with NiPype (Fig.1). Briefly, T1-weighted data were processed
using geodesic-information flow (GIF) for tissue segmentation and
parcellation as implemented in NiftySeg (Cardoso et al., 2015). Then,
each T1-weighted volume was rigidly co-registered to the diffusion
space using FSL FLIRT and the average of the b0 volumes as a reference.
The estimated rigid transformation was then applied to both segmen-
tation and parcellation data. DWI data were corrected for signal drift
(Vos et al., 2017), geometric distortions and eddy-current induced
distortions (Andersson et al., 2003; Andersson and Sotiropoulos, 2016).
A fiber orientation distribution function (fODF) was estimated using
multi-tissue constrained spherical deconvolution (Jeurissen et al.,
2014). The details of the fMRI data preprocessing are reported in the
supplementary materials and in a previous study (Trimmel et al., 2018).

2.2. Fiber tract reconstruction

Following the focus on the bundles related to language, we re-
constructed the following fiber tracts: arcuate fasciculus (AF), inferior
fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF),
middle longitudinal fasciculus (MLF), and uncinate fasciculus (UF) bi-
laterally. Using GIF parcellation, the seeding regions as well as the in-
clusion and exclusion areas were defined based on anatomical criteria
(as detailed in the supplementary materials) and schematically de-
scribed in a spreadsheet, directly fed into the subsequent processing
steps.

Anatomical criteria for the seed, inclusion and exclusion ROIs were
derived from the original white matter fiber tract descriptions, clinical
experience and review of the reported literature (AF: Geschwind, 1970;
Axer et al., 2013; Yagmurlu et al., 2016; UF: Schmahmann and Pandya,
2006; Ebeling and von Cramon, 1992; Thiebaut de Schotten et al.,
2012; Von Der Heide et al., 2013; ILF: Takemura et al., 2017; De
Benedictis et al., 2014; Herbet et al., 2018; Mandonnet et al., 2007;
MLF: Makris et al., 2009; Makris et al., 2013; Menjot de Champfleur
et al., 2013; Duffau et al., 2014; IFOF: Kier et al., 2004; Schmahmann
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and Pandya, 2007; Catani et al., 2002; Ribas et al., 2015).
Fiber tracts were reconstructed probabilistically with MRTrix3 using

anatomically-constrained tractography (ACT), which takes into account
tissue segmentation and applies biologically motivated priors to the
tracking process (Smith et al., 2012). For each bundle, 5000 streamlines
were estimated using second order integration over fiber orientation
distribution (iFOD2) and randomly placing the seeds at the white
matter/grey matter interface. Fig. 2 offers several views of the re-
constructed fiber tracts for a sample subject. Both the preprocessing and
the tract reconstruction are implemented in the NiftyPipe software
package (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyPipe).

2.3. Validation

We adopted a comprehensive three-fold validation approach: first,
for a randomly selected cohort of ten subjects (5 RTLE/5 LTLE) the fiber

tracts of the left hemisphere were manually segmented by two experts
(human expert 1 - H1, human expert 2 - H2), following established
criteria (Wakana et al., 2007). Specifically, the experts were given, for
each subject, the T1-weighed volume, the FA map and the fODF: on the
basis of these data, they could draw inclusion and exclusion ROIs as
well as waypoints and then reconstruct 5000 streamlines using prob-
abilistic tractography. The software used was again MRTrix3 and the
experts had the chance of becoming familiar with the tool before this
study. We converted the streamlines to binary masks using as a
threshold the 5th percentile of the respective number of streamlines
distribution and quantified pairwise agreement between each combi-
nation (H1-H2, AU-H1, AU-H2, where AU stands for automated) using
Cohen's kappa.

