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Abstract

Drug-induced compensatory signaling and subsequent rewiring of the signaling pathways that 

support cell proliferation and survival promotes the development of acquired drug resistance in 

tumors. Here, we sought to analyze the adaptive kinase response in cancer cells after distinct 

treatment with agents targeting human epidermal growth factor receptor 2 (HER2), specifically 

those which induce only temporary cell cycle arrest or apoptosis in HER2-overexpressing cancers. 

We compared trastuzumab, ARRY-380, the combination thereof, and a biparatopic HER2-targeted 

designed ankyrin repeat protein (DARPin; specifically 61LG) and quantified the phosphoproteome 

by isobaric tagging using tandem mass tag liquid chromatography/mass spectrometry (TMT LC-

MS/MS). We found a specific signature of persistently phosphorylated tyrosine peptides after the 

non-apoptotic treatments, which we used to distinguish between different treatment-induced 

cancer cell fates. Next, we analyzed the activation of serine/threonine and tyrosine kinases after 

treatment using a bait peptide chip array and predicted the corresponding active kinases. Through 

a combined system-wide analysis, we identified a common adaptive kinase-response program that 

involved the activation of focal adhesion kinase (FAK1), protein kinase C-δ (PKCδ), and Ephrin 

(EPH) family receptors. The findings reveal potential targets to prevent adaptive resistance to 

HER2-targeted therapies.
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INTRODUCTION

Mutations leading to increased phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) 

pathway signaling represent the most frequent mode of acquired cancer drug resistance in 

late-stage human epidermal growth factor 2 (HER2, ERBB2)-positive cancers (1–3). On the 

other hand, a PI3K wild-type, HER2-positive cancer (HER2-dependent) relies similarly on 

the integrity of an active HER2/HER3/PI3K/AKT pathway (4), and HER2-targeted 

therapeutics (such as trastuzumab, pertuzumab, lapatinib or ARRY-380) block this signaling 

cascade at least transiently (5–9). This transient nature of signaling inhibition revealed the 

control function of negative feedbacks, which result in the reactivation of either the same 

pathway (10, 11) or of alternate signaling pathways that compensate for the perturbation by 

the inhibitor (12–15). The resulting adaptive kinase response, constituted by these stabilizing 

signaling relays, can be activated rapidly and reversibly (8, 16), which indicates that they are 

potentially suppressed by the primary oncogene in the cancer host network. Thus the 

inhibition of the primary oncogene by the targeted inhibitor inevitably relieves negative 

feedbacks and consequently causes activation of other kinases (17), which may prevent the 

induction of apoptosis and, thus, facilitate the development of acquired cancer drug 

resistance.

Previously, we developed a new class of biparatopic HER2-binding agents, called 

biparatopic DARPins (such as DARPin 6L1G), which blocked productive HER2 receptor 

homodimer and heterodimer interactions and, consequently, induced apoptosis in various 

HER2-dependent breast cancer models (7, 18).Similar to the trastuzumab-plus-lapatinib or 

trastuzumab-plus-ARRY-380 combination treatments, these biparatopic agents can 

overcome adaptive kinase-response signaling and effectively induce apoptosis in HER2-

dependent cancer cells, which confirmed the existence of HER2 oncogene addiction and 

revealed the need to overcome it through simultaneous blockade of signaling from both 

HER2 and HER3 (7).

Through comparative analysis of distinct HER2-targeted (hereafter, anti-HER2) treatments 

with different effects on the cancer cell fate, one can assess the specific modes of the 

adaptive kinase response signaling in a time-dependent manner. Recent large-scale studies 

have illuminated the vulnerabilities and the adaptive responses across various HER2-positive 

cancer models (13, 19–22). Here, however, we focused on the analysis of a single HER2-

dependent model after the mechanistically different anti-HER2 treatments, which induce 

either only transient cell-cycle arrest in G1 or apoptosis (5, 7, 23). This enabled us to 

directly compare the phosphostatus of the Tyr kinome in cancer cells undergoing treatment 

leading to two different outcomes: temporary cell cycle arrest and likely acquired drug 

resistance, or induction of apoptosis, representing effective cancer treatment. Using 

quantitative phospho-proteomics and kinase activity profiling, we generated a reference 

network of all HER2-dependent Tyr kinase signaling events after complete HER2 inhibition 

(HER2 “off-state” network). Next, we compared the adaptive Tyr and Ser/Thr kinase 

activation in a system-wide functional protein association network upon the different 

treatments and identified a group of kinases that followed a common activation program 

after the different anti-HER2 treatments. Finally, we identified focal adhesion kinase 1 

(FAK1, PTK2) as a major signaling hub in this compensatory kinase signaling network upon 
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HER2 inhibition, and we found that specific combination treatments blocked its feedback 

activation and, consequently, led to substantially increased induction of cancer cell death.

