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Abstract

We propose a new iterative segmentation model which can be accurately learned from a small 

dataset. A common approach is to train a model to directly segment an image, requiring a large 

collection of manually annotated images to capture the anatomical variability in a cohort. In 

contrast, we develop a segmentation model that recursively evolves a segmentation in several 

steps, and implement it as a recurrent neural network. We learn model parameters by optimizing 

the intermediate steps of the evolution in addition to the final segmentation. To this end, we train 

our segmentation propagation model by presenting incomplete and/or inaccurate input 

segmentations paired with a recommended next step. Our work aims to alleviate challenges in 

segmenting heart structures from cardiac MRI for patients with congenital heart disease (CHD), 

which encompasses a range of morphological deformations and topological changes. We 

demonstrate the advantages of this approach on a dataset of 20 images from CHD patients, 

learning a model that accurately segments individual heart chambers and great vessels. Compared 

to direct segmentation, the iterative method yields more accurate segmentation for patients with 

the most severe CHD malformations.

1 Introduction

We aim to provide whole heart segmentation in cardiac MRI for patients with congenital 

heart disease (CHD). This involves delineating the heart chambers and great vessels [1], and 

promises to enable patient-specific heart models for surgical planning in CHD [2]. CHD 

encompasses a vast range of cardiac malformations and topological changes. Defects can 

include holes in the heart walls (septal defects), great vessels connected to the wrong 
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chamber (e.g., double outlet right ventricle; DORV), dextrocardia (left-right flip), 

duplication of a great vessel, a single ventricle, and/or prior surgeries creating additional 

atypical connections. In MRI, different chambers and great vessels locally appear very 

similar to each other, and there is little or no contrast at the valves and thin walls separating 

neighboring structures. Finally, labeled training data is very limited. This precludes 

modeling each CHD subtype separately in an attempt to reduce variability. Moreover, 

patients with unique combinations of defects and prior surgeries defy categorization. Beyond 

our application, limited training data is to be expected for new applications of medical 

imaging not yet in widespread clinical practice. This necessitates development of methods 

that generalize well from small, imbalanced datasets, possibly also incorporating user 

interaction.

State-of-the-art methods use a convolutional neural network (CNN) to directly outline all 

chambers and vessels in one step [3,4]. However, CNNs for CHD have largely been limited 

to segmenting the blood pool and myocardium [5,6]. Direct co-segmentation of all major 

cardiac structures works well when applied to adult-onset heart disease, which induces much 

less severe shape changes compared to CHD. However, it fails completely on held-out 

subjects with severe CHD malformations after training with our small dataset of CHD 

patients.

We develop an iterative segmentation approach that evolves a segmentation over several 

steps in a prescribed way and automatically estimates when to stop, beginning from a single 

seed for each structure placed by the user. An iterative method can operate more locally, 

better maintain each structure’s connectivity, and propagate information from distant 

landmarks, similar to traditional snakes, level sets and particle filters [7]. We employ a 

recurrent neural network (RNN) [8], which uses context to grow the segmentation 

appropriately even in areas of low contrast. Deep learning research has indeed focused on 

segmenting a single image iteratively. Examples include recursive refinement of the entire 

segmentation map [9,10], sequential completion of different instances, regions or fields of 

view [11–13], slice-by-slice analysis [14] and networks modeling level set evolution [15]. 

These methods condition on a previous partial solution to make progress towards the final 

output. This simplified task may enable training from smaller datasets.

We train the model by minimizing a loss over a training dataset of example segmentation 

trajectories. Maximizing the likelihood of observed sequences is known as teacher forcing 

[8,16]. For example, we may require vessel segmentation to proceed at a constant rate along 

the vessel centerline, or a heart chamber segmentation to dilate outwards. Even if the 

stopping prediction is incorrect, since the segmentation evolution follows a prescribed 

pattern it is likely that one of the intermediate segmentations will be accurate. In contrast, 

using the final segmentation alone could lead to unpredictable growth patterns. Teacher 

forcing also leads to a simplified optimization over decoupled time steps, avoiding back-

propagation through time.

We focus on segmenting the aorta (a representative great vessel) and the left ventricle (a 

representative cardiac chamber). We validate our iterative segmentation approach using a 
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dataset of 20 CHD patients, and compare it to direct segmentation methods which we have 

developed for this problem.

2 Iterative Segmentation Model

Given an input image x defined on the domain Ω, we seek a segmentation label map y that 

assigns one of L anatomical labels to each voxel in x.

Generative Model:

We model the segmentation y as the endpoint of a sequence of segmentations y0, … , yT, 

where yt : Ω → {1, … , L} for time steps t = 0, … , T. The intermediate segmentations yt 

capture a growing part of the anatomy of interest. In practice, the initial segmentation map 

y0 is created by centering a small sphere around an initial seed point placed by the user.