In a second validation step, we asked five external raters, who were
not involved in any other step of the study, to assess the tracts gener-
ated by the human experts and the automated pipeline. The raters were

Fig. 1. An overview of the pipeline used to automatically segment white matter fiber tracts: a fiber orientation distribution is reconstructed from DWI data using
tissue segmentation from the T1-weighted data; then using the GIF parcellation and a list of inclusion and exclusion criteria, selected tracts are iterativelly re-
constructed.

Fig. 2. Fronto-lateral, posterio-lateral and superior views of the reconstructed tracts (red - AF; yellow - IFOF; green - ILF; orange - MLF; blue - UF) for a sample
subject.

M. Mancini, et al. NeuroImage: Clinical 23 (2019) 101883

3

http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyPipe


all medical professionals (one neurologist, two neuroradiologists, two
neurosurgeons) with acknowledged expertise in brain anatomy who
work with similar diffusion data in their clinical routine. Each of them
received a standardized image viewer we had prepared compiling a
simplified version of the MITK software (Fritzsche et al., 2012), and the
data (average b0 data across volumes, spatially-aligned T1-weighted
volume, fractional anisotropy map, and the tracts in streamline form)
for the same randomly chosen five subjects plus an extra subject that
was different for each rater. In order to blind the raters, the tracts were
randomly arranged in three sets (A, B, C): each set corresponded to data
segmented by either one expert, the other expert or the automated pi-
peline. In this way, for each subject the raters had three sets of tracts
without knowing how each of them was generated. In order to avoid
any possible bias, we randomized the set assignments across subjects.

For the assessment, we prepared an online form where we asked the
following questions for each fiber tract, subject, and set:

1 - Does the fiber tract connect the correct regions?
1a - If not, please list missing or incorrect regions.
2 - Is the fiber tract morphologically correct?
2a - If not, is the issue related to shape, density or both?
3 - Are there spurious fiber tracts?
3a - If yes, please describe them.
4 - Other comments.
The open questions (1a, 2a, 3a, 4) were solely used for the purposes

of data quality control and troubleshooting of the raters' validation
process.

In the third and final validation step, we assessed fiber tract
agreement with brain function using fMRI. We used maximal activation
points in the language-dominant hemisphere obtained from the fMRI
tasks (reported in the supplementary materials) to create spherical
seeds (5 mm radius) for probabilistic tractography for all the thirty
subjects: for each task, we created a different set of streamlines.
Probabilistic tractography was performed as in the previous cases using
ACT and seeding in the white matter/grey matter interface, selecting
5000 streamlines for each task (results are showed for a sample subject
in the supplementary materials). After converting the streamlines to
masks (using again as a threshold the 5th percentile of the number of
streamlines distribution), we quantified the overlap between three of
the language-related fiber tracts (AF, ILF, IFOF) obtained from the pi-
peline and the fMRI-based fiber tracts using the ratio between the
number of voxels included in both masks and the total number of voxels
of the mask from the fiber tracts of the pipeline. In particular, taking
into account the specific tasks, we hypothesized to observe a relatively
high involvement for the AF in the verbal fluency (VF) task (Bernal and
Ardila, 2009; Fridriksson et al., 2013), and have a high involvement of
the ILF and the IFOF in both the picture (PN) and auditory naming (AN)
tasks (Wu et al., 2016; Herbet et al., 2018).

2.4. Statistical analysis

Mixed effects logistic regression models (including a random effect
to account for clustering among patients) were fitted to assess differ-
ences (if any) in binary responses to questions 1, 2 and 3 between raters
and between tract generation methods. Moreover, using the estimated
regression coefficients, we were able to assess differences among the
tract generation methods for each binary question. Additional details
on the statistical analysis are provided in the supplementary materials.

