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Abstract

Nitrones (e.g. a-phenyl-N-tert-butyl nitrone; PBN) are cerebroprotective in experimental stroke. Free radical trapping is

their proposed mechanism. As PBN has low radical trapping potency, we tested Sgk1 induction as another possible

mechanism. PBN was injected (100 mg/kg, i.p.) into adult male rats and mice. Sgk1 was quantified in cerebral tissue by

microarray, quantitative RT-PCR and western analyses. Sgk1þ/þ and Sgk1�/� mice were randomized to receive PBN or

saline immediately following transient (60 min) occlusion of the middle cerebral artery. Neurological deficit was mea-

sured at 24 h and 48 h and infarct volume at 48 h post-occlusion. Following systemic PBN administration, rapid induction

of Sgk1 was detected by microarray (at 4 h) and confirmed by RT-PCR and phosphorylation of the Sgk1-specific substrate

NDRG1 (at 6 h). PBN-treated Sgk1þ/þ mice had lower neurological deficit (p< 0.01) and infarct volume (p< 0.01) than

saline-treated Sgk1þ/þ mice. PBN-treated Sgk1�/� mice did not differ from saline-treated Sgk1�/� mice. Saline-treated

Sgk1�/� and Sgk1þ/þ mice did not differ. Brain Sgk3:Sgk1 mRNA ratio was 1.0:10.6 in Sgk1þ/þ mice. Sgk3 was not

augmented in Sgk1�/� mice. We conclude that acute systemic treatment with PBN induces Sgk1 in brain tissue. Sgk1 may

play a part in PBN-dependent actions in acute brain ischemia.

Keywords

Acute stroke, animal models, focal ischemia, lacunar infarcts, neuroprotection

Received 28 March 2017; Revised 3 November 2017; Accepted 6 November 2017

Introduction

Ischemic stroke remains a major cause of mortality and
morbidity worldwide, with few therapeutic options.1,2

The thrombolytic agent recombinant tissue plasmino-
gen activator (rt-PA) is the only widely approved drug
available.2,3 A substantial proportion of patients do not
meet inclusion criteria for rt-PA, and the drug carries
an increased risk of hemorrhagic transformation.2,3

Thus, additional therapeutic approaches, complemen-
tary to rt-PA, would have substantial clinical benefit.

Nitrone compounds such as a-phenyl-N-tert-butyl
nitrone (PBN) and its congener 2,4-disulfophenyl-N-
tert-butyl nitrone (NXY-059) are protective in rodent
and primate models of stroke.4–9 PBN is a small, water-
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soluble molecule (Figure 1) with substantial brain pene-
tration. Nitrone compounds ‘‘trap’’ and stabilize react-
ive free radical species that are a pathogenic factor in
ischemia-induced cell injury.1 As PBN (like NXY-059)
is in fact a relatively weak free radical trapping
agent,10–12 we hypothesized that some other mechanism
might be involved in the protective action.

Serum and glucocorticoid inducible kinase-1 (Sgk1;
MW 50 KDa) is a cytoplasmic serine-threonine kinase
associated with cell survival.13,14 Developmental studies
suggest an important role for Sgk1 in vasculogenesis15

and organismal lifespan.16 A homolog of Akt, Sgk1 is
expressed in brain tissue of rodents,13,17,18 primates19

and humans.20 In vitro, Sgk1 protects neuronal primary
cultures from apoptotic stimuli, the mechanism being
(at least in part) sequestration of the Forkhead-like
transcription factor FOXO3a.21,22 Further evidence
for the pro-survival role of Sgk1 in brain tissue comes
from studies of behavioral learning,23 brain tissue bio-
chemistry20,21,24 and neuropathological examination of
brains of older people.20 Others have demonstrated
Sgk1 expression and function in brain vascular
tissue25 and in oligodendrocytes.26

We have previously reported differences in Sgk1
expression and activity in brains of older people with
Alzheimer’s disease, relative to age-matched control
brains.20 Here we tested whether acute PBN treatment
changes Sgk1 expression in rodent brain tissue and
whether Sgk1 participates in the brain protective
action of PBN in experimental focal ischaemia.