The number of iterations required to achieve an accurate segmentation depends on the shape 

and size of the object being segmented. To capture this, we introduce a sequence of indicator 

variables s0, … , sT, where st ∈ {0, 1} specifies whether the segmentation is completed at 

time step t. If st = 1, then yt is deemed the final segmentation and we set yi = yi–1 and si = 1 

for all i > t.

Given an image and an initial segmentation, the inference task is to compute p(yT, sT∣x, y0, 

s0 = 0). We assume that the segmentations {yt} and stopping indicators {st} follow a first 

order Markov chain given the input image:

p(yt, st ∣ x, y0, …, yt − 1, s0, …, st − 1) = p(yt, st ∣ x, yt − 1, st − 1), (1)

p(yt, st ∣ x, y0, s0) = ∑
yt − 1

∑
st − 1

p(yt, st ∣ x, yt − 1, st − 1) ⋅ p(yt − 1, st − 1 ∣ x, y0, s0) . (2)

Transition Probability Model:

We must define the transition probability p(yt, st∣x, yt–1, st–1) to complete the recursion in 

Eq. (2). There are two possible cases: st–1 = 1 and st–1 = 0. Based on the definition of st–1, 

we obtain

p(yt, st ∣ x, yt − 1, st − 1 = 1) = 𝟙(yt = yt − 1) ⋅ 𝟙(st = 1), (3)

where 𝟙( ⋅ ) denotes the indicator function. To computep(yt, st∣x, yt–1, st–1 = 0), we introduce 

a latent representation ht = h(x, yt–1) that jointly captures all of the necessary information 

from image x and previous segmentation yt–1. Intuitively, predicting whether the 

segmentation yt is complete given x can be performed by examining whether yt–1 is 
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“almost” complete. Therefore, the segmentation yt and stopping indicator st are 

conditionally independent given ht:

p(yt, st ∣ x, yt − 1, st − 1 = 0) = p(yt, st ∣ ht) = p(yt ∣ ht) ⋅ p(st ∣ ht) . (4)

We model the function h(x, yt–1) and distributions p(yt∣ht) and p(st∣ht) as stationary; they do 

not depend on the time step t.

Learning:

We learn a representation of p(yt, st∣x, yt–1, st–1 = 0) given a training dataset of example 

desired trajectories of segmentations. Specifically, we consider a training dataset 𝒟 of N 

images {xi}i = 1
N  , each of which has a corresponding sequence of segmentations y0

i , …, yTi
i

and of stopping indicators s0
i , …, sTi

i  , where s0
i = … = sTi − 1

i  and sTi
i = 1 . The parameter 

values to be determined are θ = {θh, θy, θs} corresponding to h(x, yt–1; θh), p(yt∣ht; θy), and 

p(st∣ht; θs), respectively. We seek the parameter values that minimize the expected negative 

log-likelihood of the output segmentation and stopping indicator sequences given the image 

and initial conditions, i.e., θ∗ = argminθℒ(θ) ,

ℒ(θ) = 𝔼x, y0, …, yT , s0, …, sT ∼ 𝒟 −log p(y1, …, yT, s1, …, sT ∣ x, y0, s0; θ)

= − 𝔼 ∑
t = 1

T
log p(yt ∣ h(x, yt − 1; θh); θy) + log p(st ∣ h(x, yt − 1; θh); θs) .

(5)

Note that teacher forcing has lead to decoupled time steps. The first and second terms in the 

likelihood above penalize differences for the segmentations and the stopping indicators, 

respectively, between the predicted probabilities and the ground truth. In practice, we 

perform class rebalancing for both terms, and further supplement the segmentation loss by 

more strongly weighting pixels on the boundaries of the ground truth segmentation.

Inference:

Computing p(yT, sT∣x, y0, s0 = 0) via the recursion in Eq. (2) is intractable due to the 

summation over all possible segmentations yt–1. To approximate, we follow a widely 

accepted practice of using the most likely segmentation yt − 1
∗  and stopping indicator st − 1

∗  as 

input to the subsequent computation:

p(yt, st ∣ x, y0, s0 = 0; θ) ≈ p(yt, st ∣ x, yt − 1
∗ , st − 1

∗ ; θ),

where yt − 1
∗ , st − 1

∗ = argmax
yt − 1, st − 1

p(yt − 1, st − 1 ∣ x, y0, s0 = 0; θ) .

(6)
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The segmentation is fully automatic given the initial seed. If the stopping indicator is 

predicted incorrectly, a user can manually override it by asking for more iterations or by 

choosing a segmentation from a previous step.

