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Abstract
Objective: Accurate differentiation between epileptic seizures (ES) and psychogenic 
non‐epileptic seizures (PNES) can be challenging based on history alone. Inpatient 
video EEG monitoring (VEM) is often needed for a definitive diagnosis. However, 
VEM is highly resource intensive, is of limited availability, and cannot be under-
taken over long periods. Previous research has shown that time‐frequency analysis 
of accelerometer data could be utilized to differentiate between ES and PNES. Using 
a seizure detection and classification algorithm, we sought to examine the diagnostic 
utility of an automated analysis with an ambulatory accelerometer.
Methods: A wrist‐worn device was used to collect accelerometer data from patients 
during VEM admission, for diagnostic evaluation of convulsive seizures. An au-
tomated process, that involved the use of K‐means clustering and support vector 
machines, was used to detect and classify each seizure as ES or PNES. The results 
were compared with VEM diagnoses determined by epileptologists blinded to the 
accelerometer data.
Results: Twenty‐four convulsive seizures, consisting of at least 20 seconds of sus-
tained continuous activity, recorded from 11 patients during inpatient VEM (13 
PNES from five patients and 11 ES from six patients) were included for analysis. 
The automated system detected all convulsive seizures (ES, PNES) from >661 hours 
of recording with 67 false alarms (2.4 per 24 hours). The sensitivity and specificity 
for classifying ES from PNES were 72.7% and 100%, respectively. The positive and 
negative predictive values for classifying PNES were 81.3% and 100%, respectively. 
There was no significant difference between the classification results obtained from 
the automation process and the VEM diagnoses.
Significance: This automated system can potentially provide a wearable out‐of‐hos-
pital seizure diagnostic monitoring system.
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1  |   INTRODUCTION

Epileptic seizures (ES) are caused by abnormal oscilla-
tory discharges of cortical neurons resulting in behavioral 
changes and/or an altered state of consciousness. In contrast, 
psychogenic non‐epileptic seizures (PNES) are involuntary 
behavioral events that occur in the absence of electroen-
cephalographic (EEG) abnormalities.1,2 PNES are generally 
considered to be physical symptoms of an underlying psy-
chological disturbance that may be triggered by stress‐related 
or emotional events.3

Despite the fundamental differences in their pathophys-
iology, PNES often behaviorally mimic ES, making it chal-
lenging to differentiate them based on patient or witness 
descriptions in the outpatient setting.4 It has been reported 
that PNES is mistaken for and inappropriately treated as epi-
lepsy in up to 30% of patients.5,6 There is a potential for sig-
nificant harm from the adverse side effects or teratogenicity 
of anti‐epileptic drugs (AEDs) inappropriately prescribed to 
patients with PNES, as well as morbidity and mortality from 
intubation and ICU admission for prolonged seizures.7 An in-
accurate diagnosis may also result in delayed psychological 
treatment for the particular issues underlying the psychogenic 
seizures. Previous studies have indicated that due to these 
contributing factors, patients with PNES are not correctly di-
agnosed for an average of 5.6 years after the initial manifes-
tations of their seizures.8

Inpatient video EEG monitoring (VEM) is often required 
to differentiate between PNES and ES.9 Diagnostic VEM is 
generally performed over several days or weeks and involves 
concurrent EEG and video recording of seizure behavior. 
Although the VEM is regarded as the “gold standard” in the 
differentiation of ES from PNES, its availability is limited, 
it is resource intensive, and it is inconvenient for patients.10 
Furthermore, it may not be representative of a patient's nor-
mal, ambulatory environment and is impractical for patients 
with infrequent events.11

The US Food and Drug administration (FDA) has cleared 
the Embrace smart watch (Empatica inc) for seizure tracking 
and epilepsy management. The Brain Sentinel EMG device 
is another FDA‐approved device for monitoring convulsive 
seizures.12 Apart from these devices, there are no other com-
mercially available continuously recording or reporting sei-
zure detection tools to provide clinicians and clinical trialists 
with a true measure of the nature and frequency of a patient's 
seizures. Conventional seizure recording relies on patient 
and/or carer self‐reporting diaries which are inconsistent and 
significantly under‐report seizure occurrence.4 Alternative 

monitoring methods are needed that balance the level of in-
vasiveness with economic feasibility and accuracy for pro-
longed use in ambulatory patients.