Materials and methods

Animals

Adult male Wistar rats (345–360 g) were obtained from
Harlan Laboratories, UK. Sgk1�/� mice were pro-
duced as described27 (see Supplementary Methods for
further details). As homozygous Sgk1�/� offspring were
rare on heterozygote matings, sister colonies of Sgk1�/�

and Sgk1þ/þ strains were established. Each litter was
genotyped to confirm colony integrity (see
Supplementary Figure S1). Animals were housed
under controlled environmental conditions (tempera-
ture 21�C, 12-h light/dark cycles 07.00–19.00) within
St George’s Biological Research Facility. They were

Figure 1. Chemical induction of Sgk1 in brain tissue following systemic treatment with PBN. (a, b) Systemic injection of PBN

(100 mg/kg i.p.) induced brain Sgk1. (a) Microarray data show up-regulation of Sgk1 expression in rat brain 4 h after injection of PBN,

relative to saline-injected rats (n¼ 5, 5, horizontal bars show the group mean). Inset: structure of PBN. (b) Quantitative RT-PCR data

confirmed up-regulation of Sgk1 expression in rat brain (relative to the housekeeping gene 18S). (c,d) Systemic injection of PBN

augmented brain Sgk1 activity in mice. (c) Representative blots of mouse brain lysates, immunoblotted using the p3-NDRG1 antibody

raised against the phosphorylated decapeptide repeat in NDRG1 or total NDRG1. Wild-type mice were injected either with PBN

(100 mg/kg i.p. ‘‘P’’) or with saline vehicle (‘‘V’’) and brains sampled at 2, 4 or 6 h post-injection. (d) Semi-quantitative densitometry

showing phosphorylation of the Sgk1-specific p3-Thr motif in NDRG1. Phosphorylation was augmented at 6 h post-injection of PBN,

relative to vehicle-injected mice. Symbols show mean� 1SD. *p< 0.05, **p< 0.01, ***p< 0.001.
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provided ad libitum with water and standard chow.
Young adult male mice aged 8–10 weeks were used
for all experiments. For PBN injections, PBN (Sigma-
Aldrich, Poole, UK) was dissolved in 0.9% saline at
20mg/ml (2% w/v; equivalent to 110 mM) on the day
of use. Animals were injected with PBN (100mg/kg i.p.)
or an equivalent volume of saline.

For generation of Sgk1�/� mice, all experimental
protocols were approved by the Institutional Animal
Use and Care Committees of Dartmouth Medical
School, Lebanon, NH, and all procedures adhered to
the American Physiological Society’s ‘‘Guiding
Principles in the Care and Use of Animals’’.27 At the
St George’s site, all procedures were approved by the St
George’s University of London Ethical Review Board
for Animal Use and were performed in accordance with
the Animals (Scientific Procedures) Act 1986 and in
compliance with EU Directive 63-2010. The data are
reported in accord with ARRIVE guidelines.28

Middle cerebral artery occlusion

Transient middle cerebral artery occlusion (MCAo;
60-min duration)29 was carried out in young adult
male Sgk1þ/þ and Sgk1�/� mice using a filament
method. General anesthesia was induced with isoflur-
ane (2%) in 1:1 Oxygen:N2O and maintained with
1.5% isoflurane. Within a litter, male mice were rando-
mized using a random number table to receive PBN or
saline vehicle. Injections were administered (PBN or an
equivalent volume of saline vehicle) 5min after induc-
tion of MCAo, by an individual blind to treatment. In
‘‘sham’’ control animals, the common carotid artery
was exposed but not ligated (n¼ 5). Neurological deficit
was assessed by an individual blind to treatment on a
28-point score (including body symmetry, gait, ability
to climb, circling behaviour and whisker responsive-
ness).30 Neurological score was measured prior to
MCAo and then at 24 h and 48 h post-occlusion. At
48 h post MCAo, animals were killed by schedule 1
approved method (cervical dislocation). Brains were
rapidly removed and sliced at 1mm in a matrix.
Infarct volume was estimated using TTC vital stain
(direct method)29 by an individual blind to treatment
and genotype (example in Figure S1). Animals sub-
jected to sham surgery exhibited no behavioural deficit
and no detectable lesion (n¼ 5; not shown).