RNN:

We implement our iterative segmentation model as an RNN (Fig. 1), which is formed by 

connecting identical copies of an augmented 3D U-net [17] trained to estimate p(yt, st∣x, 

yt–1, st–1 = 0). Thus, parameters are shared both spatially and temporally. At each step, the 

U-net inputs the image and the most likely segmentation from the previous step. This 

respects the Markov property in Eq. (1), unlike if any hidden layers were connected between 

successive steps. If the stopping indicator st
∗ = 1 , the segmentation propagation halts.

Our augmented U-net modeling p(yt, st∣x, yt–1, st–1 = 0) has L + 1 input channels, containing 

the input image and a binary map for each of the L labels in the segmentation yt–1 (including 

the background). There are two outputs: the probability map for the segmentation yt (at each 

voxel, representing the parameters of the categorical distribution over L labels), and the 

Bernoulli stopping parameter p(st = 1∣x, yt–1, st–1 = 0). Jointly predicting the segmentation 

and stopping indicator enables a smaller model compared to two separate networks.

The original U-net for image segmentation produces a final set of C learned feature maps, 

which undergo C·L 1 × 1 × 1 convolutions and a softmax activation to give the output 

segmentation probabilities. We use these C learned feature maps as the latent joint 

representation ht = h(x, yt–1; θh). The U-net parameters can therefore be split into two sets. 

The parameters for the final 1 × 1 × 1 convolutions are θy of p(yt∣ht; θy), and the remainder 

are θh of h(x, yt–1; θh). The probability p(st = 1∣ht; θ8) is computed by applying C additional 

3 × 3 × 3 convolutions with parameters θ8 to the feature maps in ht, followed by a global 

average and sigmoid activation to yield a scalar in {0, 1}.

Generating Segmentation Trajectories:

Our training dataset of images and segmentation trajectories is derived from a collection of 

paired images and complete segmentations. Several acceptable trajectories exist for each 

pair, e.g., starting from different initial seeds. To this end, at the beginning of each epoch a 

random tuple (yt–1, yt, st) is generated for each image. These tuples all follow the same 

principle that we want the network to learn.

As a concrete example, the trajectories used in our experiments are as follows. For the aorta, 

the segmentation grows from the seed along the vessel centerline, by a random distance to 

form yt–1 and an additional 10 pixels for yt. The seed is placed in the descending aorta, and 

the endpoint is at the valve where the aorta connects to a left or right ventricle. This seed 

could be automatically detected in the future, and the lack of contrast at the valve provides a 

challenging test case for our automatic stopping. For the left ventricle, we randomly place 

the seed in the center region of the chamber, and perform a random number of dilations to 

form yt–1, and 3 more dilations to form yt.

Pace et al. Page 5

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data Augmentation:

Data augmentation is essential to prevent overfitting on a small training dataset. We mimic 

the diversity of heart shapes and sizes, global intensity changes caused by inhomogeneity 

artifacts, and noise induced by elevated heart rates or arrhythmias. We apply random rigid 

and nonrigid transformations, random constant intensity shifts, and random additive 

Gaussian noise. We also investigate including random left-right (L-R) and anterior-posterior 

(A-P) flips, to better handle dextrocardia or other cardiac malpositions, since in these cases 

the left ventricle may lie on the right side of the body.

If the augmented U-net for p(yt, st∣x, yt–1, st–1 = 0) is trained solely using error-free 

segmentations yt–1, then it may not operate well on its own imperfect intermediate results at 

test time. We increase robustness by performing additional data augmentation on the input 

segmentations yt–1. We corrupt these segmentations by applying random nonrigid 

deformations, and by inserting random blob-like structures that vary in number, location and 

size and are attached to the segmentation foreground or free-floating. Since the target 

segmentation yt remains unchanged, the model learns to correct mistakes in its input.

3 Experimental Validation

We evaluate our iterative segmentation and tailored direct segmentation methods, focusing 

on segmenting the aorta and left ventricle (LV) of CHD patients.

Data:

We use the HVSMR dataset of 20 MRI scans from patients with a variety of congenital heart 

defects [18]. Each high-resolution (≈0.9mm3) 3D image was acquired on a 1.5T scanner 

(Philips Achieva), without contrast agent and using a free-breathing SSFP sequence with 

ECG and respiratory navigator gating. The HVSMR dataset includes blood pool and 

myocardium segmentations only. A trained rater manually separated all of the heart 

chambers and great vessels. The 20 images were categorized after visually assessing any 

gross morphological malformations: 4/20 severe (prior major reconstructive surgery, single 

ventricle, dextrocardia), 5/20 moderate (DORV, VSD, abnormal chamber shapes), and 11/20 

mild (ASD, stenosis, etc.). The dataset was randomly split into 4 folds for cross-validation 

(15 training, 5 testing), with an equal number of mild, moderate and severe cases in each. 

