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SUMMARY

Current machine learning techniques enable robust association of biological signals with measured 

phenotypes, but these approaches are incapable of identifying causal relationships. Here we 

develop an integrated “white-box” biochemical screening, network modeling and machine 

learning approach for revealing causal mechanisms and apply this approach towards understanding 

antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in 

Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic 

network model. Regression of the measured screening data on model simulations reveals that 
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purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show 

that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon 

metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This 

work demonstrates how prospective network modeling can couple with machine learning to 

identify complex causal mechanisms underlying drug efficacy.

In brief

A machine-learning approach that explores and illuminates pathways involved in bacterial 

metabolic responses to antibiotic treatment informs new strategies for exploiting weaknesses

Graphical Abstract

Keywords

machine learning; network modeling; antibiotics; metabolism; purine biosynthesis; ATP; adenylate 
energy charge; NADPH/NADP+ ratio; LC-MS/MS; biochemical screen

INTRODUCTION

Recent advances in high-throughput experimental technologies and data analyses have 

enabled unprecedented observation, quantification and association of biological signals with 

cellular phenotypes. Data-driven machine learning activities are poised to transform 

biological discovery and the treatment of human disease (Camacho et al., 2018; Wainberg et 
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al., 2018; Webb, 2018; Yu et al., 2018a); however, existing techniques for extracting 

biological information from large datasets frequently encode relationships between 

perturbation and phenotype in opaque “black-boxes” that are mechanistically 

uninterpretable, and consequently can only identify correlations as opposed to causal 

relationships (Ching et al., 2018). In natural systems, biological molecules are biochemically 

organized in networks of complex interactions underlying observable phenotypes; biological 

network models may therefore harbor the potential to provide mechanistic structure to 

machine learning activities, yielding transparent “whitebox” causal insights (Camacho et al., 

2018; Yu et al., 2018b).

Chemical and genetic screens are workhorses in modern drug discovery, but frequently 

suffer from poor (1–3%) hit rates (Roses, 2008). Such low hit rates often underpower the 

bioinformatic analyses used for causal inference due to limitations in biological information 

content. Experimentally validated network models possess the potential to expand the 

biological information content of sparse screening data; however, biological screening 

experiments are typically performed independently from network modeling activities, 

limiting subsequent analyses to either post hoc bioinformatic enrichment from screening hits 

or experimental validation of existing models. There is therefore a need to develop 

biological discovery approaches that integrate biochemical screens with network modeling 

and advanced data-analytical techniques, so as to enhance our understanding of complex 

drug mechanisms (Camacho et al., 2018; Wainberg et al., 2018; Xie et al., 2017). Here we 

develop one such approach and apply it towards understanding antibiotic mechanisms of 

action.

Antibiotics, a cornerstone of modern medicine, are threatened by the increasing burden of 

drug resistance, which is compounded by a diminished antimicrobial discovery pipeline 

(Brown and Wright, 2016). Although the primary targets and mechanisms of action for 

conventional antibiotics are well studied (Kohanski et al., 2010), there is growing 

appreciation that secondary processes such as altered metabolism actively participate in 

antibiotic efficacy (Yang et al., 2017a), and that extracellular metabolites may either 

potentiate (Allison et al., 2011; Meylan et al., 2017) or suppress (Yang et al., 2017b) the 

lethal activities of bactericidal antibiotics. While features of central metabolism (Kohanski et 

al., 2007) and cellular respiration (Gutierrez et al., 2017; Lobritz et al., 2015) are implicated 

in antibiotic lethality across diverse microbial species (Dwyer et al., 2015), the biological 

mechanisms underlying antibiotic-induced changes to metabolism (Belenky et al., 2015; 

Dwyer et al., 2014) remain unclear. Deeper understanding into how bacterial metabolism 

interfaces with antibiotic lethality has the potential to open new drug discovery paradigms 

(Bald et al., 2017; Murima et al., 2014), making antibiotic-induced cellular death physiology 

an attractive topic to investigate with white-box machine learning.

Here we integrate biochemical screening, network modeling and machine learning to form a 

white-box machine learning approach for revealing drug mechanisms of action. We apply 

this approach towards elucidating metabolic mechanisms of action for bactericidal 

antibiotics. We discover that metabolic processes related to purine biosynthesis, driven by 

antibiotic-induced adenine limitation, participate in antibiotic lethality. We show that 

adenine limitation increases ATP demand via purine biosynthesis, resulting in elevated 
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central carbon metabolism activity and oxygen consumption, thereby enhancing the killing 

effects of antibiotics. This work demonstrates how network models can facilitate machine 

learning activities for biological discovery and provide insights into complex causal 

mechanisms underlying drug efficacy.

RESULTS

A white-box machine learning approach for revealing metabolic mechanisms of antibiotic 
lethality

Machine learning aims to generate predictive models from sets of training data; such 

activities are typically comprised of three parts: input data, output data, and the predictive 

model trained to compute output data from input data (Figure 1A) (Camacho et al., 2018). 

While modern machine learning methods can assemble high-fidelity input-output 

associations from training data, the functions comprising the resulting trained models often 

do not possess tangible biochemical analogs, rendering them mechanistically 

uninterpretable. Consequently, predictive models generated by such (black-box) machine 

learning activities are unable to provide direct mechanistic insights into how biological 

molecules are interacting to give rise to observed phenomena. In order to address this 

limitation, we developed a whitebox machine learning approach, leveraging carefully 

curated biological network models to mechanistically link input and output data (Yu et al., 

2018b).

Our approach integrates biochemical screening with prospective network modeling to 

provide mechanistically linked training data for machine learning (Figure 1B). In contrast to 

existing approaches, which generate predictive models from only the variables/perturbations 

available in a screen, we first use prospective network modeling to quantitatively transform 

screening perturbations into biologically enriched network states. Biological information 

from experimental screens are applied as boundary conditions for the network simulations, 

computing a network representation of each perturbation in the screen (e.g., metabolic fluxes 

following metabolite perturbations). These network representations are then used as input 

data to train predictive models with the empirical screening measurements (e.g., quantified 

cellular phenotypes in response to screening perturbations) as output data. Because 

biological networks are mechanistically constructed, the features comprising the predictive 

models trained by machine learning are, by definition, mechanistically causal and represent 

tangible biochemical species that can be directly tested experimentally.

Here we applied this integrated screening-modeling-learning approach towards investigating 

metabolic mechanisms of antibiotic lethality, demonstrating the ability of this workflow to 

reveal new mechanistic insights (Figure 1C). Specifically, we designed biochemical screens 

to measure the effects of diverse metabolite supplementations on the lethality of three 

bactericidal antibiotics: ampicillin (AMP, a β-lactam), ciprofloxacin (CIP, a 

fluoroquinolone) and gentamicin (GENT, an aminoglycoside). We screened combinations of 

these antibiotics and metabolites in Escherichia coli, measuring their antibiotic half-maximal 

inhibitory concentrations (IC50s) after four hours of treatment. Next, we prospectively 

simulated metabolic network states corresponding to each metabolite perturbation using the 

iJO136 genome-scale model of E. coli metabolism (Orth et al., 2011) with quantitative 
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information from the biochemical screens as modeling constraints. These simulations 

comprehensively yield flux estimates for each metabolic reaction in E. coli, under each 

screening condition. For each antibiotic, we applied machine learning regression analyses to 

train a predictive model that could reveal pathway mechanisms underlying differences in 

antibiotic lethality measured in our screen. These pathways were identified by regularizing 

the simulated metabolic network states, regressing the measured IC50s and performing 

enrichment analyses from metabolic pathway annotations curated in Ecocyc v. 22.0 (Keseler 

et al., 2017).