Microarray analysis

Male Wistar rats were injected at time 0min and
120min with either saline or PBN (n¼ 5 per group).
Two doses were used to allow for the plasma half-life
of PBN (terminal half-life in rat �2 h).31 At 240min,

animals were killed by cervical dislocation, brains rap-
idly removed, cerebella discarded and cerebral hemi-
spheres frozen in liquid nitrogen. Whole hemispheres
were homogenized in Trizol, total RNA extracted and
cleaned using RNeasy columns (QIAGEN GmbH,
Hilden, Germany). Individual samples were labelled,
hybridized to U34A genechip microarrays, washed
and scanned in accordance with the manufacturer’s
protocols (Affymetrix UK Ltd., High Wycombe,
UK). The Sgk sequences (probeset L01624, ID 81963)
on this array were specific for rat Sgk1.

Quantitative RT-PCR

For rat brain lysates, total RNA was converted to
cDNA using random primers and Life Technologies
Superscript II. The cDNA was diluted (5 ng per ml)
and Taqman reactions performed with 20 ng cDNA
per well under standard conditions in 25 ml reaction
volume. Taqman probesets for rat Sgk1 and 18S ribo-
somal RNA were obtained from Applied Biosystems,
Paisley, UK (Rn00570285_m1 and #4310893E, respect-
ively). For mouse brain lysates, total RNA was isolated
from cerebra of young adult male mice from the Sgk1þ/
þ and Sgk1�/� colonies. Whole cerebral hemispheres
were homogenized and passed through
QIAshredderTM columns (QIAGEN GmbH, Hilden,
Germany). RNA was extracted using an RNeasy�

Mini kit (QIAGEN GmbH, Hilden, Germany). Total
RNA (500 ng) was converted to cDNA using a
Precision Nanoscript reverse transcription kit with
random primers (Primerdesign Ltd, Southampton,
UK). Amplification reactions were performed in a 20-
ml reaction volume containing 250 ng cDNA for Sgk3
and Sgk1 assays, and 25 ng cDNA for the housekeeping
gene Gapdh, using Taqman� Universal mastermix with
uracil-N-glycosylase (Applied Biosystems, Paisley,
UK). Taqman� expression assays for mouse Sgk3
(assay # Mm01227735_m1), Sgk1 (Mm00441387_g1)
and gapdh (Mm99999915_g1) were purchased from
Applied Biosystems-Life Technologies, Paisley, UK.

Antibodies

Polyclonal anti-NDRG1 was generated in sheep against
full length human NDRG1 and antigen-affinity puri-
fied.32,33 A sheep antibody that recognizes NDRG1
phosphorylated at Thr346, Thr356 and Thr366 (p3-
NDRG1) was raised against the nonapeptide
RSRSHpTSEG, whose sequence is common to all
three phosphorylation sites, and was antigen-affinity
purified.32 Rabbit polyclonal anti-Sgk1 (S-5188) was
from Sigma-Aldrich (Poole, Dorset, UK), characterized
in our previous report.20 Rabbit polyclonal anti-GFAP
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(Z-0334) and mouse monoclonal anti-CD31 (clone
JC70A) were from Dako (Ely, Cambs., UK).