3. Results

3.1. Overlap-based validation

Fig. 3 shows some examples of fibers reconstructed using the pi-
peline compared to the ones segmented by the two experts for one
sample subject. In quantitative terms, Fig. 4 represents the bar plot of
average and standard deviation of the Cohen's kappa to quantify the

spatial agreement between the human experts and the automated pi-
peline. According to previously established criteria (Landis and Koch,
1977), the observed values are considered “moderate” (k between 0.4
and 0.6) and “substantial” (k between 0.6 and 0.8) agreement levels. All
the other tracts showed agreements between the human experts and the
pipeline comparable to the inter-human agreement, with exception of
the IFOF where the inter-human agreement is the highest. Although in
most cases the automated procedure shows higher agreement with one
human expert compared to the other, this effect is not always directed
towards the same expert for all the tracts, suggesting that the auto-
mated segmentation gives overall outcomes indistinguishable from to
the manual ones.

3.2. Rating-based validation

Fig. 5 offers a visual summary of the ratings for each fiber tract and
for each generation method. The mixed-effects logistic regression
showed significant differences between tract generation methods for all
the considered questions (correct connected regions: p < .001; mor-
phological correctness: p < .001; presence of spurious tracts:
p < .001), indicating significant differences between the methods. Si-
milar results were observed regarding the differences between the
raters (correct connected regions: p < .001; morphologically correct-
ness: p < .001; presence of spurious tract: p= .004), indicating sig-
nificant differences between the raters. More details are included in the
supplementary materials.

Regarding specific comparisons between tract generation methods,
for the first question (tract termination in the correct regions) the odds
ratio estimates (95% confidence intervals) for connecting the correct
regions when compared to the AU group are 0.23 (0.11 to 0.49) for H1
and 1.52 (0.62 to 3.76) for H2, thereby implying that the odds of
connection of correct regions are significantly lower for the H1 group
when compared to the AU and H2 groups. For correctly predicting
morphology, odds ratio estimates (95% C.I.), when compared to the AU
group, are 0.11 (0.06 to 0.20) for H1 and 0.75 (0.41 to 1.38) for H2,
implying that the odds of correctly predicting morphology are sig-
nificantly lower for the H1 group when compared to the AU and H2
groups. For the third question (correctly predicting spurious tracts)
odds ratio estimates (95% C.I.), when compared to the AU group, are
8.67 (5.02 to 14.97) for H1 and 0.83 (0.51 to 1.35) for H2, implying
that the odds of correctly predicting morphology are significantly
higher for the H1 group when compared to the AU and H2 groups.
There was insufficient evidence to suggest any differences between AU
and H2 for all the measures.

3.3. fMRI-based validation

Finally, Fig. 6 shows the overlap between the tracts reconstructed
and the streamlines obtained seeding the areas observed as active
during the fMRI tasks. Consistently with our hypotheses, we observed a
clear role of the AF in the VF task while the ILF and the IFOF were
prominent in the PN and AN tasks. The AF seemed to be involved also in
AN.

4. Discussion

In this study we presented a thorough validation of a pipeline for
automated segmentation of anatomically relevant white matter fiber
tracts. With the goal of implementing an automated tool for surgical
planning, we designed an atlas-based approach combining widely
available tools in a reproducible pipeline. To rigorously validate this
pipeline, we chose a three-fold validation strategy in order to guarantee
(1) consistency with expert manual segmentation, (2) anatomical va-
lidity proven by expert assessment and (3) relationships with the in-
volved cognitive functions. Given that language preservation is a key
concern in epilepsy surgery (Essayed et al., 2017) and preliminary
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evidence suggests that tractography can aid language preservation
(Jeong et al., 2015; Szmuda et al., 2016), we focused on five tracts
associated with language function.

In terms of overlap-based agreement, the inter-expert and the ex-
pert-pipeline comparisons were either moderate or substantial. In four

of the five fiber tracts considered, one expert-pipeline agreement was
higher than the inter-expert one. In the case of the IFOF, the bundle
showing the highest inter-expert agreement, the expert-pipeline
agreement values were within the inter-human standard deviation
range.