Exogenous metabolites exert pathway-specific effects on antibiotic lethality

Input-output relationships between E. coli metabolism and antibiotic lethality were 

systematically quantified by measuring antibiotic IC50s following supplementation with 

metabolites known to participate in E. coli metabolism (Figure 2A). In order to avoid the 

potentially confounding effects of stationary phase physiology on antibiotic tolerance, we 

performed experiments using exponentially growing E. coli MG1655 cells. These cells were 

grown in MOPS defined minimal medium (Neidhardt et al., 1974) and were systematically 

screened with an unbiased and semi-comprehensive library of metabolites, against AMP, 

CIP and GENT. Screened metabolites were derived from the Biolog phenotype microarrays 

(PMs) 1–4 (Bochner, 2009), which are comprised of diverse carbon, nitrogen, phosphorus 

and sulfur species. These PMs contain 206 unique amino acids, carbohydrates, nucleotides 

and organic acids that are included in the iJO1366 genome-scale model of E. coli 
metabolism. Antibiotic responses to these 206 metabolites were used for subsequent 

analyses (Table S1).

Changes in antibiotic IC50s were modest – in most cases, less than two-fold (Figure 2B and 

Table S2). Hierarchical clustering of the measured IC50s revealed that the metabolite 

response profiles differed between AMP, CIP and GENT, highlighting their different 

biochemical targets. However, several metabolites appeared to commonly potentiate or 

inhibit efficacy across multiple antibiotics, indicating shared metabolic mechanisms of 

action. Interestingly, many nitrogen, phosphorus and sulfur metabolites increased antibiotic 

IC50s, while many carbon metabolites decreased IC50s, similar to previous observations 

(Yang et al., 2017b). These raw data indicate that the measured antibiotic lethality responses 

to metabolite perturbations occurred through specific metabolic pathways, rather than 

generically as a response to medium enrichment.

Conventional bioinformatic analyses do not provide novel mechanistic insights

In order to test the capabilities of conventional bioinformatic analyses for yielding 

mechanistic insights into how the screened metabolites alter antibiotic lethality, we first 

performed an enrichment analysis on metabolites that elicited a ≥ 2-fold change in IC50 – a 

conventional definition for a screening “hit” (Table S3). For each antibiotic, a metabolite set 

enrichment analysis was performed in Ecocyc. For AMP (2 metabolites ≥ 2-fold change in 

IC50) and GENT (8 metabolites ≥ 2-fold change in IC50), no pathways were enriched with 

less than a 5% false discovery rate (FDR) (q ≤ 0.05). For CIP (19 metabolites ≥ 2-fold 

change in IC50), several non-specific pathways related to protein translation were identified, 

with top enrichments including ‘aminoacyl-tRNA charging’ (p = 1.98e-6), ‘proteinogenic 
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amino acids biosynthesis’ (p = 2.50e-6) and ‘amino acids degradation’ (p = 1.27e-5) (Table 

S4). These findings are consistent with previous observations that protein translation 

inhibitors generally exert antagonistic effects on antibiotic lethality (Lobritz et al., 2015; 

Ocampo et al., 2014). Collectively, these results illustrate two common weaknesses in 

conventional bioinformatic approaches for analyzing biochemical screens: statistical power 

limitations and low specificity associations.

White-box machine learning reveals known and new antibiotic mechanisms of action

We next applied our white-box machine learning approach and prospectively modeled 

metabolic network states corresponding to supplementation with each metabolite used in the 

screen. For each metabolite, metabolic states were simulated by first adding exchange 

reactions to the E. coli metabolic model, which enabled uptake of each metabolite from the 

extracellular environment. We then performed parsimonious flux balance analysis (pFBA) 

(Lewis et al., 2010) in conditions simulating MOPS minimal medium and optimized for the 

biomass objective function (Table S5). Although this approach does not explicitly model 

contributions by gene expression towards changes in metabolism, benchmarking studies 

demonstrate that principles of growth maximization and parsimony are sufficient for 

accurately predicting metabolism in defined metabolic environments (Machado and 

Herrgard, 2014).

For each antibiotic, metabolic pathway mechanisms were identified by first conducting a 

dimension-reducing machine learning regression task, and then performing hypergeometric 

statistical testing on metabolic reactions comprising the outputted predictive model using 

pathway-reaction sets curated by Ecocyc. The measured changes in antibiotic IC50 were 

jointly learned on the set of simulated metabolic network states using multitask elastic net 

(Caruana, 1997; Zou and Hastie, 2005), yielding 477 reactions predicted to alter antibiotic 

lethality. For each antibiotic, reactions with coefficients whose magnitude were less than or 

equal to half the standard deviation of all coefficients were removed to exclude spurious 

reactions selected by joint learning. For AMP, CIP and GENT, this yielded 189, 208 and 204 

reactions, respectively (Table S6). Next, hypergeometric statistics were performed on 

Ecocyc-curated pathways. Of the 431 metabolic pathways curated by Ecocyc, only 13 were 

found to be statistically significant with less than 5% FDR for at least one antibiotic (Table 

S7).

Because our white-box machine learning approach yields pathway mechanisms, we can 

quantify the relative contributions of each metabolic pathway to the lethal mechanisms of 

each antibiotic. We computed pathway scores for each pathway and antibiotic by performing 

least squares regression on the changes in antibiotic IC50 and then log-transforming the 

average non-zero regression coefficients for all reactions in each pathway. Identified 

pathways primarily clustered into three groups, based on their pathway scores (Figure 3). 

One cluster possessed central carbon metabolism pathways (‘Superpathway of glycolysis, 

pyruvate dehydrogenase, TCA, and glyoxylate bypass’; ‘Superpathway of glyoxylate bypass 

and TCA’; ‘TCA Cycle I (prokaryotic)’) with similar pathway directionality for AMP, CIP 

and GENT (indicated by the sign of the pathway score). These findings are consistent with 

several studies demonstrating the TCA cycle to be a shared mechanism in antibiotic lethality 
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(Kohanski et al., 2007; Meylan et al., 2017; Nandakumar et al., 2014) and validate the 

fidelity of our white-box machine learning approach.

Interestingly, a second cluster appeared possessing purine biosynthesis pathways 

(‘Superpathway of histidine, purine, and pyrimidine biosynthesis’; ‘Superpathway of purine 

nucleotides de novo biosynthesis II’) with shared directionality between AMP and CIP, and 

opposite directionality for GENT. To our knowledge, purine biosynthesis has not previously 

been implicated as a mechanism of antibiotic lethality from any biochemical or 

chemogenomic screen. In order to better understand these differences in pathway 

directionality, we examined the regression coefficients for each reaction and computed a 

reaction score by log-transforming their magnitudes. These analyses identified early steps in 

the purine biosynthesis pathway as being primarily responsible for the predicted differences 

for AMP and CIP from GENT (Figure S1). These findings illustrate how white-box machine 

learning can reveal new mechanisms of action with high biochemical specificity.