The use of limb‐worn accelerometry sensors that can re-
cord movements is one such avenue that is being explored 
by a number of groups.13‒15 Our previous research has 
shown that the evolutionary pattern of the frequencies of 
rhythmic movement artifacts on EEG during PNES differs 
from that of ES.16 Convulsive PNES were demonstrated to 
display a characteristic pattern of rhythmic movement arti-
fact that remains stable over time during the event, whereas 
the EEG activity during convulsive ES tends to evolve 
throughout.16 This finding was then applied to examine the 
utility of time‐frequency mapping of data from an acceler-
ometer (continuous movement‐recording device) worn on 
wrists.17 The results of that study indicated that time‐fre-
quency analysis of data from a wristband movement mon-
itor has the potential to be utilized as a diagnostic tool to 
differentiate between ES and PNES with a sensitivity and 
specificity of 92.7% and 75.0%, respectively, and further-
more may be suitable to incorporate into a device for out-
patient ambulatory monitoring.

This particular study extends this work by investigating 
the clinical utility of a wrist‐worn device that incorporates an 
automated algorithm to detect and classify seizures as PNES 
or ES, based on the time‐frequency mapping patterns. The 
automation in particular is what this study adds to existing 
published material as it enables “real‐time” diagnosis. This 
therefore has potential to be incorporated into seizure alert 
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Key points
•	 An automated seizure detection and classifica-

tion algorithm demonstrated an overall sensitivity 
of 100% and specificity of 72.7%, for classifying 
PNES.

•	 PPV and NPV for PNES were found to be 81.3% 
and 100%, respectively.

•	 McNemar's test suggests that there was no signifi-
cant difference between the classification results 
obtained from the automation process and the 
VEM diagnoses.

•	 These results demonstrate the potential utility of 
this automated, ambulatory, non‐invasive wear-
able device in differentiating between ES and 
PNES.
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systems which would have great safety value for patients, 
particularly those who live alone, are at risk from injury 
during convulsive seizures, or having nocturnal seizures that 
are usually unwitnessed. The algorithm incorporated into the 
automated device has been developed by our group previ-
ously, using data acquired from motor seizures, both epileptic 
and psychogenic.18 This study aims to evaluate the accuracy 
of this automated and ambulatory diagnostic system, and val-
idate its ability in differentiating PNES and ES in an indepen-
dent cohort of patients.

2  |   METHODS

2.1  |  Participants
This was a prospective, observational study. Patients admit-
ted for VEM for the investigation of possible epilepsy were 
eligible for inclusion. Patients were eligible for inclusion if 
they experienced one of their typical clinical events of at 
least 20 seconds (s) in duration in which there was sustained, 
rhythmic or arrhythmic movements affecting at least one 
limb. This included patients with purely tonic or hypermo-
tor movements. Patients experiencing solely non‐convulsive 
seizures were excluded. All included patients provided writ-
ten informed consent. The study was approved by the Human 
Research Ethics Committee of the Royal Melbourne Hospital 
(HREC Project 300.259).

2.2  |  Accelerometer data collection
The device utilized was an Apple iPod Touch (4th generation), 
with an in‐built micro‐electro mechanical system (MEMS) 
accelerometer. The MEMS accelerometer utilized had a full 
scale of ± 2.5 g, sampling at a frequency of 50 Hz, and re-
cording the motion data on three axes (x, y, and z) along with 
a timestamp. The accelerometer was affixed to the patient's 
wrist for the duration of VEM. In our center, patients were 
typically admitted from Monday to Friday each week. The 
time on the devices was synchronized with the VEM com-
puters to ensure exact comparison and analysis. Movement 
data were continuously recorded during this period other 
than when devices were changed over due to battery drain-
age (every 24 hours). A smart application was uploaded to 
the iPod Touch. This program was designed to continuously 
record patient movements, sampling at a frequency of 50 Hz. 
The devices were securely affixed by an elastic sweatband, 
to the posterior aspect of the forearm, as close to the wrist as 
the possible, with the iPod Touch facing up (Figure 1). Raw 
accelerometer data were stored using flash memory on the 
iPod Touch and later transferred to a computer for visualiza-
tion. The motion data captured on each axis were combined 
and further analyzed.

