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Background. A key mechanism of obesity involves dysregulation of metabolic and inflammatory markers. This study aimed to
identify salivary biomarkers and other factors associated with obesity using an ensemble data mining approach. Methods. For a
random cohort of over 700 subjects from 8137 Kuwait children (10.00 + 0.67 years), four data mining methods were applied to
identify important variables associated with obesity, including logistic regression by lasso regularization (Lasso), multivariate
adaptive regression spline (MARS), random forests (RF), and boosting classification trees (BT). Each algorithm generated a variable
importance rank list, based on an internal cross-validation procedure. An aggregated importance ranking was constructed by
averaging the rank ordering of variables from individual list, weighted by the classification performance of respective models.
Subsequently, the subset of top-ranking variables that were identified with at least three algorithms was evaluated by classification
performance using receiver operating characteristic (ROC) analysis with bootstrap percentile resampling. Results. Obesity was
defined either by the waist circumference (OBW) or by the body mass index (BMI) (OBWHO). We identified C-reactive protein
(CRP), insulin, leptin, adiponectin, as salivary biomarkers associated with OBW, plus a clinical feature fitness level. A similar set of
biomarkers was identified for OBWHO, but not including leptin. Tree-based clustering analysis revealed patterns that were sig-
nificantly different between the OBW and OBWHO subjects. Conclusion. A data mining approach based on multiple algorithms is
useful for identifying factors associated with phenotypes, especially in cases where relationships are not salient, and a consensus from
multiple methods can help produce a more generalizable subset of features. In this case, we have demonstrated that evaluation using
the waist circumference includes association with high levels of salivary leptin, which is not seen with evaluation by BML

1. Introduction

The Kuwait children’s study is a large-scale study aimed at
evaluating the etiology of obesity and development of
metabolic syndrome in over 8,000 Kuwait children [1, 2]. It
has a massive data collection, including anthropometric and
clinical features, dietary survey, and molecular profiling of
salivary protein biomarkers, metabolites, as well as microbes.
Like other collection of complex datasets with hundreds of
variables in large-scale cohort studies, it becomes a challenge
to find associations between covariates and phenotypes [3].
The parametric modeling approach based on preformulated
hypothesis is limiting, as it is unable to handle a large
number of covariates simultaneously and search efficiently
for unanticipated associations.

An alternative approach to the conventional hypothesis-
driven analysis is data mining, which is a data-driven process
to discover novel relationships in large quantities of data
without any a priori hypothesis [4]. Data mining algorithms
are nonparametric, rendering their applicability to various
types of data, whose different characteristics can be tuned to
by different algorithms. They are able to deal with large
number of variables, and sometimes detect not only cova-
riates with a strong main effect but also those with significant
interaction effects but minimal main effects, which may not
be possible in a conventional model. Usually, they can
handle complex relationships between covariates and the
outcome, accounting for nonlinear association in various
ways. Furthermore, a salient feature in this type of approach
is cross-validation procedure, which addresses the issue of


mailto:pscshi@gmail.com
mailto:mgoodson@forsyth.org
http://orcid.org/0000-0002-0729-5492
http://orcid.org/0000-0003-4225-9160
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9570218

generalization of models across samples, and avoids over-
fitting, a common problem in parametric modeling.

The present study focused on the salivary protein bio-
marker dataset, which was a randomly selected cohort de-
rived from the entire dataset [1]. Development of obesity in
children increases the risk of developing cardiovascular
disease (CVD), type-2 diabetes, and other chronic diseases in
later life, which, to a large extent, are mediated by adipokines
and cytokines released from the adipose tissue [5, 6].
Therefore, biomarker studies enable us to gain insights into
the etiology of obesity-related diseases, especially pathways
leading to various pathologies. Some previous studies ex-
amined the relationship between these factors and obesity-
related conditions in adolescents, mainly by association
studies with hypothesis-based modeling using prespecified
variables [7]. Our study employed a data-driven approach to
identify crucial salivary biomarkers associated with obesity.
We applied four algorithms to our dataset: logistic re-
gression by lasso regularization (Lasso) [8], multivariate
adaptive regression spline (MARS) [9], random forests (RF)
[10], and boosting classification trees (BT) [11].