Purine biosynthesis activity participates in antibiotic lethality

Motivated by the above model-guided machine learning predictions, we next sought to test 

whether perturbations to purine biosynthesis would alter antibiotic lethality. From the 

predictions, we hypothesized that genetic deletion of enzymes involved in purine 

metabolism would exert differential effects on AMP and CIP lethality compared to GENT 

lethality. Indeed, E. coli mutants deficient for purD (glycinamide ribonucleotide synthetase), 

purE (N5-carboxyaminoimidazole ribonucleotide mutase), purK (5-

(carboxyamino)imidazole ribonucleotide synthase), or purM 
(phosphoribosylformylglycinamide cycloligase), early steps in purine biosynthesis (Figure 

4A), exhibited significant decreases in AMP and CIP lethality, but increased GENT lethality, 

compared to wildtype (Figure 4B). Similarly, biochemical inhibition of purine biosynthesis 

with 6-mercaptopurine, a PurF (amidophosphoribosyltransferase) inhibitor, decreases AMP 

and CIP lethality, but increases GENT lethality (Figure 4C). These effects appear to be 

specific to purine metabolism, as genetic deletion of enzymes involved in pyrimidine 

biosynthesis did not elicit significant differences in AMP, CIP or GENT lethality (Figure 

S2A).

Cells deficient for glyA (serine hydroxymethyltransferase), which participates in producing 

tetrahydrofolate co-factors through the folate cycle, also exhibited decreased AMP and CIP 

lethality, but increased GENT lethality (Figure 4D). Similar phenotypes were observed 

under combination treatment with trimethoprim, a potent biochemical inhibitor of FolA 
(dihydrofolate reductase) (Figure S2B), consistent with previous findings (Lobritz et al., 

2015; Ocampo et al., 2014; Paisley and Washington, 1978).

We further hypothesized that stimulation of purine biosynthesis would elicit opposite effects 

on antibiotic lethality than inhibition by these genetic and biochemical perturbations. Indeed, 

biochemical supplementation with the purine biosynthesis substrates phosphoribosyl 

pyrophosphate (prpp) and glutamine (gln) (Figure 4A, blue) led to increased AMP and CIP 

lethality, and decreased GENT lethality (Figure 4E). Collectively, these data support the 

model-driven hypothesis that purine biosynthesis participates in antibiotic lethality and 
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demonstrate how model-guided machine learning can provide reductive, hypothesis-driven 

mechanistic insights into drug efficacy.

Adenine limitation contributes to antibiotic lethality

Bactericidal antibiotics significantly alter bacterial metabolism as part of their lethality, 

increasing the abundance of intracellular central carbon metabolites and disrupting the 

nucleotide pool (Belenky et al., 2015; Nandakumar et al., 2014; Zampieri et al., 2017). 

Nucleotide pool disruptions include rapid depletion of free intracellular adenine, guanine 

and cytosine, and marked accumulation of intracellular uracil (Figure S3). Additionally, 

nucleotide biosynthesis pathways auto-regulate with internal feedback inhibition 

biochemically driven by their nucleotide end-products (Figure 5A) (Lehninger et al., 2013). 

Based on the predictions from our white-box machine learning approach and the above 

observations, we hypothesized that purine supplementation would rescue antibiotic-induced 

purine depletion, and consequently decrease the demand for purine biosynthesis, thereby 

reducing antibiotic lethality. Of note, supplementation with adenine (Figure 5B, red), but not 

guanine, decreased antibiotic lethality in wildtype cells; these results suggest that adenine 

limitation rather than guanine limitation drives purine biosynthesis activity under antibiotic 

stress. We also hypothesized that pyrimidine supplementation would inhibit pyrimidine 

biosynthesis and promote purine biosynthesis activity via prpp accumulation, and 

consequently increase antibiotic lethality. Indeed, supplementation with uracil or cytosine 

potentiated antibiotic lethality (Figure 5C, blue). Collectively, these data support the 

hypothesis that purine biosynthesis participates in antibiotic lethality and suggest that 

antibiotic-induced purine biosynthesis is driven by adenine limitation.

Adenine supplementation reduces ATP demand and central carbon metabolism activity

Purine biosynthesis is energetically expensive, costing eight ATP molecules to synthesize 

one adenine molecule from one glucose molecule (Lehninger et al., 2013). In order to better 

understand the mechanistic basis for the observed differences in antibiotic lethality under 

adenine or uracil supplementation, we examined the simulated metabolic network states 

corresponding to these perturbations (Table S5). Model simulations predicted that adenine 

supplementation would decrease purine biosynthesis and consequently decrease ATP 

utilization by nucleotide synthesis and salvage reactions, while uracil supplementation 

would not (Figure 6A). Model simulations also predicted that as a result of these changes, 

overall flux through central carbon metabolism pathways would decrease, reducing the 

activity of enzymes involved in cellular respiration and oxidative phosphorylation, such as 

succinate dehydrogenase (Figure S4). These modeling results are consistent with previous 

observations that glycolytic flux is controlled by ATP demand (Koebmann et al., 2002).

We tested these metabolic modeling predictions by quantifying the intracellular 

concentrations of central carbon metabolism and energy currency metabolites from E. coli 
cells grown in MOPS minimal medium and supplemented with either adenine or uracil 

(Figure 6B) (Table S8). Under these conditions, cell growth did not significantly change 

within the first hour of supplementation (Figure S5A), but intracellular adenine nucleotides 

did accumulate under exogenous adenine addition (Figure S5B). Consistent with model 

predictions that adenine supplementation would inhibit succinate dehydrogenase activity, 
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intracellular succinate increased, while intracellular fumarate decreased (Figure 6C). Model 

simulations additionally predicted that ATP synthesis would decrease under adenine 

supplementation (Figure 6D, left). Consistent with this, we observed a modest decrease in 

the adenylate energy charge (Figure 6D, right), an index for the energy state of a cell 

(Chapman and Atkinson, 1977). We also examined the relative changes in intracellular 

nicotinamide adenine dinucleotides under adenine or uracil supplementation (Figure S5C) 

and observed a modest decrease in the NADPH/NADP+ ratio, but not the NADH/NAD+ 

ratio, following exogenous adenine addition (Figure 6E). Together, these results support the 

model predictions that adenine supplementation decreases central carbon metabolism 

activity (decreased adenylate energy charge) and cell anabolism (decreased NADPH/NADP+ 

ratio) without significantly changing cell catabolism (unchanged NADH/NAD+ ratio) 

(Figure S5D) (Andersen and von Meyenburg, 1977; Chapman and Atkinson, 1977).

The metabolic modeling simulations further predicted that decreases in oxidative 

phosphorylation under adenine supplementation lead to decreases in cellular oxygen 

consumption (Figure 6F, left). We tested these modeling predictions using a Seahorse XF 

Analyzer and measured changes in the oxygen consumption rate (OCR) following antibiotic 

treatment, with or without adenine or uracil supplementation. Antibiotic treatment with 

AMP, CIP or GENT increased cellular OCR (Figure 6F, black), in contrast to control 

conditions (Figure S5E), supporting previous observations that cellular respiration is 

important for antibiotic lethality (Gutierrez et al., 2017; Lobritz et al., 2015). Importantly, 

adenine supplementation significantly repressed cellular OCR under antibiotic treatment 

(Figure 6F, red), consistent with model predictions, while uracil enhanced cellular OCR 

(Figure 6F, blue). These results directly support the hypothesis that central carbon 

metabolism activity and cellular respiration are increased under antibiotic stress to satisfy 

the elevated ATP demand resulting from purine biosynthesis. Collectively, our data and 

simulations indicate that adenine limitation resulting from antibiotic treatment drives purine 

biosynthesis, which increases ATP demand, fueling the redox-associated metabolic 

alterations involved in antibiotic lethality (Dwyer et al., 2014) (Figure 7).