Western blotting

Male Sgk1þ/þ mice were injected at time 0min and
120min with either saline or PBN (100mg/kg i.p.). At
2, 4 or 6 h (n¼ 2–4 per time-point) after the first injec-
tion, animals were killed by cervical dislocation, the
brain rapidly removed from the skull and the cerebral
hemispheres frozen in isopentane within liquid nitro-
gen. Samples were stored at �80�C for subsequent
lysis. For Western blots, tissues were lysed and proteins
separated by SDS-PAGE as described previously.20,33

Lysis buffer contained (mM): 50 Tris-HCl pH 7.4, 150
NaCl, 50 NaF, 2 EDTA, 5 EGTA, 10% v/v glycerol,
1% v/v Triton X-100, supplemented just before use
with 1mM PMSF and 1% v/v protease inhibitory cock-
tail (P-2714, Sigma-Aldrich, Poole, UK). Lysates were
run on SDS-PAGE gels and transferred to PVDF
(0.45 mm; Millipore, UK). Membranes were blocked
for 60min with Tris-buffered saline with 0.1% v/v
Tween-20 (TBS-T) containing virtually fat-free milk
powder (5% w/v; TBS-TM). Identical blots were
exposed to NDRG1 (1:6,000) or p3-NDRG1 antisera
(1:3,000), diluted in TBS-TM and applied overnight at
4�C, the latter in the presence of 0.5mg/L depho-
sphorylated immunogenic peptide, to reduce non-speci-
fic binding to non-phosphorylated NDRG1.32 Rabbit
anti-sheep IgG secondary antibody (1:10,000, Sigma-
Aldrich, Poole, UK) was applied for 60min at room
temperature. Proteins were visualized by chemilumines-
cence (ECLþ kit, GE Healthcare, Amersham UK) and
semi-quantitative densitometry analysis carried out
using ImageJ software (http://rsb.info.nih.gov/ij/). The
ratio of p3-NDRG1/total NDRG1 was determined for
each sample.

Multiple labelling immunofluorescence

Coronal brain sections were cut on a cryostat (15mm
thickness) and fixed in 100% ethanol at �20�C for
20min then washed in PBS-T. Non-specific binding
was blocked by incubation with 3 % w/v BSA
(Jackson Immunochemicals) in PBS-T for 1 hour at
room temperature. Sections were then incubated over-
night with primary antibodies in a humidified chamber
at 4�C.

Primary antibodies were diluted in 3% w/v BSA in
PBS-T: Sgk1 (diluted 1:200), GFAP (1:200), CD31
(1:30). Sections were incubated with appropriate sec-
ondary antibodies conjugated to Alexa488 or
Alexa546, diluted 1:200 in 3% BSA in PBS-T at room
temperature for 1 h. After nuclear labeling with DAPI
(30min, 0.3 mM in PBS-T), sections were mounted and

photographed with a Zeiss LSM 510Meta confocal
microscope. Red fluorescence was viewed with 543 nm
excitation and 545–575 nm emission bandwidth. Green
fluorescence was viewed with 488 nm excitation and
505–530 nm emission bandwidth. DAPI was viewed
with 364 nm excitation and 385–470 nm emission band-
width. Neighboring sections were processed identically
in parallel, but with omission of primary antibodies.

Human tissue

Immunohistochemical labelling for Sgk1 was examined
in human brain tissue from individuals with acute ische-
mic lesions (deathwithin 2–6 days, n¼ 6, 4M/2F, age 31–
71 y). All human tissue was from the Oxford Brain
Collection, John Radcliffe Hospital, Headington,
Oxford. All tissue samples were donated following writ-
ten informed consent by donors or their next of kin. This
study had approval of Local Research Ethics Committees
and the UK National Research Ethics Service.

For immunohistochemistry, paraffin wax-embedded
sections (6mm) were de-waxed and processed for stand-
ard immunohistochemical staining.20 After exposure to
H2O2 (3 % v/v) to abolish endogenous peroxidase
activity, sections underwent high-pressure heat-induced
antigen retrieval (30 s, 120�C) in Tris-citrate-EDTA
buffer, pH 7.8. Non-specific binding was blocked with
bovine serum albumin (BSA, Jackson
Immunochemicals; 3% w/v) in phosphate-buffered
saline containing 0.1% v/v Triton-X100 (PBT). Sgk1
antibody (1:20,000) or MBP (1:1000) in PBT containing
3% BSA were applied to tissue sections overnight
(4�C). We have previously characterized the Sgk1 anti-
body by immune-depletion.20 Peroxidase-conjugated
secondary reagent (Envision kit�, Dako-Cytomation,
Ely, UK) was applied for 60min at room temperature.
Antibody labeling was visualized using diaminobenzi-
dine (DAB) chromagen, enhanced with copper II sul-
phate, and nuclei counterstained with Mayer’s
haematoxylin. Sections were examined on a Zeiss
Axioplan-2 microscope driven by Axiovision software
(version 4.7).