2.3  |  VEM diagnosis of seizures as 
epileptic or PNES
Each event captured by the device was determined as ei-
ther ES or PNES by a team of at least three neurologists, 
who are qualified as consultants in the clinical department 
of neurology. A thorough review of their EEG recordings, 
clinical semiology as seen on video recordings, clinical 
history, neuropsychiatry, and neurology evaluation (in-
cluding imaging such as MRI), was done on each patient 
during the VEM meeting. Following this, each independ-
ent neurologist would express their opinion on whether the 
event would be classified as ES or PNES. The group con-
sensus review was determined by at least two out of three 
members of the team agreeing, at the minimum. In a case 
of disagreement or uncertainty, the decision was made 
to review the patient again during another VEM admis-
sion. These patients were not to be included in this study. 
However, such a case did not occur. The VEM diagnoses 
were made blinded to the classification results of these 
events made by the automated device, so as to eliminate 
any possible bias.

2.4  |  Visualizing accelerometer data 
using MATLAB
MATLAB was used to visualize the accelerometer data. 
Using the timestamps of every seizure, each event was visu-
alized on MATLAB by an epileptologist to validate the ac-
celerometer's ability to record motion data accurately. The 
visualization of each event that was captured on the accel-
erometer was done prior to the automated detection and 
classification. Therefore, if an event was not detected by the 
algorithm, the reason was attributed to the algorithm itself 
rather than the accelerometer not recording the event. An ES 
and PNES events, as visualized on MATLAB, are shown in 
Figures 2 and 3, respectively.

F I G U R E  1   Patient recruited in the VEM unit of Royal 
Melbourne Hospital. The red boxes display the iPods used for 3D 
accelerometry data collection
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F I G U R E  2   Time‐frequency plot of a typical epileptic event. Line 1: Frequency‐time Map: This demonstrates the frequency at which the 
limb (left in this figure) oscillates for the first 50 s after the start time entered into Main 7. Line 2: Acceleration‐time map for the 88 s following the 
start time. Line 3: Acceleration shown in 2.5‐s epochs, starting at different time points through the 88 s. Line 4: Power‐spectrum distribution. This 
displays how the frequency‐distribution varied in the corresponding 2.5‐s epochs shown in line 3

F I G U R E  3   Time‐frequency plot of a typical psychogenic non‐epileptic event. Line 1: Frequency‐time map: This demonstrates the frequency 
at which the limb (left in this figure) oscillates for the first 50 s after the start time. Line 2: Acceleration‐time map for the 88 s following the start 
time. Line 3: Acceleration shown in 2.5‐second epochs, starting at different time points through the 88 s. Line 4: Power‐spectrum distribution. This 
displays how the frequency‐distribution varied in the corresponding 2.5‐second epochs shown in line 3
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2.5  |  Inclusion criteria for seizure analysis
At the primary stage of the automated process of event detec-
tion, a resultant signal was calculated for all the data points 
across the x, y, and z axes which are calculated using This 
result was then filtered, where all signals <0.2 g (acceleration 
of movement) are considered as no activity or normal activity. 
0.2 g represents the force required, where 0.2 is the mass and 
g is the acceleration of gravity (9.8 m/s2). The value of 0.2g 
was empirically chosen based on the lower bound of the col-
lected seizure data. A fast Fourier transform (FFT) was done 
on these filtered signals and was calculated by dividing each 
20‐second window into 20 blocks of 1  second each. These 
filtered signals were then pre‐processed. Further details re-
garding this process can be seen in Gubbi et al's study.18 The 
pre‐processing ensured that all subtle movements were ex-
cluded from any seizure‐like activity. Subsequently, a time 
filter was utilized, where any continuous movement data less 
than 20 seconds were eliminated. The 20‐seconds value was 
utilized as a cutoff during the development of the algorithm, 
based on feedback from clinical neurologists. Due to this, 
during this clinical study, any events that were <20 seconds 
had to be excluded. What is left at this moment are seizure‐
like activity and persisting normal activity. Several time do-
main features were extracted from these signals, including 
slope sign changes, waveform length, and variance. Of these, 
signal power, zero crossing, and standard deviation were se-
lected as key features.18