DISCUSSION

Recent advances in high-throughput experimental technologies and data science have 

stimulated considerable interest in the potential for artificial intelligence to transform 

biological discovery and healthcare (Gil et al., 2014; Topol, 2019; Webb, 2018; Yu et al., 

2018a). Important for such pursuits will be the necessary transition from correlation-based 

machine learning to causality-based “machine reasoning” (Bottou, 2014). Identifying causal 

mechanisms by modern machine learning approaches is challenging due to the mechanistic 

inaccessibility of computationally derived, black-box associations between perturbations and 

phenotypes. In this study, we show how biological network models can be utilized to 

overcome this mechanistic uncertainty and help uncover biological mechanisms (Camacho 

et al., 2018; Yu et al., 2018b).

Network modeling has long provided a foundation for systems biology (Ideker et al., 2001) 

and researchers are now beginning to integrate machine learning with retrospective network 

modeling for improving the fidelity of genotype-to-phenotype predictions (Ma et al., 2018). 
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Such activities demonstrate how hierarchically organized prior knowledge can deconvolve 

complex biological data; however, these efforts rely on post hoc analyses of experimental 

data and can only perform inductive association of phenotypes with perturbations rather than 

deductive identification of the causal mechanisms driving phenotypes. Here we presented a 

complementary approach, combining machine learning with prospective network modeling 

to infer biological mechanisms based on their combined information content.

We demonstrate how this approach can be integrated with biochemical screening and 

applied towards understanding mechanisms underlying antibiotic efficacy. Antibiotics are 

conventionally understood to work by inhibiting processes involved in bacterial cell 

replication (Kohanski et al., 2010). However, recent work has shown that processes 

downstream of target inhibition, including bacterial metabolism, actively participate in 

antibiotic lethality (Cho et al., 2014; Dwyer et al., 2015; Gruber and Walker, 2018; Zhao and 

Drlica, 2014). An important knowledge gap has been in understanding the biological 

mechanisms underlying antibiotic-mediated changes in metabolism. Our results here suggest 

that altered metabolism resulting from bactericidal antibiotic treatment is driven, in part, by 

the increased ATP demand required to restore homeostasis to a disrupted nucleotide pool 

(Belenky et al., 2015). It is likely that antibiotic-induced insults to the nucleotide pool are 

further exacerbated by nucleotide oxidation (Fan et al., 2018; Foti et al., 2012; Gruber and 

Walker, 2018), resulting in a positive feedback loop of increased nucleotide biosynthesis, 

elevated central carbon metabolism and toxic metabolic byproduct generation that is lethally 

detrimental to the cell (Figure 7). Because nucleotide analogues are commonly used as 

FDA-approved anticancer and antiviral chemotherapeutics, it will be interesting to explore 

their potential as antimicrobial agents or adjuvants (El Zahed and Brown, 2018; Serpi et al., 

2016).

Adenine nucleotides are important mediators of cellular homeostasis (Andersen and von 

Meyenburg, 1977; Chapman and Atkinson, 1977), universally coupling cellular metabolism, 

DNA/RNA replication, and other physiological processes. In the context of infection, 

adenylate metabolites such as ATP, ADP and adenosine are important components of the 

damage-associated molecular patterns used by the host to activate the immune system 

(Cekic and Linden, 2016). We previously observed that adenine metabolites such as AMP 

accumulate at a site of infection during antibiotic treatment and, consistent with our data 

here, can inhibit antibiotic lethality (Yang et al., 2017b). Given our results, it is likely that 

interpatient differences in the concentrations of extracellular nucleotides contribute to 

variable antibiotic treatment outcomes for infection (Lee and Collins, 2011). Moreover, our 

finding that uracil potentiates antibiotic lethality (Figures 5), suggests that pyrimidine 

nucleotides may potentially also be useful as antimicrobial adjuvants.

Evolution has optimized bacteria for efficient resource allocation under unstressed growth 

(Basan et al., 2015; Hui et al., 2015; Scott et al., 2014), and insults to the ATP pool and other 

energy currencies are sufficient for stimulating central carbon metabolism (Holm et al., 

2010; Koebmann et al., 2002) and sensitizing cells to oxidative stress (Adolfsen and 

Brynildsen, 2015). Additionally, intracellular ATP and the adenylate energy charge are 

tightly regulated across the tree of life, and robustly maintained across environmental 

changes and cellular insults (Chapman and Atkinson, 1977). Under antibiotic stress, 
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increases to ATP demand are likely to arise from multiple sources (Yang et al., 2017a). 

Consistent with these notions, pharmacological suppression of oxidative phosphorylation 

(Shetty and Dick, 2018) and metabolic conditions inhibiting intracellular ATP (Shan et al., 

2017) protect cells against antibiotics, supporting a critical role for ATP dynamics in 

antibiotic-mediated lethality. Additionally, futile cycling in cell wall synthesis and 

degradation was recently reported to be a component of β-lactam lethality (Cho et al., 2014). 

Our findings support a new, fundamental concept in understanding antibiotic death 

physiology – namely, that stress-induced changes in ATP utilization and demand, as a 

homeostatic response, critically drive lethal metabolic alterations. Because antibiotic stress 

increases the abundance of central carbon metabolism intermediates (Belenky et al., 2015; 

Nandakumar et al., 2014) and TCA cycle protein expression (Babin et al., 2017), central 

carbon metabolism is worth exploring as a target for antimicrobial drug discovery (Bald et 

al., 2017; Murima et al., 2014).

The growing, global crisis of antibiotic resistance has created a clear imperative for 

expanded efforts in antimicrobial drug discovery and investigations into bacterial cellular 

death physiology (Brown and Wright, 2016). As experimental and computational 

technologies mature, new techniques and resources are becoming available for studying the 

biological mechanisms underlying antibiotic responses in complex and dynamic 

environments (Certain et al., 2017; Dunphy and Papin, 2017; Mack et al., 2018; Yang et al., 

2017a). While the work described here has specifically focused on bacterial metabolism, 

several other aspects of bacterial physiology are known to be relevant to antibiotic efficacy, 

including bacterial stress responses, DNA repair mechanisms, and macromolecular 

processes such as transcription and translation (Dwyer et al., 2015; Gruber and Walker, 

2018; Yang et al., 2017a). Investigation into these other physiological systems will require 

new and different modeling approaches (Carrera and Covert, 2015; Ma et al., 2018; 

Oberhardt et al., 2013; Yang et al., 2018), curated knowledge bases (Karr et al., 2012; 

Keseler et al., 2017; Monk et al., 2017), and screening innovations (French et al., 2018; 

French et al., 2016). Integration of such resources with machine learning could advance 

antibiotic discovery by revealing novel mechanisms that can be targeted with next-

generation adjuvants, boosting our existing antibiotic arsenal (Tyers and Wright, 2019).