2. Materials and Methods

2.1. Data Source. The dataset was a random cohort of 744
subjects selected from the entire population (n=8137) of
Kuwait children’s study, which had all the anthropometric
and clinical measures as well as saliva samples collected
between October 2, 2011 and May 15, 2012 [1, 2]. Biomarker
assays were performed on the saliva samples from the
random cohort using a multiplex bead platform (Luminex®
200, Austin, TX). The measured salivary biomarkers in-
cluded insulin, C-reactive protein (CRP), adiponectin,
leptin, IL-1p, IL-4, IL-6, IL-8, IL-10, IL-12P70, IL-13, IL-
17A, resistin, MMP_9, MPO, MCP-1, TNF-a, VEGF-A,
IEN-y, and ghrelin, of which IL-17A, IFN-y, and ghrelin
were not included in the analysis due to a significant portion
of missing values. Additionally, 18 samples with extreme
values in measurements were excluded from subsequent
analysis, based on their undue influence in an initial re-
gression model. The values of biomarkers were standardized
prior to analysis. Fitness was measured by heart rate ele-
vation following a standard exercise [1] and then binarized
using the median value from the original entire study
population.

Both outcome measures for obesity were transformed to
binary measures. Obesity was defined as having BMI
(OBWHO) or waist circumference (OBW) in the 951
percentile or higher within one’s age and gender group [12].

2.2. Data Mining Algorithms for Variable Selection.
Analysis of variable importance by lasso logistic regression
(Lasso), multivariate adaptive regression spline (MARS),
random forest (RF), and boosting classification trees (BT)
was conducted using Salford Predictive Modeler v7.0 [13].
To obtain the final model for variable selection, an internal
10-fold cross-validation procedure was employed in all
algorithms, except for random forest, which estimated its
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prediction error in the out-of-bag samples. Importance of
each variable was measured according to different schemes
in the respective method, which are defined as follows. In
lasso, the importance measure was represented by the
B-coeflicients of the resulting logistic regression model. In
MARS, as each variable was added to the model, reduction
of the general cross-validation (GCV) statistics was used as
the importance measure. In RF, the classification error
rates on the out-of-bag sample were recorded for individual
trees before and after permutation of a given variable, and
the importance measure was based on the difference be-
tween the two error rates averaged over all trees. In BT,
variable importance of a given variable was computed as
the cumulative sum of improvement in node purity from all
splits, across all trees up to a specific model size. Fur-
thermore, based on the importance measure for each al-
gorithm, the relative importance score was derived, which
was expressed by rescaling the importance so that the most
important variable on the top was denoted 100, and other
variables were scaled by their values relative to that of the
top one. In our study, we used a cutoff value of 0.2 to
determine whether a variable was identified as an impor-
tant factor.

2.3. Aggregation of Variable Rank List. 'To obtain a consensus
from these four algorithms, aggregated rank ordering was
created by the weighted average of individual ranking of each
variable, with classification performance of the model that
generated its ranking as the weight factor. Thus, for variable j,
its aggregated rank R is expressed as R{ =Y w(R,), where
i denotes the model, w the weight of model i as defined by
AUGC, and R; its rank in model i. Meanwhile, if one variable
was selected by at least three algorithms, it was considered as
the winner of the majority vote.

2.4. Evaluation of Classification Performance and Clustering
Analysis. To evaluate the classification performance of the
subsets of top-ranking variables in the aggregated rank
ordering, ROC analysis was conducted using the biomarker
analysis function of an online comprehensive tool suite
MetaboAnalyst [14]. A 95% confidence interval was ob-
tained for the ROC curve from bootstrap percentile
resampling [15].

A clustering analysis was carried out based on the in-
ternal distance measures in random forest, available from
Salford Predictive Modeler v7.0 [13]. This measure of
proximity is the fraction of available trees, in which a pair of
subjects landed on the same terminal node, out of the total
number of trees. A multidimensional scaling (MDS) pro-
cessing of the full proximity matrix generated a MDS display
of the distance between all data points, which provided
evidence of clustering.