Power calculation and statistical analysis

Based on our own and others’ previous data, we conser-
vatively assumed a s/mean ratio of 0.25 for studies of
mRNA or protein abundance in native tissue34–36 and
0.35 for behavioural tests.29,37 From a standard power
calculation, to detect differences between groups of at
least 50% (a¼ 0.05, b¼ 0.80), we estimated a required
group size of at least four/group for biochemical assays
and eight/group for behavioural tests.

Differences in continuous variables (mRNA, protein
abundance, infarct volume) were analyzed using
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Student’s t-test or ANOVA as appropriate. A p-value
less than 0.05 was considered significant. For differ-
ences in categorical variables (neurological scores), an
equivalent non-parametric test (Kruskal–Wallis) was
used. The experimental unit was considered to be a
single animal. Post-surgical deaths (n¼ 4 in total)
were excluded from statistical analyses.

Results

Four hours after systemic administration of PBN or
saline vehicle to adult rats, microarray analysis revealed
altered expression by a factor of at least 2.0 in 11 genes
(not shown) in brain tissue of PBN-treated rats, relative
to saline-treated animals. The greatest change was in
Sgk1 (4.7-fold up-regulation; p¼ 0.0015, Figure 1).
Subsequent quantitation with RT-PCR confirmed
significant up-regulation of Sgk1 in brain tissue of
PBN-treated rats (Figure 1; 6.1-fold increase in Sgk1,
normalised with respect to the housekeeper 18 S;
p¼ 0.00046).

As an assay of Sgk1 enzymatic activity, the degree of
phosphorylation of an Sgk1-specific triple phospho-Thr
motif in the cytoplasmic protein NDRG1 was quanti-
fied (p3-NDRG1).20,32 Over a 6-h time course, the
fraction of p3-NDRG1, relative to total NDRG1, in
mouse brain lysates was greater in PBN-injected mice
than in saline-injected mice (p¼ 0.049 relative to drug
treatment, p¼ 0.088 relative to time, two-way
ANOVA; Figure 1). At 6 h post injection, the p3-
NDRG1/total NDRG1 fraction was 2.97 fold greater
in PBN-injected than in saline-injected mice (p¼ 0.014).
In brain lysates from Sgk1�/� mice, the degree of
p3-NDRG1 phosphorylation was very low (not
shown) indicating that the assay is Sgk1-specific.32,38

These data indicate an increase in Sgk1 expression
and enzymatic activity in cortical tissue 4–6 h after a
systemic injection of PBN.

To test whether Sgk1 induction is required for PBN-
dependent brain protection, Sgk1þ/þ and Sgk1�/� mice
were subjected to transient MCAo (60min). PBN
improved behavioural outcome, relative to saline, in
Sgk1þ/þ mice at 48 h post-MCAo but not in Sgk1�/�

mice (p¼ 0.007, p¼ 0.497 respectively; Figure 2). PBN
reduced lesion size at 48 h, relative to saline injection, in
Sgk1þ/þ mice (0.16-fold reduction; Figure 2) but not in
Sgk1�/� mice, (p¼ 0.0025 for drug effect, p¼ 0.72 for
genotype; Figure 2). Saline-treated Sgk1�/� mice were
not significantly different from saline-treated Sgk1þ/þ

mice in terms of behavioural outcome (p¼ 0.889) or
infarct size (p¼ 0.217, Figure 2). Four post-surgical
mortalities were excluded from these analyses (1
Sgk1þ/þ saline-treated, 2 Sgk1þ/þ PBN-treated, 1
Sgk1�/� saline-treated; 8 % overall mortality). All
four animals failed to recover consciousness following

general anaesthesia (determined by paw pinch and
whisker stimulation) and were humanely terminated
within the first few hours after MCAo surgery. These
findings support the cerebro-protective action of PBN
in wild-type mice and suggest that this action may be
lost in mice lacking Sgk1.