Fig. 3. Fiber tracts (AF, IFOF, ILF, MLF, UF) from a sample subject generated by the proposed pipeline (AU) and the experts (H1, H2), with direction color-coding
(blue: craniocaudal; red: right-to-left; green: anterior-to-posterior).
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Fig. 4. Barplot of the average overlap across subjects between automated and manual segmentations using the Cohen's kappa measure.

Fig. 5. Summary chart of the ratings given to each expert (AU, H1, H2) in terms of connecting correct regions, morphology and presence of spurious streamlines. The
represented score is given by the ratio between the number of positive ratings and the total number of ratings given.
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Quantitative evaluation has the advantage of offering a rigorous
way to quantify overlap for a white matter tract generation method.
However, it requires the assumption of an actual ground-truth as a
reference. As seen from the inter-expert agreement, manual segmenta-
tion can be highly variable between experts, with the resulting need for
additional assessment tools to evaluate the accuracy of the proposed
pipeline. We decided to use external ratings, since similar approaches
have been previously used in popular tractography competitions and
validation tools (Côté et al., 2013; Pujol et al., 2015; Schilling et al.,
2019a). These results highlight how important it is to use extensive
validation relying on more than one expert to compare against and
more than one rater for qualitative assessment.

The third and final aspect of our validation is related to the goal of
our work: since we are building a tool for aiding surgical planning, it is
necessary to quantify to what extent the proposed approach is able to
segment eloquent white matter. Excluding dES because of the men-
tioned invasiveness and time effort required (Duffau, 2015), we relied
on the alternative approach given by fMRI (Brennan et al., 2016): al-
though with several drawbacks that include, among the others, para-
digm dependence and localization reliability (Benjamin et al., 2017),
preoperative fMRI has been shown to be a useful tool with the potential
to inform clinical decision-making in different surgery planning cases
(Bizzi et al., 2008; Petrella et al., 2006; Sunaert, 2006). Although it is
not routine at the moment (Matthew et al., 2006), its integration with
conventional imaging and procedures could add value to current pre-
surgical protocols (Vysotski et al., 2018). Our results show the expected
partial overlap with the related tracts, in agreement with the observa-
tion that the activation maps from a specific language task should
partially engage a given tract: given that the seed chosen on the basis of
the fMRI results was smaller than the ROIs used in our pipeline, we
expected only a fraction of the streamlines observed in the anatomical
fiber bundles. Moreover, we consistently observed high overlap be-
tween the tracts and the tasks we hypothesized being related, sup-
porting the important role of AF in language transferring (Bernal and
Ardila, 2009) and the semantic value of ILF and IFOF (Duffau et al.,
2014; Wu et al., 2016; Herbet et al., 2018). One limitation of this ap-
proach is the fact that reconstructing tracts with seeds in the grey
matter results may lead to inaccurate results and spurious results due to
the isotropic characteristics of the tissue (Staempfli et al., 2008). In this
study, we used the activation maxima as the centre of a spherical ROI
with a radius large enough to reach the boundary between grey matter
and white matter. In this way, we could rely on ACT and partially limit
spurious results.

When comparing our results to previous studies, one important
difference to highlight is that several approaches have been based on
diffusion tensor imaging (Wakana et al., 2007) and mostly on de-
terministic tractography (Wassermann et al., 2016; Garyfallidis et al.,
2018). Diffusion tensor imaging entails limitations, since the im-
possibility to resolve more complex geometries (e.g. crossing fibers)
leads to unreliable and clinically misleading information (Farquharson
et al., 2013). More complex models, such as spherical harmonics, are
necessary to achieve a better estimation of the white matter organiza-
tion. In addition to this, for the specific application of surgery planning,
deterministic tractography could result in more limited spatial coverage
for the estimated tracts compared to probabilistic approaches and
therefore in more false negatives (Neher et al., 2015). Probabilistic
tractography generally offers larger bundle coverage (Schilling et al.,
2019a; Schilling et al., 2019b), so it is particularly well suited for sur-
gical planning, where oversegmentation is generally preferred to un-
dersegmentation. This comes at the expense of a higher number of false
positives (Maier-Hein et al., 2017). In a related example for the optic
radiation, it has previously been shown (Lilja and Nilsson, 2015; Bucci
et al., 2013) that probabilistic approaches lead to better results than
tensor-based deterministic ones in terms of anatomical validity and
reliability. It is important to highlight that these considerations refer to
the most common approaches and more advanced techniques can invert
this trend in specific scenarios: Chamberland and colleagues recently
showed that using fODF-based deterministic tractography and active
delineation of the Meyer's loop they were able to achieve accuracy
comparable to ex vivo data at high gradient amplitudes (Chamberland
et al., 2017; Chamberland et al., 2018).