3. Results

3.1. Identification of Factors Associated with Obesity as Defined
by Waist Circumference or BMI. 'The cutoff value of 0.20 was
used for selection of important factors from the variable
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importance list. For OBW, 5 factors were identified with
lasso (insulin, CRP, fitness, adiponectin, and leptin), 6 with
MARS (CRP, insulin, adiponectin, fitness, VEGF, and lep-
tin), 3 with RF (CRP, insulin, and leptin), and 5 with BT
(CRP, insulin, adiponectin, leptin, and fitness), of which,
insulin, CRP, and leptin were selected by all four algorithms,
while adiponectin and fitness by three algorithms (Table 1).
As for OBWHO, 4 factors were identified with lasso (insulin,
CRP, adiponectin, and fitness), 6 with MARS (CRP, insulin,
adiponectin, sex, VEGF, and fitness), 3 with RF (CRP, in-
sulin, and adiponectin), and 3 with BT (CRP, insulin, and
adiponectin), of which CRP, insulin, and adiponectin were
selected by all for algorithms (Table 1). Notably, leptin, a
marker identified by all methods for OBW, was not chosen
by any method for OBWHO. In terms of the classification
performance of the models that generated the individual
variable ranking, MARS (AUC=0.837 and 0.853, re-
spectively) was the top performer, while lasso was the least
robust (AUC=10.787 and 0.816, respectively).

Figure 1 illustrates the distribution of aggregated ranking
of all variables, as calculated by averaging the rank ordering
from all the rank lists, weighted by the classification per-
formance of the models from which the individual variable
ranking was derived. As shown, the top-ranking factors for
OBW were CRP, insulin, adiponectin, followed by leptin and
fitness, all of which were selected by a majority of the al-
gorithms, as indicated in red. For OBWHO, on the other
hand, the top ones were CRP, insulin, and adiponectin,
selected by all algorithms. Leptin, a top feature for OBW,
ranked 10th for OBWHO.

3.2. Subset of Top-Ranked Variables as Evaluated by Classi-
fication Performance. From the aggregated rank list, a subset
of top-ranking variables that obtained a majority vote
(i.e., identified by at least three algorithms) was used to
evaluate their classification performance, with support
vector machine (SVM) [8] as the classifier, using AUC from
ROC analysis as the test metric. For OBW, the top 5 factors
having a majority vote were tested (CRP, insulin, adipo-
nectin, leptin, and fitness), achieving an AUC of 0.808 (95%
CIL: 0.751-0.856) (Figure 2(a)). For OBWHO, the top 3
factors having a majority vote were tested (CRP, insulin, and
adiponectin), achieving an AUC of 0.82 (95% CI: 0.782-
0.862) (Figure 2(b)).

3.3. Clustering of Obese Subjects Based on the Salivary Bio-
markers and Clinical Measures. The MDS plot generated
from the tree-based proximity measures, based on bio-
markers and other covariates, showed clustering of the obese
subjects, for OBW as well as OBWHO (Figure 3). In
Figure 3(a), obese subjects as defined by waist circumference
(blue dots) were mostly clustered in the upper right corner,
while the nonobese subjects were mostly dispersed every-
where, except for a small subset clustering on the left side.
For OBWHO, however, the pattern was quite different
(Figure 3(b)). Obese ones were clustered in a strip-like re-
gion to the right, while nonobese ones in a similar pattern to

the left, with some parts of the two overlapping in the
middle.

4. Discussion

Four data mining methods, logistic regression by lasso
regularization (Lasso), multivariate adaptive regression
spline (MARS), random forest (RF), and boosting classifi-
cation trees (BT), identified diverse sets of salivary markers
and other features associated with obesity, each generating a
rank ordering of selected variables according to their relative
importance. We used the ensemble idea for feature selection
[16, 17] to construct an aggregated ranking aimed at
obtaining a more robust subset, by averaging the ranking
from individual algorithms, weighted by the classification
performance of respective models that produced the rank-
ing. As a result, CRP, insulin, adiponectin, leptin, and fitness
emerged as the top-ranking factors identified with at least
three algorithms for OBW, while CRP, insulin, and adi-
ponectin were those for OBWHO. Finally, the above subset
of variables was evaluated by their classification performance
on phenotypes.