Immunohistochemical labelling of Sgk1 in uninjured
mouse cortical tissue showed widespread cellular label-
ling, with a primarily nuclear location (Figure 3(a)).
Cortical neurones were strongly positive for Sgk1, as
in our previous studies in human cortical tissue.20 Sgk1
labelling showed little overlap with markers for astro-
cytes (GFAP) or for endothelial cells (CD31) (Figure
3(a) to (d)). In mice examined at 48 h post-MCAo, Sgk1
immunolabelling was sparse within lesional tissue of the
ipsilateral cerebral cortex (Figure 3(e)). Cellular Sgk1
labelling at an equivalent location within the contralat-
eral hemisphere remained robust (not shown). In small
arteries adjacent to the MCAo-induced lesion, Sgk1-
negative vascular cells were evident (Figure 4(a) to
(d)). A similar finding was observed in human brain
tissue adjacent to an acute ischemic lesion. Post
mortem tissue was sampled from people who died
shortly after a focal ischemic stroke (up to six days
post-event, n¼ 6). In small arteries within the peri-
lesional area, Sgk1-negative cells were evident within
the vessel wall (example in Figure 4(e) and (f)).

As previous studies showed significant expression of
the Sgk1 homologue Sgk3 in brain tissue,18,39 it seemed
plausible that Sgk3 might compensate for Sgk1 in
Sgk1�/� mice. Quantitative RT-PCR revealed no dif-
ference in Sgk3 mRNA levels in Sgk1�/� animals rela-
tive to Sgk1þ/þ mice. The Sgk3/Gapdh ratio was
7.6� 1.5� 10�4 in Sgk1þ/þ mice, 11.1� 3.7� 10�4 in
Sgk1�/� mice (mean�SD, n¼ 9, 6, respectively;
p¼ 0.33, Student t-test. See Supplementary Figure
S2). The Sgk1/Sgk3 mRNA expression ratio in
Sgk1þ/þ mouse brain was 10.6� 4.06 (n¼ 4, Figure
S2). In Sgk1�/� animals as expected, Sgk1 mRNA
was undetectable (n¼ 4). These findings suggest that
Sgk3 expression does not compensate for Sgk1 in
Sgk1 null mice.

Discussion

In agreement with our results, other laboratories have
observed brain protection by PBN in transient focal
ischemia,6,8,9 as reviewed elsewhere.5 Here we observed
rapid augmentation of Sgk1 in rodent brain tissue, fol-
lowing acute systemic administration of PBN. We
therefore examined whether Sgk1 participates in
PBN-mediated neuroprotection in vivo.

We found that the well-established brain protective
effects of PBN (in terms of lesion size and behavioural
deficit) were absent in Sgk1�/� mice. This suggested
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that Sgk1 may play a role in the brain protective action
of PBN. From the established cell survival actions of
Sgk1, we hypothesized a worse outcome for Sgk1�/�

than for Sgk1þ/þ mice following focal ischaemia.
Contrary to this prediction, saline-treated Sgk1�/�

mice did not have significantly worse behavioral out-
come and greater lesion size relative to saline-treated
Sgk1þ/þ mice. In terms of lesion size (Figure 2(c)),
there was an unexpected trend for smaller ischaemic
lesions in the Sgk1�/�animals (relative to Sgk1þ/þ).
Similar paradoxical findings are reported from another
laboratory, where acute treatment with Sgk1 inhibitor
drugs (GSK650394 and EMD638683) was examined.40

Animals injected with Sgk1 antagonists (directly into
the brain, i.c.v.) had smaller infarct volume after tran-
sient MCAo than did vehicle-injected mice.40

We observed widespread immunohistochemical
labelling for Sgk1 in mouse cerebral cortex, with pro-
nounced nuclear labelling (Figure 3). Cortical neurones
were positive for Sgk1, while astrocytes and vascular
endothelial cells showed relatively little labelling. This

pattern is in agreement with our previous findings in
human brain tissue.20 Our immunohistochemistry data
suggest that Sgk1 is lost from the ischemic lesion tissue
(Figure 3(e)).