Using these key features, K‐means clustering was then 
used to partition the data into a large group of normal events 
and a small group of seizure‐like events, and the latter of 
which were formally detected as “seizures.”

2.6  |  Automated classification of 
seizure events
The second stage involves the use of discrete wavelet 
transforms and support vector machines to classify the de-
tected seizures. The wavelet transform was performed on 
the Euclidian transformed single movement data stream. 
Support vector machines are a class of trained models used in 
data analysis and pattern recognition for classification. The 

algorithm itself was trained using a training data set. This 
data set was collected between 2012 and 2013. This study has 
utilized this algorithm in a clinical setting, on a separate data 
set, which has not been done previously. The training model 
was validated by a fivefold cross‐validation. Through these 
means, each seizure was then classified as either ES or PNES 
which appeared as the automated result during analysis on 
MATLAB. Figure 4 shows the flowchart of the automated 
detection and classification system used in the clinical set-
ting. Details regarding the detection and classification pro-
cess of the events captured, can be seen in Appendix S1.

2.7  |  Statistical analyses
The automated output from the accelerometer data for each 
seizure was compared with the corresponding VEM di-
agnosis. The variables being measured are categorical in 
nature; the results are presented in two‐way contingency 
tables of frequencies. In order to assess the validity of the 
automated device as a possible diagnostic tool, the over-
all sensitivity, specificity, positive, and negative predic-
tive values were calculated for both ES and PNES. The 
outcomes were categorized as “ES” and “not ES,” where 
undetected and falsely diagnosed ES events were included 
in the latter group. The same analysis was performed for 
PNES events. Sub‐analyses for the automated device's 
ability to accurately classify the detected seizures were 
also conducted. From these results, the positive and nega-
tive likelihood ratios were calculated. The positive likeli-
hood ratio (LR+) was defined as the ratio of the chance 
of a PNES result if the individual has PNES, to that of if 
the individual does not have PNES and receives a PNES 
result. It was calculated as sensitivity/(1 – specificity). The 
negative likelihood ratio (LR‐) was defined as the ratio of 
the chance of an ES result if the individual has PNES, to 
that of if the individual does not have PNES and correctly 
receives an ES result. It was calculated as (1‐sensitiv-
ity)/specificity. Statistical analyses were performed using 
Microsoft® Excel® (Microsoft Corp). McNemar's test was 
performed to determine whether there was a systematic dif-
ference between the VEM and automated results by using 
a significant level of 0.05. For the purpose of this study, a 

F I G U R E  4   Flowchart of the automated detection and classification system used in the clinical setting
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systematic difference was defined as a significant differ-
ence between the VEM and automated results, being attrib-
uted to the methodology of the VEM and automation, rather 
than due to random error in either system. Furthermore, an 
absence of a systematic difference implies that there is no 
bias toward a particular result in the automated process, 
when compared to the VEM.

3  |   RESULTS

3.1  |  Participants
A total of 26 patients were enrolled in the study. Among 
them, 11 experienced at least one convulsive seizure while 
having the accelerometers affixed to their wrists and were 
included in the analyses. Of the remaining 15 patients, 
9 had no events during the VEM admission, 5 had only 
non‐convulsive events, and 1 had atypical events involv-
ing head shaking and no limb movements. Table 1 presents 
the clinical characteristics of the patients included in the 
analysis.