White-box machine learning can be broadly extended across diverse biological systems and, 

as demonstrated here, be impactful for revealing drug mechanisms of action for treating 

human diseases. For instance, cell metabolism is increasingly recognized as being important 

in cancer pathogenesis (Vander Heiden and DeBerardinis, 2017) and histidine metabolism 

was recently demonstrated to participate in the efficacy of some cancer therapeutics 

(Kanarek et al., 2018). Similar to the present work on antibiotics, cancer drugs may be 

counter-screened against a library of metabolites in human cancer cells and coupled with 

network simulations using models of human metabolism (Brunk et al., 2018) to discover 

metabolic mechanisms of action for existing cancer drugs. Insights gained by such an 

approach may help guide the design of cancer treatment regimen accounting for a tumor’s 

local metabolic microenvironment, leveraging metabolic perturbations to optimize treatment 

outcomes.
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Moreover, our integrated screening-modeling-learning approach is agnostic to the 

experimental datasets and network models used to train machine learning models. NIH 

Common Fund programs such as “Library of Integrated Network-Based Cellular Signatures” 

(LINCS) and “Big Data to Knowledge” are providing increasingly comprehensive 

measurements of cellular physiology in response to genetic or small molecule perturbations 

(Keenan et al., 2018). Our white-box machine learning approach could be extended to such 

datasets to reveal molecular mechanisms mediating cellular responses to biochemical 

stimuli. For instance, simulations may be performed on human signaling networks to 

transform LINCS small molecule perturbations into signaling network configurations, which 

can be utilized as input data to learn signaling mechanisms of epigenetic regulation from 

measured chromatin signatures (Litichevskiy et al., 2018). Similarly, prospective network 

simulations may be performed on gene regulatory networks to interpret CRISPR screening 

perturbations (Wang et al., 2014) and reveal transcriptional programs underlying screened 

phenotypes.

Finally, white-box machine learning will be important for realizing the transformative 

promises of translational precision medicine activities such as NIH’s “All of Us” research 

program. Simulations may be performed on biological networks curated in databases such as 

BioGRID (Stark et al., 2006) to transform human data from repositories such as the UK 

Biobank (Bycroft et al., 2018) into gene regulatory, signaling or metabolic network states 

customized for each individual patient in a diverse population. These customized network 

states may be applied as inputs to machine learning models to identify mechanistically 

interpretable biomarkers and molecular mechanisms of disease pathogenesis from relevant 

clinical metadata, using classification and regression techniques. Such analyses could be 

impactful for treating human disease by enabling stratified, personalized treatment strategies 

based on an individual’s gene regulatory, signaling or metabolic network state and by 

providing new targets for drug discovery programs (Yu et al., 2018a). Reaching such 

endpoints will require continued high-quality characterization of human specimens and 

curation of human biological networks. However, white-box machine learning will reward 

such efforts with deep, new insights that could enable truly personalized medicine.

STAR METHODS

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, James J. Collins (jimjc@mit.edu).

Experimental Model and Subject Details

Bacterial Strains, Media, Growth Conditions, Reagents.—Escherichia coli strain 

K-12 MG1655 (ATCC 700926) was used for all experiments in this study. For metabolite 

supplementation experiments, cells were cultured in MOPS minimal medium with 0.2% 

glucose (Teknova; Hollister, CA). For experiments involving gene deletions, cells were 

cultured in MOPS EZ Rich defined medium (Teknova). For all experiments, cells were 

grown at 37°C either on a rotating shaker at 300 rpm in baffled flasks or 14 mL test tubes or 

on a rotating shaker at 900 rpm in Biolog 96-well phenotype microarrays (Bochner, 2009) 
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(Biolog; Hayward, CA). All experiments were performed with n ≥ 3 biological replicates 

from independent overnight cultures. Uniformly labeled 13C glucose was purchased from 

Cambridge Isotope Laboratories, Inc. (Tewksbury, MA). LC-MS reagents were purchased 

from Honeywell Burdick & Jackson® (Muskegon, MI) and Sigma-Aldrich (St. Louis, MO).

Method Details

Metabolite Screen and IC50 Determination.—An overnight culture of E. coli cells in 

MOPS minimal medium was diluted 1:500 and grown to mid-exponential phase at 37°C 

with 300 rpm shaking in 2 L baffled flasks. 13 mL cultures were then back-diluted to OD600 

= 0.1 and dispensed into 14 mL test tubes containing 100x concentrated AMP, CIP or GENT 

over the following concentration gradients: for AMP, 10 mg/mL, 1 mg/mL and 1.5-fold 

dilutions from 20 – 0.35 g/mL; for CIP, 10 g/mL, 1 μg/mL and 1.5fold dilutions from 100 – 

0.4 ng/mL; for GENT, 10 μg/mL, 1 μg/mL and 1.5-fold dilutions from 200 – 2.6 ng/mL. 100 

L from each antibiotic-treated subculture was dispensed into each well of a Biolog PM 1–4 

compound plate. Plates were sealed with breathable membranes and incubated in a 37°C 

shaking incubator with 900 rpm shaking. After 4 h incubation, OD600 was measured on a 

SpectraMax M5 Microplate Reader (Molecular Devices; San Jose, CA). IC50s were 

estimated from each set of n ≥ 3 independent biological replicates by fitting logistic 

functions to each set of OD600 measurements for each well in MATLAB (Mathworks; 

Natick, MA). In the case of CIP, some metabolite conditions exhibited a biphasic dose-

response. For those conditions, a logistic function was fit to only the phase at the lower 

concentration.

Gene Knockout Strain Construction.—E. coli ΔglyA, ΔpurD, ΔpurE, ΔpurK, ΔpurM, 

ΔpurC and ΔpyrE gene deletion mutants were constructed by P1 phage transduction using 

the Keio collection (Baba et al., 2006), as previously described (Gutierrez et al., 2017). 

Briefly, P1 phage lysates corresponding to each gene deletion were produced by incubating 

overnight cultures of Keio donor strains with P1 phage. For each gene deletion, an overnight 

culture of E. coli MG1655 was pelleted and resuspended in a 10 mM MgCl2 and 5 mM 

CaCl2 salt solution in a 15 mL test tube, and then incubated with the corresponding P1 

phage at 37°C for 30 min. Media containing 1 M sodium citrate was added to each tube and 

incubated at 37°C for an additional 60 min in a 300 rpm shaking incubator. Cells were 

pelleted, resuspended on fresh media, and then plated on kanamycin-selective agar plates 

containing 5 mM sodium citrate and incubated overnight at 37°C. Colonies were selected 

from each plate and their kanamycin-resistance cassettes cured by transducing pCP20 

plasmid with electroporation, inducing recombination by overnight growth at 43°C, and then 

screening resulting colonies for genomic recombination and plasmid loss on kanamycinand 

ampicillin-selective agar plates. Overnight cultures of each knockout strain were checked for 

accuracy by PCR amplification and gel electrophoresis with custom oligonucleotides (Table 

S9).