RESULTS

Experimental setup for quantitative pathway profiling

To dynamically monitor pathway activity after applying the anti-HER2 treatments 

trastuzumab (TZB), ARRY-380 (ARRY), the combination of both agents (ARRY-380 + 

trastuzumab, A+T) and the biparatopic DARPin (6L1G) in a HER2-dependent breast cancer 

cell model (the BT474 cell line in 2-dimensional culture), we performed two orthogonal and 

complementary quantitative large-scale studies (Fig. 1A). First, we measured peptide 

tryrosine (Tyr) phosphorylation after enrichment by triple antibody pulldown, immobilized 

metal affinity chromatography and multiplexed TMT LC-MS/MS (24). We manually 

verified 471 unique phospho-Tyr (p-Tyr) peptides from two biological replicates (table S1). 

Next, we used the commercial kinase activity-profiling array from PamGene to monitor the 

phosphorylation of 121 Tyr (table S2) bait peptides and 77 Ser/Thr (table S3) bait peptides 

in biological quadruplicates of ATP-spiked cell extracts in the absence of phosphatase 

activity (25). The corresponding kinases were subsequently predicted by the group-based 

prediction system. Finally, cognate kinase activities were combined with the measured target 

phospho-status from the TMT dataset in a high-confidence functional protein-protein 

interaction network to track potential resistance driving pathways (Fig. 1A).

Inhibition of peptide Tyr phosphorylation after anti-HER2 treatments

The mean signal intensity of each p-Tyr peptide was normalized to the corresponding mean 

signal intensity after 6 hours’ exposure to DMSO control treatment and expressed as log2 

fold-change ratio (LFC). To determine an upper and lower threshold for treatment-induced 

changes in Tyr phosphorylation, we introduced a 95% confidence interval (CI), which was 

based on the distribution of LFC values in the DMSO control treatment after 48 hours (Fig. 

1B). We observed a globally progressive reduction in peptide tyrosine phosphorylation 

below the lower threshold (LFC of −0.75) from 6 to 48 hours in each of the anti-HER2 

treatments. Treatments that were apoptotic, inferred from the detection of cleaved poly-

ADP-ribose polymerase (PARP; A+T and 6L1G; fig. S1A) reduced the abundance of p-Tyr 

peptides after 48 hours more than the non-apoptotic ARRY-380 or trastuzumab single-agent 

treatments (fig. S1A). Thus, the antiproliferative effect of these anti-HER2 treatments is 

mirrored by an overall inhibition of Tyr kinase activity.

Next, we compared the fractions of p-Tyr peptides with reduced abundance between the 

anti-HER2 treatments after 48 hours by Venn diagram analysis (Fig. 1C) and observed that 

the A+T combination treatment includes quantitatively all of the reduced p-Tyr peptides of 

the other anti-HER2 treatments. In fact, the different anti-HER2 treatments blocked the Tyr 

phosphorylation after 48 hours according to the onion principle: A+T included the 6L1G 

inhibition pattern, which included the ARRY inhibition pattern, which finally included the 

TZB inhibition pattern quantitatively. Thus, our data suggest that the strength of the anti-

proliferative effect of these different anti-HER2 treatments is a function of inactivating 

incrementally more Tyr kinases after 48 hours, and both apoptotic treatments (A+T and 
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6L1G) blocked activity in an apparently sufficiently large fraction of Tyr kinases to suppress 

compensatory signaling.

Treatment-specific patterns in Tyr-phosphorylation

To identify treatment-specific patterns in the p-Tyr signaling, we performed Pearson 

clustering and pairwise cross-correlation on the LFC values of the 471 unique p-Tyr peptides 

found by MS analysis (Fig. 1, D and E). ARRY, A+T and 6L1G induced overall strong and 

very similar inhibition of the Tyr phosphorylation after 48 hours with a high positive Pearson 

correlation coefficient (PCC). Furthermore, the responses to the ARRY and A+T treatments 

were highly similar at the 6-hour treatment timepoint, which mostly reflects the rapid and 

sustained inhibition of HER2 by the small molecule kinase inhibitor. However, we have 

previously shown that the same concentration of ARRY induces only a cell cycle arrest in 

BT474 cells, whereas A+T and 6L1G induces apoptosis (7). Here, we analyzed PARP 

cleavage by western blot as a measure of apoptosis in BT474 cells after all treatments (fig. 