3.2  |  Seizures selected for analyses
Of the 11 patients included, 5 (41.7%) experienced PNES 
and 6 (42.9%) experienced ES. A total of 23 ES (range, 4‐7 
per patient) and 33 PNES events (range, 5‐8 per patient) 
were recorded from these patients. No patient had both ES 
and PNES. Of the 23 ES, 11 were included in the analysis 
and 12 were excluded (4 were excluded because the ac-
celeration of movement was <0.2 g and 8 were <20 sec-
onds in duration). Of the 33 PNES, 13 were included in 
the analyses and 20 were excluded (all due to duration 
<20 seconds). The mean duration (±standard deviation) of 
the 11 ES was 61.2 ± 20.6 seconds and for the 13 PNES 

was 86.5 ± 26.5 seconds (P = 0.23, Student's t test). All 
the seizures included in the analyses were visualized on 
MATLAB via the time stamp.

In addition, we have also performed analyses using a less 
stringent criterion where we have decreased the minimum 
seizure duration threshold from 20 to 5 seconds. Of the 23 
ES events, 4 were still excluded due to the acceleration of 
movement being <0.2 g. The remaining 19 ES events could 
be included in the analyses as the 8 that were excluded with 
the 20‐seconds threshold were now included. However, 3 of 
the 8 ES events that are now included were still undetected by 
the algorithm as seizure activity. Of the 33 PNES events, all 
were detected as seizure activity and included in the analyses 
as all were >5 seconds in duration.

3.3  |  Validity of the automated device in 
event classification
The classification results by the automated device compared 
to the VEM diagnosis are presented in a two‐way contin-
gency table (Table 2). All 13 PNES events from five pa-
tients were correctly classified as PNES by the automated 
classification (100% sensitivity in classifying PNES). Of 
the 11 detected epileptic events, 8 were correctly classified 
as epileptic while 3 were incorrectly classified as PNES 
(72.7% sensitivity for ES). PPV and NPV for PNES were 
found to be 81.3% and 100%, respectively. Specific to the 
classification results, McNemar's test produced an exact P‐
value of 0.25. The positive and negative likelihood ratios in 
classifying PNES were found to be 3.67 and 0, respectively. 
As there were no patients in this study with both epilepsy 
and PNES, the likelihood ratios were not calculated for such 
cases and are thus not applicable to them. Figures 5 and 6 
display ROC curves for the detection and classification of 
ES and PNES.

When the time threshold was decreased to 5s, the algo-
rithm correctly classified 12 of the 19 ES events (63.2% sen-
sitivity for ES) and 28 of the 33 PNES (84.8% sensitivity for 
PNES). A summarized comparison of results with the 20 and 
5‐seconds time threshold is shown in Table 3.

T A B L E  1   Demographic and clinical characteristics of the patient 
cohort

  PNES ES

Median age, years ± SD 20 ± 6.58 24 ± 6.59

Male (number, percentage) 4, 30.8% 6, 54.5%

Female (number, percentage) 9, 69.2% 5, 45.5%

Number of convulsive seizures 
included in analysis

13 11

Seizure type

Bilateral tonic‐clonic seizure 
at onset

N/A 8

Focal onset evolving to bilat-
eral tonic‐clonic seizure

N/A 3

Generalized onset seizure 13 0

Note: ES = 11; PNES = 13.
Abbreviation: N/A, not applicable.

T A B L E  2   Two‐way contingency table of the classification result 
of ES or PNES made by automation compared to the corresponding 
VEM result

Automation

VEM

PNES ES Total

PNES 13 3 16

ES 0 8 8

Total 13 11 24

Note: ES = 11, PNES = 13, VEM = 24
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4  |   DISCUSSION