Time-Kill Experiments.—Time-kill experiments were performed as previously described 

(Dwyer et al., 2014). An overnight culture of E. coli cells in MOPS minimal medium was 

diluted 1:500 and grown to mid-exponential phase at 37°C with 300 rpm shaking in 125 mL 

baffled flasks. 1 mL cultures were then back-diluted to OD600 = 0.1, dispensed into 14 mL 
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test tubes and treated with AMP, CIP or GENT, with biochemical supplementation where 

indicated. For all metabolite supplementation experiments in minimal media, time-kill 

experiments were performed using 4 μg/mL AMP, 16 ng/mL CIP or 48 ng/mL GENT. For 

all gene knockout experiments in rich media, time-kill experiments were performed using 4 

μg/mL AMP, 16 ng/mL CIP or 96 ng/mL GENT. Hourly samples were collected and serially 

diluted in PBS for colony enumeration 24 h later.

Intracellular Metabolite Quantification.—Intracellular metabolites quantified on an 

AB SCIEX Qtrap® 5500 mass spectrometer (AB SCIEX; Framingham, MA), as previously 

described (McCloskey et al., 2018), and processed using in house scripts. An overnight 

culture of E. coli cells in MOPS minimal medium was diluted 1:500 and grown to mid-

exponential phase at 37°C with 300 rpm shaking in 1 L baffled flasks. 25 mL cultures were 

then back-diluted to OD600 = 0.1, dispensed into 250 mL baffled flasks and treated with 

either 1 mM adenine, 1 mM uracil or a non-supplemented control. Samples were collected 1 

hr after supplementation, and aliquots with biomass equivalents to 10 mL of cell culture at 

OD600 = 0.1 were subjected to metabolite extraction using a 40:40:20 mixture of 

acetonitrile, methanol and LC-MS grade water. Uniformly labeled 13C-standards were 

generated by growing E. coli in uniformly labeled Glucose M9 minimal media in aerated 

shake flasks, as previously described (McCloskey et al., 2014). Calibration mixes of 

standards were split across several mixes, aliquoted, and lyophilized to dryness. All samples 

and calibrators were equally spiked with the same internal standards. Samples were 

quantified using isotope-dependent mass spectrometry. Calibration curves were run before 

and after all biological and analytical replicates. Consistency of quantification between 

calibration curves was checked by running a Quality Control sample composed of all 

biological replicates. Values reported are derived from the average of the biological 

triplicates, analyzed in duplicate (n = 6).

Oxygen Consumption Rate Quantification.—Bacterial respiratory activity was 

quantified using the Seahorse XFe96 Extracellular Flux Analyzer (Seahorse Bioscience; 

North Billerica, MA), as previously described (Dwyer et al., 2014; Lobritz et al., 2015). XF 

Cell Culture Microplates were pre-coated with 100 ng/mL poly-D-lysine. An overnight 

culture of E. coli cells in MOPS minimal medium was diluted 1:500 and grown to mid-

exponential phase at 37°C with 300 rpm shaking in 125 mL baffled flasks. Cells were back-

diluted to OD600 = 0.01 and 90 L diluted cells were dispensed to each well of the coated XF 

Microplates. Microplates were centrifuged for 10 min at 4,000 rpm and an additional 90 L 

fresh media with or without 1 mM adenine or uracil was added to each well. Antibiotics 

were added to injection ports and measurements taken at 5 min intervals with 2.5 min 

measurements cycles and 2.5 min mixing.

Quantification and Statistical Analysis

Hierarchical Clustering.—Hierarchical clustering for the measured antibiotic IC50s and 

identified pathways was performed in MATLAB using the standardized euclidean distance 

metric.
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Metabolite Set Enrichment Analysis.—Metabolite Set Enrichment Analysis was 

performed in Ecocyc (v. 22.0) (Keseler et al., 2017). A SmartTables was created comprised 

of metabolites eliciting a ≥ 2-fold change in IC50 for at least one antibiotic (Table S4). 

Pathways were identified using the “Enrichment” analysis type. The Fisher Exact test was 

performed for each enrichment analysis with false discovery rate (FDR) correction by the 

Benjamini-Hochberg method.

Genome-Scale Metabolic Modeling.—Metabolic simulations were performed using the 

COBRA Toolbox v. 2.0 (Schellenberger et al., 2011) in MATLAB and Gurobi Optimizer v. 

6.0.4 (Gurobi Optimization; Beaverton, OR). Reversible reactions in the iJO1366 E. coli 
model (Orth et al., 2011) were replaced with pairs of forward and backward reactions. In 

order to simulate growth in MOPS minimal medium, reaction bounds from the exchange 

reactions corresponding to each metabolite present in MOPS minimal medium were set to a 

value of ‘1,000’, to permit uptake. Reaction bounds for oxygen exchange, glucose exchange 

and cobalamin exchange were as set to values of ‘18.5’, ‘10’ and ‘0.1’, respectively, as 

previously described (Orth et al., 2011). For each metabolite screening condition, additional 

exchange reactions were added to represent supplementation with each metabolite on the 

Biolog phenotype microarray plates (Table S1), with reaction bounds set to ‘1,000’ to permit 

uptake. Parsimonious flux balance analysis (Lewis et al., 2010) was performed on each 

metabolite condition-specific model 10,000 times with sampling by optGpSampler 

(Megchelenbrink et al., 2014). For each reaction in the condition-specific models, the mean 

flux across all 10,000 samples was computed and used to represent flux in each condition.

Multitask Elastic Net Regularization.—Metabolic reactions for each antibiotic were 

selected using a twostage multitask elastic net regularization (Yuan et al., 2016; Zou and 

Hastie, 2005) in the open-source Spyder IDE v. 3.3.0 (Spyder Project Contributors) Python 

environment. First, IC50s from each screening condition were normalized by their on-plate 

controls and log2-transformed. Multitask elastic net was jointly performed on the 

transformed antibiotic IC50s and the simulated metabolic states using the 

MultitaskElasticNetCV function in the scikit-learn toolbox v. 0.17.0 (Pedregosa et al., 2011) 

with 50-fold cross-validation, 1e4 max iterations and tolerance of 1e-6. Second, for each 

antibiotic, the standard deviation of elastic net coefficients was computed. Reactions whose 

coefficients possessed magnitude less than half the standard deviation were filtered and 

removed. Exchange and transport reactions were excluded from this analysis.

Hypergeometric Pathway Identification.—Pathways mechanisms were identified by 

performing hypergeometric statistical testing on metabolic pathways curated in Ecocyc (v. 

22.0) (Keseler et al., 2017). For each antibiotic, reactions selected by multitask elastic net 

regularization were converted to their Ecocyc counterparts and hypergeometric p-values 

were computed for each pathway-reaction set in Spyder. For each antibiotic-pathway 

combination, FDR statistics were estimated using the BenjaminiHochberg method. 

Pathways that exhibited p ≤ 0.05 and q ≤ 0.05 for at least one antibiotic were selected.

Pathway and Reaction Score Computation.—For each antibiotic, log2-transformed 

IC50s were regressed on the reactions selected by multitask elastic net by linear squares 

Yang et al. Page 15

Cell. Author manuscript; available in PMC 2020 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using scikit-learn in Spyder. For each pathway, pathway scores were computed by first 

computing the average of the non-zero regression coefficients for all reactions in each 

pathway. The magnitudes for these pathway scores were then log10-transformed and 

normalized by the largest magnitude of all pathway scores. Reaction scores were computed 

by taking the log10-transformation of each regression coefficient for each antibiotic. The 

magnitudes of these reaction scores were then normalized by the largest magnitude of all 

reaction scores.