We examined Sgk1 expression in the peri-lesional
region adjacent to acute ischemic lesions of rodents
and human stroke patients. Sgk1-negative vascular
cells are evident in small arteries adjacent to the ische-
mic lesion (Figure 4).

We hypothesized that up-regulation of the homo-
logue Sgk3 might compensate for Sgk1 in Sgk1�/� ani-
mals.13,15 Although Sgk3 is expressed on a different
chromosome from Sgk1,39 Sgk3 has similar biochem-
ical attributes and tissue distribution to Sgk1.13,39 (The
third member of this family, Sgk2, is not expressed in
brain tissue39,41). We found that Sgk3 mRNA expres-
sion in Sgk1þ/þ mouse brain was approximately one-
tenth (0.094) that of Sgk1. Brain Sgk3 mRNA abun-
dance was not different in Sgk1�/� mice, relative to
Sgk1þ/þ animals, suggesting that compensatory Sgk3
upregulation had not occurred in Sgk1�/� animals.

Figure 2. Effects of transient focal ischemia and acute PBN treatment in Sgk1þ/þ and Sgk1�/� mice.

(a) Neurological score before, and at 24 or 48 h after transient focal ischemia (60 min middle cerebral artery occlusion, MCAo). Mice

were randomly allocated to PBN (100 mg/kg) or saline, administered intra-peritoneally in a blinded fashion, 5 min post-MCAo. Symbols

show median score and bars show 95% confidence interval (one bar only shown for clarity). (b) At 48 h post-MCAo PBN-treated

Sgk1þ/þ mice (þ/þ PBN) exhibited less neurological deficit than saline-treated WT (þ/þ saline; n¼ 12, n¼ 15, respectively; p< 0.01).

PBN-treated Sgk1�/� mice (�/� PBN) had no difference in neurological deficit relative to saline-treated Sgk1�/� mice (�/� saline;

n¼ 12, n¼ 9, respectively). Horizontal bars show the median value for each group. (c) PBN-treated Sgk1þ/þ mice exhibited smaller

lesion volume relative to saline-treated Sgk1þ/þ (p< 0.01). There was no other significant difference among groups. In panel c,

horizontal bars show the mean value for each group. **p< 0.01, NS: not significant difference.
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The proposed mechanism of action of PBN-
mediated brain protection is free radical trapping.
Data derived from several experimental approaches
demonstrate that PBN is in fact a weak radical trapping

agent.10–12 Based on the present data, we suggest that
chemical induction of Sgk1 may be an alternative
mechanism by which PBN exerts its effects in animal
models of focal cerebral ischemia. We speculate that

Figure 3. Immunohistochemical labelling of Sgk1þ/þ mouse cerebral cortex.(a) Robust cellular labelling for Sgk1 (green) is evident in

cerebral cortical tissue from an unlesioned mouse. Cells within the cortical pyramidal layer are clearly labelled. There is relatively little

overlap with the astroglial marker, GFAP (red). (b) As a negative control, a neighbouring section treated identically except for omission

of primary antibodies, shows little non-specific labelling. (c, d) Higher magnification images confirm little overlap of Sgk1 labelling

(green) with the astrocyte marker GFAP (panel C, red) or with an endothelial cell marker, CD31 (d, red). (e) Cortical tissue in a

mouse at 48 h after MCAo. Ipsilateral cortical tissue within the ischaemic lesion. Astrocytic cells labelled with GFAP (green) are

evident within the lesional area. Sgk1 labelling (red) is sparse. In all panels, nuclear chromatin is labelled with DAPI (blue). Scale bars