Instead of hypothesis-driven methods in search of as-
sociations involving parametric modeling and testing, we
used data-driven approaches that are more flexible. They can
handle large number of covariates which may be a limiting
factor for conventional regression models and deal with
other challenges from high-dimensional datasets such as
extensive correlation among covariates, complex in-
teractions among covariates, or nonlinear relationship be-
tween covariates and the response variable. For example, RF
is well suited to capturing variables with strong interaction
effect but minimum main effect, due to the increased
probability for interactions to be detected in diverse trees,
which would cause these interacting variables to be ranked
higher in variable importance. MARS, on the other hand, is
particularly suited to handling nonlinear associations, by
using the linear spline to approximate nonlinear relation-
ship. We explored an ensemble of four independent mul-
tivariate methods for variable selection, and it is reassuring
to find they reached a consensus in placing certain salient
variables on the top of the rank list, e.g., CRP, insulin, leptin
for OBW, and CRP, insulin, and adiponectin for OBWHO.
These salivary biomarkers correspond well to the established
circulating plasma biomarkers associated with obesity [6],
reflecting the metabolic aspect (e.g., insulin and leptin) as
well as the inflammatory aspect (e.g., CRP and adiponectin)
of the mechanism underlying obesity. However, no asso-
ciation was detected between obesity and salivary resistin,
whose plasma counterpart has been known to correlate with
obesity [6].

Variable selection is a process searching for a subset of
best features. Depending on strategies used to retain relevant
features, different learning algorithms may end up with
feature subsets that are different local optima of the complete
search space. Thus, by combining subsets from multiple
methods, we might be able to expand the search space and
yield a more robust feature subset to achieve better gen-
eralizability [16]. We adopted this ensemble idea for feature
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TaBLE 1: Important variables associated with OBW and OBWHO as identified by three algorithms.

Top-ranked variables* (in the order of relative

Methods for the two obesity measures AUC of respective classification models

importance)

Obesity (OBW)

Lasso Insulin, CRP, fitness, adiponectin, leptin 0.787
MARS CRP, insulin, adiponectin, fitness, VEGF, leptin 0.837
Random forest CRP, insulin, leptin 0.826
Boosting classification trees CRP, insulin, adiponectin, leptin, fitness 0.816
Obesity (OBWHO)

Lasso Insulin, CRP, adiponectin, fitness 0.816
MARS CRP, insulin, adiponectin, sex, VEGF, fitness 0.853
Random forest CRP, insulin, adiponectin 0.833
Boosting classification trees CRP, insulin, adiponectin 0.822

*Variables with relative importance scores >20%.
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FIGURE 1: Aggregated ranking of all variables derived from variable importance rank lists generated from Lasso, MARS, RF, and BT. The
variables in red indicate they were identified by at least three of the above algorithms (Vote as 1). For obesity as defined by (a) waist
circumference (OBW) and (b) BMI (OBWHO).

. 1.0 4
L0 0w
0.8 0.8 ~
) )
= 5 = 5 0.6
E & 0.6 § ke 7
Z -‘g‘ Area under the curve = -‘§ Area under the curve
8 & 04 (AUC) = 0.808 8 204 (AUC) = 0.820
g 95% CI 0.751 - 0.856 g 95% C10.782 - 0.862
0.2 0.2 +
0.0 0.0 4
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity (false positive rate) 1 - specificity (false positive rate)
(a) (b)

F1GURE 2: ROC analysis for classification performance using a subset of top-ranking variables from the aggregated rank list. The smooth
ROC was averaged from 100 bootstrap samples, which provided the bootstrap percentile confidence interval. Support vector machine
(SVM) was used as the classifier for obesity as defined by (a) waist circumference (OBW) and (b) BMI (OBWHO).
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FIGURE 3: Tree-based clustering of subjects who were obese (in blue) versus those who were not obese (in red), for obesity as defined by