Input images were resized to ≈128 × 180 × 144.

Experiments:

In our tests, binary segmentation of each structure outperformed co-segmenting all of the 

heart chambers and vessels. We trained several models aimed at segmenting the aorta and 

left ventricle of CHD patients. DIR uses a single U-net to perform direct binary 

segmentation. DIR-DIST includes the Euclidean distance to the initial seed as an additional 

input channel. ITER (stop) is iterative segmentation using our RNN with automatic 

stopping, and ITER (max) simulates a user by choosing the segmentation with the best Dice 

coefficient after 30 iterations of our RNN. Finally, ITER-SEG-ABL is an ablation study 

with no data augmentation on the input segmentations. We tuned the architectural 
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parameters for each experiment separately, nevertheless resulting in similar networks. All U-

nets had 3 levels, 24 feature maps at the first level, and ≈870,000 parameters. The best 

network for direct segmentation of the aorta used 2 × 2 × 2 max pooling (receptive field = 

403), while all others used 3 × 3 × 3 max pooling (receptive field = 683). For training, 

optimization using adadelta ran for 2000 epochs with a batch size of 1. For iterative 

segmentation, the argmax in Eq. (6) is computed per voxel, by assuming that the 

segmentation of each voxel is conditionally independent of all other voxels given ht. 

Segmentations were post-processed to keep only the largest island or the island containing 

the initial seed, for experiments in which this improves overall accuracy. Aorta 

segmentations were not penalized for descending aortas longer than in the gold-standard.

Results:

Figures 2 and 3 report the results. There was no notable difference in accuracy between the 

mild and moderate groups. DIR-DIST was the best direct segmentation method, 

demonstrating the advantage of leveraging user interaction. For all methods, incorporating 

L-R and A-P flips in the data augmentation improved performance for severe subjects. 

Iterative segmentation stopped automatically after 18 ± 3 steps for both the aorta and the LV, 

requiring ≈15 s. The potential benefits of our iterative segmentation approach are 

demonstrated by the performance of ITER (max), which shows improvement for all of the 

severe cases while maintaining accuracy for the others. The stopping prediction is not 

perfect at test time: the number of iterations separating the automatic stopping point from 

the best segmentation in a sequence was 0.8 ± 1.0 iterations for the aorta and 3.0 ± 2.5 

iterations for the LV. The sole aorta containing a stent was poorly segmented by all methods 

(Fig. 3e). The stent caused a strong inhomogeneity artifact that the iterative segmentation 

could not grow past, and the stopping criterion was never triggered.

4 Conclusions

We presented an iterative segmentation model and its RNN implementation. We showed that 

for whole heart segmentation, the iterative approach was more robust to the cardiac 

malformations of severe CHD. Future work will investigate the potential general 

applicability of iterative segmentation when one is restricted to a small training dataset 

despite wide anatomical variability.
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Fig. 1. 
Iterative segmentation as an RNN. (a) Generative model. (b) The RNN uses the same 

augmented U-net at each step to predict the next segmentation and stopping indicator. (c) 

Architecture details (conditioning dropped for clarity).
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Fig. 2. 
Aorta (AO) and LV segmentation validation. DIR-DIST is the best direct segmentation 

method, but iterative segmentation generalizes better to severe subjects. Top: Dice 

coefficients for all methods. Bottom: Results for all 20 subjects, sorted by DIR-DIST score 

and with severe subjects highlighted in green. (Color figure online)
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Fig. 3. 
Representative aorta and LV segmentations in held-out subjects with severe CHD. Arrows 

illustrate both the benefits and failure cases of iterative segmentation with automatic 

stopping, where it (a) successfully segments a difficult case, (b) stops too late, (c) correctly 

stops near a valve, (d) avoids growing through a septal defect, (e) cannot grow through a 

dark region caused by a stent.
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Pace et al. Page 12

Method AO mild/mod. AO severe LV mild/mod. LV severe

DIR 92.5±6.5 81.2±16.3 94.1±3.5 68.6±25.5

DIR-DIST 92.3±8.6 89.7±2.9 94.1±2.2 83.0±6.2

ITER (stop) 91.5±7.0 91.8±4.6 91.2±4.4 83.3±9.0

ITER (max) 93.3±6.3 93.6±1.5 93.7±2.3 87.8±3.5

ITER-SEG-ABL (stop) 65.9±24.1 45.0±33.4 62.2±24.9 49.2±31.3

ITER-SEG-ABL (max) 66.3±24.4 45.8±37.4 64.4±22.4 52.7±25.1
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