S1A) and observed specific PARP cleavage only after 48-hours’ exposure to A+T and 6L1G.

Next, we observed that the overall inhibition pattern of the Tyr phosphorylation is highly 

indicative of the mechanism of the drug but not of the drug-induced cancer cell fate — 

meaning cell cycle arrest vs. apoptosis. On the other hand, trastuzumab showed only a 

moderate inhibition profile and a relatively weak positive PPC with the other anti-HER2 

treatments, which reflects the fact that it only blocked the phosphorylation of HER3, but did 

not affect the phosphorylation of HER2, which can continue signaling (5, 7). Furthermore, 

whereas TZB and 6L1G both decreased Tyr phosphorylation over 6 to 48 hours of treatment, 

signaling inhibition after 48 hours in 6L1G was ultimately greater than that after TZB and 

almost identical to that after the combination treatment (A+T) at the same 48-hour 

timepoint. Therefore, we conclude that after 48 hours the quantitative inhibition after the A

+T and 6L1G treatment of the HER2/HER3 receptor signaling induced the signaling “off-

state” in these HER2-dependent cancer cells, which consequently led to the induction of 

PARP cleavage and, presumably, apoptosis (fig. S1A). Because we observed rather small 

quantitative differences in Tyr kinase inhibition between the ARRY and both apoptosis-

inducing treatments after 48 hours’ exposure, we propose that only a small fraction of active 

Tyr kinases may potentially mediate escape from apoptosis after the ARRY treatment.

HER2-dependent p-Tyr signaling network

The relative importance of a particular kinase to drive cancer cell signaling depends on its 

biochemical wiring (17), and kinases with the highest degree of connectivity are thus 

potentially the most effective drug targets (26). We hypothesized that after treatment-

induced cancer remodeling, active kinases with the highest degree of connectivity are 

probably also the most relevant mediators of the adaptive cancer drug resistance. Thus, in 

addition to simple intensity-based kinase activity grading, we implemented a network 

topology-based approach for the analysis of the adaptive kinome response.

For this purpose, we assessed the degree of connectivity based on a “direct protein 

interaction” network, which was obtained by feeding the corresponding search algorithm 

from the MetaCore database (27) with the p-Tyr peptides with significantly reduced 
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abundance, observed after the apoptotic combination treatment (A+T) after 48 hours. Thus, 

this network represents the “off-state” of a HER2-dependent cell (Fig. 2A). Based on the 

export of this direct protein interaction network, we analyzed only those protein pairs 

involved in binding and phosphorylation events in the subsequent exploratory analysis in 

Cytoscape software. For interpretation of this HER2-dependent signaling network in the 

“off-state”, we analyzed the overall network topology by community clustering using 

ClusterMaker2.0 and the Glay algorithm in Cytoscape (28). We identified 5 major 

communities, which contained the following main signaling hubs: (i) the epidermal growth 

factor receptors 1, 2 and 3 (EGFR, HER2 and HER3); (ii) phosphatidylinositol 3-kinase 

regulatory subunit alpha and beta (PIK3R½); tyrosine-protein phosphatase non-receptor type 

11 (PTPN11), GRB2-associated-binding protein 1 (GAB1); (iii) Abelson murine leukemia 

viral oncogene homolog 1 (ABL1), glycogen synthase kinase-3 beta (GSK3B), and cyclin-

dependent-like kinase 5 (CDK5); (iv) mitogen-activated protein kinase 1 and 3 (MAPK1/3), 

PKCδ (PRKCD), and heat shock protein alpha (HSP90), (v) PTK2 (FAK1), integrin beta-1 

(ITGB1) and cyclin-dependent-like kinase 1 (CDK1) (Fig. 2, A and B). These signaling 

hubs have been previously identified by various experimental approaches (13, 15, 19, 20, 22, 

29); however, here we performed a combined data-driven analysis of their relative 

importance in our HER2-dependent model.