Metabolite Quantification.—Metabolite concentrations were estimated from LC-MS/MS 

peak heights using previously generated calibration curves. Metabolites found to have a 

quantifiable variability (RSD ≥ 50%) in the Quality Control samples or possessing 

individual components with a RSD ≥ 80% were excluded from analysis. Metabolites in 

blanks with a concentration greater than 80% of that found in the biological samples were 

similarly excluded. Missing values were imputed by bootstrapping using the R package 

Amelia II (v. 1.7.4, 1,000 imputations) (Honaker et al., 2011). Remaining missing values 

were approximated as 1/2 the lower limit of quantification for the metabolite normalized to 

the biomass of the sample. Intracellular metabolite concentrations were calculated based on 

an estimated cell density of 7⋅107 CFU/mL at OD600 = 0.1 (Figure 5) and an estimated cell 

volume of 1.3 fL for non-stressed exponential phase E. coli cells (Milo and Phillips, 2016).

Statistical Analysis.—Statistical significance testing was performed in Prism v8.0.2 

(GraphPad; San Diego, CA). One-way ANOVA was performed on intracellular ATP 

measurements. Reported p-values reflect false-discovery correction by the Holm-Šídák 

multiple comparisons test, with comparisons only between adenine or uracil 

supplementation with control. Although ANOVA is generally robust against lack of 

normality in the data, statistical tests were not specifically performed to determine if all of 

the assumptions of ANOVA had been met.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A white-box machine learning approach is developed for antibiotics research.

• Network modeling is coupled to a biochemical screen to identify pathway 

mechanisms.

• Antibiotic-induced adenine limitation increases purine biosynthesis and ATP 

demand.

• Increased ATP demand drives central carbon metabolism and oxygen 

consumption.
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Figure 1. A white-box machine learning approach for revealing metabolic mechanisms of 
antibiotic lethality.
(A) Machine learning activities are typically comprised of three parts: input data (blue), 

output data (red), and a predictive model trained to compute output data from input data 

(purple).

(B) An overall framework for white-box machine learning. Input screening perturbations 

(e.g., metabolite conditions; gray) are first transformed into enriched biological network 

states by prospective network modeling (e.g., metabolic fluxes; blue). These network 

simulations are then used as machine learning inputs to train a predictive model (purple), 

revealing mechanisms underlying the output data (e.g., antibiotic lethality measurements; 

red). Because biological networks are mechanistically constructed, features comprising the 

predictive models trained by machine learning are, by definition, mechanistically causal.
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(C) E. coli MG1655 cells were treated with three bactericidal antibiotics at ≥ 13 different 

concentrations. Antibiotic IC50s were quantified following supplementation with 206 diverse 

metabolites and normalized by their on-plate controls. Metabolic network states 

corresponding to each metabolite were prospectively simulated using the iJO1366 model of 

E. coli metabolism (Orth et al., 2011). For each antibiotic, changes in IC50 were regressed 

on the simulated fluxes and pathway mechanisms were identified by hypergeometric testing 

on metabolic pathways curated by Ecocyc (Keseler et al., 2017). Identified pathways were 

validated experimentally.
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Figure 2. Exogenous metabolites exert pathway-specific effects on antibiotic lethality.
(A) Overall experimental design for measuring metabolite effects on antibiotic lethality. 

Overnight cultures of E. coli MG1655 were inoculated into MOPS minimal medium, grown 

to early exponential phase, and back-diluted to OD600 = 0.1. Cells were dispensed into 

Biolog phenotype microarray plates (PMs) 1–4 (Bochner, 2009) with different 

concentrations of ampicillin (AMP), ciprofloxacin (CIP) or gentamicin (GENT) added. 

OD600 was measured after 4 hours of incubation at 37°C and 900 rpm shaking. Antibiotic 

IC50s were estimated for each antibiotic-metabolite combination.

(B) Antibiotic IC50 responses to metabolite supplementation. Metabolically-induced 

sensitivity profiles differ by antibiotic, but several metabolites commonly protect (red) or 

sensitize (blue) cells to multiple antibiotics. Carbon metabolites were screened using Biolog 

PMs 1 and 2; nitrogen metabolites were screened using Biolog PM 3; phosphorus and sulfur 

metabolites were screened using Biolog PM 4.
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Data are represented as mean from n ≥ 3 independent biological replicates.
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Figure 3. White-box machine learning reveals known and new antibiotic mechanisms of action.
Pathways scores for metabolic pathways identified by white-box machine learning. 

Identified pathways include several central carbon metabolism and nucleotide biosynthesis 

pathways and these cluster into three groups, based on pathway score. Central metabolism 

pathways primarily exhibit similar pathway directionality for ampicillin (AMP), 

ciprofloxacin (CIP), gentamicin (GENT), while purine biosynthesis pathways exhibit 

different pathway score directionality for GENT from AMP or CIP. Pathway scores were 

computed for each antibiotic by log-transforming the average regression coefficient for all 

non-zero reactions annotated in a given pathway.
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Figure 4. Purine biosynthesis participates in antibiotic lethality.
(A) Purine biosynthesis pathway. Purine biosynthesis begins with phosphoribosyl 

pyrophosphate (prpp) and contains several ATP consuming steps (purple).

(B) Antibiotic lethality in purine biosynthesis deletion mutants. Genetic inhibition of purine 

biosynthesis by purD (glycinamide ribonucleotide synthetase), purE (N5-

carboxyaminoimidazole ribonucleotide mutase), purK (5-(carboxyamino)imidazole 

ribonucleotide synthase), or purM (phosphoribosylformylglycinamide cyclo-ligase) deletion 

decreases ampicillin (AMP) and ciprofloxacin (CIP) lethality, but increases gentamicin 

(GENT) lethality.

(C) Antibiotic lethality following biochemical inhibition of purine biosynthesis. Biochemical 

inhibition of PurF (amidophosphoribosyltransferase) by 6-mercaptopurine (6-MP) decreases 

AMP and CIP lethality, but increases GENT lethality.
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(D) Antibiotic lethality in a glyA (serine hydroxymethyltransferase) deletion mutant. 

Genetic inhibition of glycine (gly) and N10-formyl-tetrahydrofolate (10fthf) by glyA 
deletion decreases AMP and CIP lethality, but increases GENT lethality.

(E) Antibiotic lethality following enhanced purine biosynthesis. Substrate-level stimulation 

of purine biosynthesis with phosphoribosyl pyrophosphate (prpp) and glutamine (gln) 

supplementation increases AMP and CIP lethality, but decreases GENT lethality.

Data are represented as mean ± SEM from n ≥ 3 independent biological replicates.
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Figure 5. Adenine limitation contributes to antibiotic lethality.
(A) Feedback inhibition in the purine and pyrimidine biosynthesis pathways. Purine and 

pyrimidine biosynthesis auto-regulate through internal feedback inhibition by nucleotide 

end-products.

(B) Antibiotic lethality following purine supplementation. Adenine supplementation (red) 

decreases ampicillin (AMP), ciprofloxacin (CIP) and gentamicin (GENT) lethality.

(C) Antibiotic lethality following pyrimidine supplementation. Uracil supplementation (dark 

blue) increases AMP, CIP and GENT lethality.