As an atlas-based method, our approach shares several elements in
common with the White Matter Query Language (WMQL) proposed by
Wassermann and colleagues (Wassermann et al., 2016). As in WMQL,
we use a list of inclusion and exclusion criteria, although using a
spreadsheet instead of a structured query. The main differences are the
choice of specific DWI protocol and atlas. The choices lead to relevant
advantages: first, the multi-tissue spherical deconvolution and the re-
lated ACT approach allow to use established anatomical priors to avoid
common spurious streamlines; second, the use of the GIF parcellation
scheme offers relatively small ROIs for a subsequent more tailored
segmentation and includes broad white matter ROIs (e.g. corpus cal-
losum, temporal white matter), allowing for more precise inclusion and
exclusion criteria. Another addition is the chance of adding specific
ROIs generated using additional tools and not included in the actual
atlas. Even considering these implementation choices, the approach

Fig. 6. Overlap between the automated segmentation of the fiber tracts and the streamlines obtained seeding the activated areas observed during the fMRI tasks.
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proposed here is generalisable to any site with a clinical MRI scanner.
The only actual requirement is given by the acquisition protocol: in
order to avoid the mentioned limitations of the tensor representation, it
is necessary to adopt a high-angular resolution diffusion-weighted ac-
quisition sequence and geometric distortion correction to ensure spatial
correspondence between T1 and DWI data. All the other processing
steps involved can be easily reproduced installing the NiftyPipe soft-
ware package.

One limitation of the proposed validation regards the use of fMRI to
assess function localization: non-critical areas may be activated during
tasks while important language ares may not appear (Brennan et al.,
2016). Moreover, the activations we observed do not coincide with the
actual starting and termination points of the fiber tracts.

Another limitation of this study is related to an intrinsic dis-
advantage of atlas-based approaches: in presence of notable neuroa-
natomical alterations (e.g. neoplastic diseases), matching the ROIs can
be a challenging task and tract location may shift due to tissue dis-
placement. Tumour resection will require a dedicated approach, with
eventual adjustments of inclusion and exclusion criteria and the po-
tential adoption of patient-specific ROIs: both of these approaches can
be already adopted with the proposed pipeline. The group of O'Donnell
proposed a cluster-based approach to segment the arcuate fasciculus
and the corticospinal tracts in patients with brain tumours (O'Donnell
et al., 2017) and more recently showed that cluster-based methods can
achieve higher test-retest reliability than the ones based on FreeSurfer
parcellation (Zhang et al., 2019). Following this direction, a hybrid
approach where an atlas-based approach is further refined using
cluster-based strategies may help to further refine tract segmentation.
In this validation, we used a dataset of epilepsy patients without mass
displacing abnormalities, that in any case is a common scenario for
many cases of surgical planning.

5. Conclusions

To the best of our knowledge, this is the first study to extensively
validate automated segmentation against manual delineation using not
only quantitative overlap measures, but also specific assessments by
competent raters and relationship with functional data. Our automated
pipeline shows promise in providing robust and standardized tracto-
graphy that we plan to extend to additional white matter fiber tracts
and evaluate retrospectively and prospectively.
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