The results of this study demonstrated that the automated, 
wearable, seizure detection system had a high level of sen-
sitivity (100%) for non‐epileptic events that fulfilled the in-
clusion criteria, that is, continuous rhythmic arm movement 

lasting at least 20 seconds in duration and having a force of 
>0.2 g. It also had a high diagnostic specificity for PNES con-
vulsive events (100%), but a moderate specificity (72.7%) for 
convulsive epileptic events with three of the seizures being 
incorrectly diagnosed as PNES. This is further reinforced 
with the positive and negative predictive values for PNES 
being 81.3% and 100%, respectively. The diagnostic accuracy 
of this automated system is consistent with the findings made 
in our previous study utilizing a non‐automated algorithm for 
convulsive ES and PNES using a time‐frequency–based anal-
ysis of a wrist‐worn accelerometer device.17 McNemar's test 
did not show any systematic difference between the results 
obtained from the automation process and the VEM diagno-
ses, although the sample size might be too small to enable 
definitive conclusion.

The result also demonstrated that the algorithm displayed 
no bias toward ES or PNES. The positive and negative likeli-
hood ratios are clinically important as they indicate how trust-
worthy the automated results are for a clinician. The LR+ and 
LR− values demonstrate a patient with PNES is more likely 
to be classified as having PNES by automation, compared 
to those with ES. These results illustrate the potential that 
automation has in assisting a clinician to avoid a misdiag-
nosis of epilepsy. This will accelerate the commencement of 
appropriate treatment and management and eventually lead to 
a better quality of life for patients with PNES.

Three out of the 11 ES were incorrectly classified as 
PNES. The support vector machine used the differences in 
the dominant frequency patterns in ES and PNES to dis-
tinguish seizure types, with the assumption that ES shows 
evolving seizure frequency over time while PNES has a more 

F I G U R E  5   ROC curve using a 20‐s threshold The receiver 
operating characteristics curve (ROC) of the proposed system. The 
performance is in terms of area under the ROC curve (AUC). The 
red curve represents the performance of the seizure (ES and PNES) 
detection stage I. The blue curve shows the performance of the seizure 
classification stage II

F I G U R E  6   ROC curve using a 5‐s threshold. The receiver 
operating characteristics curve (ROC) of the proposed system. The 
performance is in terms of area under the ROC curve (AUC). The 
red curve represents the performance of the seizure (ES and PNES) 
detection stage I. The blue curve shows the performance of the seizure 
classification stage II

T A B L E  3   Comparison of detection and classification results 
utilizing a 20 s and 5 s threshold

 Event 
Characteristics

Time threshold

20 s 5 s

ES events > Time 
threshold

11 23

ES events 
detected

11 (100%) 16 (69.6%)

Sensitivity for ES 
classification

72.70% 63.20%

PNES 
events > Time 
threshold

13 33

PNES events 
detected

13 (100%) 33 (100%)

Sensitivity 
for PNES 
classification

100% 84.80%

False alarm rate 2.43/d (67 false 
alarms in 661.58 h)

5.44/d (150 false 
alarms in 661.58 h)
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stable pattern. However, these three epileptic events were 
more tonic and less clonic in nature, and therefore did not 
demonstrate the evolution of the motor activity as clearly. 
Thus, it is possible that these events did not have significant 
enough variations in the dominant frequencies to classify as 
ES. However, classifying an epileptic seizure as PNES can 
potentially be more harmful as it causes delay in providing 
appropriate treatment and places the patient at an increased 
risk of suffering an injury from a convulsive seizure.

The limitations of this study must be acknowledged as 
these are factors that will contribute to the trajectory that 
this particular automated system in detecting and classify-
ing events takes. The number of events used to test this al-
gorithm was low. A part of this can be attributed to the fact 
that the method pertains to only convulsive epileptic seizures 
and PNES events that are also tonic‐clonic or convulsive in 
nature, in that the event includes movements of one or both 
arms. Due to this, non‐convulsive epileptic and PNES events 
had to be excluded as naturally; these would have been clas-
sified as “no movement” by the algorithm due to the activity 
filter.