20 mm (a–b, e) or 10mm (c–d).
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Figure 4. Sgk1-negative vascular cells adjacent to ischaemic lesions in rodent and human brain. (a–d) cerebral cortex, two days post-

MCAo. (a) Cortical tissue immunolabelled for myelin basic protein (MBP, brown). Loss of MBP clearly delineates the ischaemic lesion

(L). (b) Neighboring section immunolabelled for Sgk1 (brown). Nuclear chromatin is counterstained with hematoxylin (blue). Nuclear

Sgk1immunoreactivity is widespread. Sgk1 is absent from some vascular cells (arrowheads) within and adjacent to the ischemic lesion

(L). (c) High magnification view of a small penetrating artery, clearly showing unlabeled vascular cells (example marked with arrow-

head). (d) A negative control section treated identically but without primary antibody.(e–f) Acute ischemic lesion in human cerebral

cortex within the left MCA territory, four days post-stroke (male, aged 45 y). (e) In a haematoxylin-eosin-stained section, the ischemic

lesion (L) is seen as pale, less eosinophilic than surrounding peri-lesional tissue. A small penetrating artery in the peri-lesional area is

marked (arrowhead). (f) Neighboring section immunolabelled for Sgk1 (brown). Again, nuclei are strongly positive for

Sgk1immunoreactivity. Sgk1 is sparse or absent from some cells within the wall of a small artery (landmark vessel from panel E). (g)

Sgk1-negative cells are clearly seen in a higher magnification image (arrowheads). (h) As a control for the secondary antibody

specificity, a neighbouring section immunolabelled with a different primary antibody (the astrocyte marker GFAP) shows a different

pattern of immunoreactivity. Scale bars: 20mm (c, g), 1 mm (panel E), 100 mm (a, b, d, f, h).
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PBN drives rapid Sgk1 induction in brain tissue (either
directly or through another rapid chemical messenger).
Sgk1 is a short-lived protein, with cytoplasmic half-life
�30min (though the brain-specific isoform Sgk1.1 has
a longer half-life of 180min).17,36,42 Our data suggest
that Sgk1 is depleted within the ischemic lesional area
at 48 h post-ischaemia (Figure 3). PBN-dependent Sgk1
induction within ischaemic brain tissue may promote
cell survival (as previous experimental studies indi-
cate)20–22,24 resulting in less damage to functional net-
works, observed as milder behavioural impairment.
Others have suggested alternative mechanisms of
nitrone action,5 including endothelial protection,43

blood–brain barrier augmentation44 and reduced
leukocyte adhesion.45

Transient augmentation of brain Sgk1 could be
beneficial in stroke and other acute neurological
states. In human populations, the SGK1 gene was asso-
ciated with risk of ischemic stroke (OR 1.29) in two
independent Scandinavian cohorts.46 The association
survived adjustment for hypertension and diabetes mel-
litus, indicating a cerebrovascular action.46 PBN is a
small, water-soluble molecule with substantial brain
penetration. The adverse effects are mild over a wide
dose-range in experimental species, including rats, mice,
gerbils and pigs.47 Potential limitations to therapeutic
Sgk1 augmentation (even if only transient) are the
important cellular actions of Sgk1 in other tissues,
including large arteries25 and renal tissue.13

Our study has several limitations. First, we lack
mechanistic evidence linking PBN to Sgk1 expression.
This is an area for future experimental study. Second,
we administered the drug immediately (within 5min)
following onset of brain ischaemia. While many previ-
ous experimental studies have followed this dosing
timescale, in order to maximise the likelihood of detect-
ing a bio-effect, it clearly does not reflect a realistic
therapeutic scenario in clinical stroke. Third, the germ-
line Sgk1�/� mice we used may be subject to develop-
mental effects of Sgk1 deletion.15 While inducible null
animals would allow adult-onset gene deletion, such
animals were not available to us.

In conclusion, our results suggest that rapid chem-
ical induction of cerebral Sgk1 may follow systemic
treatment with PBN. This mechanism may play a part
in PBN-mediated brain protection.
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