(a) waist circumference (OBW) and (b) BMI (OBWHO).

selection, creating a combined rank ordering by linear ag-
gregation, in which the performance of the models gener-
ating individual ranking was allowed to influence the final
ranking. There has been a recent development of another
feature selection tool inspired by the ensemble idea, in-
tegrating eight feature selection methods [18]. Of note, this
approach incorporates three univariate methods and five
multivariate methods, of which four are variations from two
different implementations of random forest algorithm. We
believe that certain advantage could be gained if an ensemble
approach includes distinctively different multivariate
methods, as employed in our study.

It is interesting that we identified leptin as a top-ranking
factor for obesity defined by waist circumference, but not for
obesity defined by BMI. We know that waist circumference
is more closely correlated with visceral fat [19], which is
metabolically active where dysregulation of adipokine and
cytokines acts as a key mechanism in obesity-related con-
sequence, such as CVD [20-22]. Notably, salivary leptin has
been found to exhibit a correlation coefficient of 0.78 with
plasma level [23]. As leptin is a major adipokine, it follows
that OBW subjects defined by abdominal fat have a higher
average level of circulating leptin, which in turn leads to
higher salivary leptin. OBWHO, on the other hand, reflects
total body fat without regard to its distribution, thus
resulting in lower average level of circulating leptin which
leads to lower salivary leptin, dampening its correlation with
the phenotype defined by BMI. Moreover, there are other
issues that further confound the diagnosis of obesity mea-
sured by BMI, such as the cases of high muscularity, which
complicates diagnosis of childhood obesity using BMI due to
rapid body development [6]. Therefore, it is significant that
salivary leptin is identified as the salivary biomarker mainly
associated with OBW in children. As a side note, fitness,
measured by heart rate elevation following a standard ex-
ercise [1], which has implications for long-term cardio-
vascular function, is also identified as a top-ranking factor
for OBW.

The clustering pattern of obese subjects defined by these
two measures is also quite different as revealed by tree-based

clustering analysis. For OBW, the obese ones were close to
one another, forming a relatively tight cluster (Figure 3(a)).
For OBWHO, on the contrary, the obese ones dispersed
across a much wider space (Figure 3(b)). This indicates that
OBW subjects are relatively similar in terms of their profile
of these salivary markers, whereas OBWHO subjects are
much more varied. The clustering pattern from the OBWHO
group indicates a greater heterogeneity of this population,
with regard to the underlying mechanism of obesity, the
distribution of fat tissues, and perhaps even the accuracy of
obese status (e.g., highly muscular ones misclassified as
obese).

This analysis using salivary samples contributes to
biomarker studies in childhood obesity, which is not as
abundant as those in adult population due to the difficulty of
taking blood samples. Our findings suggest an importance of
leptin in evaluating obesity by the waist circumference of
children which does not appear when considering BMI
percentile. Since leptin is an adipokine that is generally
recognized as representing adipose tissue mass while BMI
cannot differentiate between fat and lean muscle mass
[6, 19], measurement by waist circumference is most rele-
vant to obesity. This is particularly true for 10-year-old
adolescents since their measurements were taken as pu-
berty was being initiated. These observations are clearly
consistent with the assumptions underlying the recom-
mendation by the International Diabetes Foundation to use
waist circumference to determine obesity of children [12].

5. Conclusion

There are a number of measures which have been used to
evaluate obesity in children. In this study using salivary
biomarkers, we have employed a data mining approach to
discriminate between the two most common obesity mea-
sures via waist circumference and BMI. Although both were
associated with salivary CRP, insulin, and adiponectin,
leptin was unique for obesity evaluated by waist circum-
ference. These results suggest that increased waist circum-
ference is more closely related to adipocyte signaling that



one would recognize as characterizing obesity and therefore
a more sensitive measurement of obesity in children than
BMIL
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