Another reason for the reduced number of events was the 
20‐seconds exclusion criterion, which caused the elimination 
of a number of potential events that could have been other-
wise analyzed. As mentioned earlier, this time limit was uti-
lized when developing the algorithm on the training data set, 
as stated in Gubbi et al's study.18 Upon further consulting, 
clinical specialists recommended the 20‐seconds time limit 
be used as a threshold to ensure any continuous movement 
are most likely seizure‐like movements. Even though this 
resulted in a substantial lowering of event numbers in this 
clinical study, the point of this study was to assess the clini-
cal application of this algorithm. This time limit can now be 
recognized as a significant limitation and thus can now be 
worked upon so that an event of any duration can be included 
for analysis.

As a result of the elimination of a number of events, many 
of the seizures that were valid for analyses came from the 
same patients. Due to the analysis being performed on differ-
ent window lengths, a number of samples were still able to be 
utilized to test this algorithm in a clinical setting. Therefore, 
in a retrospective analysis, the algorithm was also tested using 
a less stringent threshold of 5 seconds, in order to investigate 
the impact this would have on the detection and classification 
results. The algorithm detected all PNES events whereas it 
could only detect 16 of the 19 ES events that were included 
for analysis. The ROC performance curves for 20 and 5‐sec-
onds thresholds are shown in Figures 5 and 6. As expected, 
the overall performance of the algorithm decreases on using 
a less stringent threshold of 5 seconds (correctly classified 12 
of 19 ES and 28 of 33 events as PNES). However, the number 
of false alarms during the monitoring duration of >661 hours 
increases to 150 (5.44 per 24 hours) for 5‐seconds threshold 

in comparison with 67 false alarms (2.43 per 24 hours) with 
20‐seconds threshold. The three events that were missed by 
the algorithm were all <10  seconds in duration and had a 
VEM diagnosis of focal onset seizures with impaired aware-
ness. The movements involved in these seizures were very 
subtle, non‐purposeful, and of short duration. The automated 
algorithm classified these events as normal movements or 
activities of daily living, which was also expected as the al-
gorithm uses features that were engineered for activities with 
duration ≥20 seconds. Based on these findings, in future we 
will investigate a more robust feature set such as, non‐lin-
ear analysis of the multivariate time series data to capture 
patterns corresponding to seizures with duration up to 5 sec-
onds.19,20 However, based on the results of the proposed study 
it would be safe to assume that convulsive epileptic and non‐
epileptic seizures can be detected and differentiated non‐in-
vasively using wearable automated systems. Furthermore, 
the results of this study also validate and re‐enforce the fact 
that convulsive PNES can be differentiated from convulsive 
ES by capturing the rhythmic movement activity during the 
event using movement‐recording devices such as wearable 
accelerometers.

The clinical utility of the approach presented in this re-
port may be further enhanced with additional sensors as 
with devices such as Empatica and Brain Sentinel.12 For in-
stance, contraction of muscles during motor seizures can be 
measured using a surface electromyography (sEMG), which 
has been used to distinguish between GTCS and convulsive 
PNES.21 The incorporation of sEMG, pulse oximeter, heart 
rate, and accelerometer sensor, into an integrated non‐inva-
sive, ambulatory device, may enable the detection and classi-
fication of non‐convulsive seizures.

The proposed study showed the utility of the automated 
wearable systems in detection and differentiation of convul-
sive epileptic and non‐epileptic seizures. In the past decade, 
such wearable systems have garnered a lot of attention as 
they present a potential alternative for continuous non‐inva-
sive monitoring in patient home setting. However, the utility 
and requirements of such systems from clinical perspective 
are rarely considered. The findings of this study suggest that 
automated detection and differentiation of convulsive epilep-
tic and non‐epileptic seizures can be done using accelerome-
ter‐based wrist‐worn wearable systems. However, there are a 
few points that should be considered during the development 
of such algorithms. First, it is important that the proposed 
system should have a high differentiation specificity for con-
vulsive ES events as misclassifying ES to PNES may prove 
misleading in diagnosing an epileptic patient and cause fail-
ure and delay in providing appropriate treatment. Secondly, 
the automated systems should minimize the trade‐off be-
tween performance and minimum seizure duration that can 
be detected by the system as it might be necessary for patients 
that have brief events.
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