Data are represented as mean ± SEM from n = 3 independent biological replicates.
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Figure 6. Adenine supplementation reduces ATP demand and central carbon metabolism 
activity.
(A) Metabolic modeling predictions. Adenine supplementation decreases activity through 

purine biosynthesis, consequently decreasing ATP utilization by purine biosynthesis, central 

carbon metabolism and oxidative phosphorylation (Figure S4), in comparison to simulated 

control (CTL). E. coli metabolism under adenine (ADE) or uracil (URA) supplementation 

was simulated by parsimonious flux balance analysis (pFBA) in the iJO1366 metabolic 

model with exchange reactions for adenine or uracil opened, respectively. Nucleotide 

biosynthesis activity was computed by summing fluxes through reactions in the Purine and 
Pyrimidine Biosynthesis subsystem (left). ATP consumption was summed across all 

reactions in the Purine and Pyrimidine Biosynthesis and Nucleotide Salvage Pathway 
subsystems (center left). Central carbon metabolism activity was computed by summing 

fluxes through reactions in the Glycolysis and TCA Cycle subsystems (center right). 

Oxidative phosphorylation is proxied by the Succinate Dehydrogenase reaction (right); 
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additional oxidative phosphorylation reactions are depicted in Figure S4. All fluxes were 

normalized by the biomass objective function.

(B) Intracellular adenine or uracil concentrations following adenine or uracil 

supplementation. Intracellular metabolite concentrations were measured by targeted LC-

MS/MS.

(C) Intracellular succinate or fumarate concentrations following adenine or uracil 

supplementation. Adenine supplementation increases intracellular succinate and decreases 

intracellular fumarate, consistent with model predictions for inhibited succinate 

dehydrogenase activity (A, right).

(D) ATP synthesis following adenine or uracil supplementation. Metabolic modeling 

simulations predict a decrease in ATP synthesis following adenine supplementation (left), 

reported by the ATP Synthase reaction. Metabolomic measurements of intracellular ATP, 

ADP and AMP (Figure S5B) reveal a similar decrease in adenylate energy charge following 

adenine supplementation (right).

(E) NADPH/NADP+ and NADH/NAD+ ratios following adenine or uracil supplementation. 

Metabolomic measurements of intracellular NADPH, NADP+, NADH and NAD+ (Figure 

S5C) reveal modest decreases in the NADPH/NADP+ ratio following adenine 

supplementation (left), indicating reduced anabolic metabolism. The NADH/NAD+ ratio is 

largely unchanged (right), indicating preserved catabolic metabolism.

(F) Cellular respiration following adenine or uracil supplementation during antibiotic 

treatment. Metabolic modeling simulations predict a decrease in oxygen consumption 

following adenine supplementation (left), reported by the Oxygen Exchange reaction. 

Adenine supplementation (red) reduces respiratory activity, while uracil (blue) increases 

respiratory activity. Changes in oxygen consumption rate following treatment with 

ampicillin (AMP), ciprofloxacin (CIP) or gentamicin (GENT) and adenine or uracil 

supplementation were measured using the Seahorse Extracellular Flux Analyzer.

Data are represented as mean ± SEM from n = 3 independent biological replicates. 

Significance reported as FDR-corrected p-values in comparison with control: †: p ≤ 0.1, *: p 

≤ 0.05, **: p ≤ 0.01, ****: p ≤ 0.0001.
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Figure 7. Antibiotic-induced adenine limitation induces purine biosynthesis, increasing ATP 
demand and driving central carbon metabolic activity.
In addition to the lethal effects of inhibiting their primary targets, bactericidal antibiotics 

disrupt the nucleotide pool, depleting intracellular purines and inducing adenine limitation. 

Adenine limitation triggers purine biosynthesis, increasing ATP demand, which drives 

increased activity through central carbon metabolism and cellular respiration. Toxic 

metabolic byproducts generated by this increased metabolic activity damage DNA and 

exacerbate antibiotic-mediated killing. Futile cycles and other stressinduced phenomena may 

also elevate ATP demand.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Eschehchia coli K-12 MG1655 ATCC ATCC 700926

Chemicals, Peptides, and Recombinant Proteins

6-Mercaptopurine Sigma-Aldrich Cat# 852678-1G-A; CAS: 6112-76-1

13C-Glucose Cambridge Isotope 
Laboratories, Inc.

Cat# CLM-1396-1; CAS: 110187-42-3

Adenine Sigma-Aldrich Cat# A8626-5G; CAS: 73-24-5

Ampicillin Sigma-Aldrich Cat# A9518-5G; CAS: 69-52-3

Ciprofloxacin Sigma-Aldrich Cat# 17850-25G-F; CAS: 85721-33-1

Cytosine Sigma-Aldrich Cat# C3506-1G; CAS: 71-30-7

Gentamicin Sigma-Aldrich Cat# G1914-5G; CAS: 1405-41-0

Glutamine Sigma-Aldrich Cat# G8540-25G; CAS: 56-85-9

Guanine Sigma-Aldrich Cat# G11950-10G; CAS: 73-40-5

MOPS EZ Rich Defined Medium 
Kit

Teknova Cat# M2105

MOPS Minimal Media Kit Teknova Cat# M2106

Phenotype Microarray 1 
MicroPlate

Biolog (Bochner, 2009) Cat# 12111

Phenotype Microarray 2 
MicroPlate

Biolog (Bochner, 2009) Cat# 12112

Phenotype Microarray 3 
MicroPlate

Biolog (Bochner, 2009) Cat# 12121

Phenotype Microarray 4 
MicroPlate

Biolog (Bochner, 2009) Cat# 12131

Phosphoribosyl pyrophosphate Sigma-Aldrich Cat# P8296-100MG; CAS: 108321-05-7

Thymine Sigma-Aldrich Cat# T0376-100G; CAS: 65-71-4

Trimethoprim Sigma-Aldrich Cat# T7883-5G; CAS: 738-70-5

Uracil Sigma-Aldrich Cat# U0750-100G; CAS: 66-22-8

Oligonucleotides

See Table S9 This paper

Software and Algorithms

MATLAB 2018a Mathworks https://www.mathworks.com/

COBRA Toolbox v. 2.0 (Schellenberger et al., 2011) https://opencobra.github.io/cobratoolbox/

Gurobi Optimizer v. 6.0.4 Gurobi Optimization http://www.gurobi.com/

optGpSampler (Megchelenbrink et al., 2014) http://cs.ru.nl/~wmegchel/optGpSampler/

Spyder IDE v. 3.3.0 Spyder Project Contributors https://www.spyderide.org/

scikit-learn v. 0.17.0 (Pedregosa et al., 2011) https://scikitlearn.org/

Ecocyc v. 22.0 (Keseler et al., 2017) https://ecocyc.org/

Prism v. 8.0.2 GraphPad https://www.graphpad.com/

AB SCIEX MultiQuant v. 3.0.1 SCIEX https://sciex.com/products/software/multiquant-software
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REAGENT or RESOURCE SOURCE IDENTIFIER

Amelia II v. 1.7.4 (Honaker et al., 2011) https://cran.r-project.org/web/packages/Amelia/index.html

LMGene v. 3.3 (Lu et al., 2008) http://www.bioconductor.org/packages/release/bioc/html/LMGene.html
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