In terms of network topology and a rational combination treatment (26), we would expect 

the removal or complete inhibition of the two largest hubs, EGFR and PTK2 (FAK1), to 

result in the highest probability of a system failure, i.e., a complete tyrosine signaling 

inhibition. However, the available representation of this Tyr kinase network is currently 

limited by the number of curated protein-protein interactions from the database, which 

results, for example, in the higher number of connections of EGFR over HER2 in this 

particular HER2-overexpressing model and therefore may not exactly reflect the underlying 

cancer signaling network (26). Thus, for high-accuracy prediction of the adaptive kinase 

response, we decided to further refine our model by implementing a second orthogonal 

large-scale profiling of kinase activities (tested below).

Tyr kinase phosphorylation after anti-HER2 treatments

Increased Tyr phosphorylation upon inhibition of the main driving oncogene may either 

originate from increased autocatalytic activity or from increased upstream kinase activity 

and, henceforth, indicates release of a negative feedback loop (an adaptive response) (12, 16, 

17). Therefore, we compared the fraction of the p-Tyr peptides whose phosphorylation level 

increases or at least stays constant after 48 hours of treatment between the non-apoptotic 

single-agent treatments ARRY and TZB by Venn diagram analysis (Fig. 2C). The fraction of 

persistent phosphorylated Tyr peptides after the TZB treatment comprised almost all 

persistent phosphorylated Tyr peptides from the ARRY treatment after 48 hours. We 

identified a consensus of 54 persistent phosphorylated Tyr peptides from 46 different 

proteins between the two non-apoptotic treatments. This p-Tyr peptide signature included 

peptides from PTK2 (FAK1), paxillin (PXN), PRKCD, C-terminal Src kinase (CSK), TGF-

beta-activated kinase 1- binding protein 1 (TAB1), SH2 domain-containing adapter protein B 

(SHB), Catenin delta-1 (CTNND1), Ephrin type-B receptor 4 (EPHB4), homeodomain-

interacting protein kinase 2 (HIPK2) and EGFR family members (fig. S1C) and we analyzed 
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their interaction (fig. S1D) and phosphorylation over time (trends) from 6 to 48 hours (Fig. 

2D). Most of these p-Tyr peptides showed a positive trend of increasing abundance after the 

non-apoptotic treatments and, in contrast, a negative trend of decreasing phosphorylation 

abundance after the apoptotic treatments.

Therefore, we found that the overall time-dependent phosphorylation trend of this 54 p-Tyr-

peptide signature is indicative of the treatment-induced cancer cell fate in our model, 

meaning mere cell cycle arrest or apoptosis. Consequently, the trends showed also a negative 

PCC between the treatments TZB and A+T, as well as between ARRY and A+T (Fig. 2E), 

which was previously hidden in the overall positive PCC of the global analysis of the 471 p-

Tyr peptides (Fig. 1E). Thus, the phosphorylation trend of this fraction of p-Tyr peptides, 

which are apparently associated with the adaptive kinase response signaling, allowed us to 

distinguish with higher accuracy between apoptotic and non-apoptotic cell fate. In other 

words, the increased phosphorylation of this p-Tyr peptide signature appears to be associated 

with the adaptive cancer drug resistance.

Kinase activity profiling by peptide chip array

To measure the Tyr- and Ser/Thr-kinase activity in an orthogonal and complementary 

manner to the TMT approach, we used the peptide chip array from PamGene with a 

common peptide setup of specific phosphorylation motifs (30). Again, the mean signal 

intensity of each Tyr-bait peptides (PTK) and Ser/Thr-bait peptides (STK) was normalized to 

the corresponding DMSO treatment and expressed as log2 fold-ratio. We performed Pearson 

clustering with all LFC values (Fig. 3A) and determined the individual P-values versus the 

corresponding DMSO treatment by ANOVA and post-hoc Dunnett’s test in the proprietary 

Bionavigator software (Fig. 3B and fig. S2, A and B). Note that phosphatase activity was 

blocked by the addition of a PTP inhibitor cocktail during the assay.

Similar to the p-Tyr peptides found by TMT, the overall Tyr phosphorylation after 48 hours’ 

exposure to A+T and 6L1G was significantly reduced over DMSO treatment in the PTK 

array and both apoptotic treatments showed a high positive PCC (fig. S2C). We found a 

common group of p-Tyr peptides with increased phosphorylation over DMSO treatment 

after the 6-hour exposure with A+T and ARRY, which were associated with increased 

activity of tyrosine- protein kinase Mer (MERTK), FAK1, Janus kinase 2 (JAK2), FMS-

related tyrosine kinase 4 (FLT4) and several ephrin receptor family members (EPHA4, 

EPHB1, EPHA8, EPHA3 and EPHA2) (fig. S2D). In the STK array, however, we observed 

an overall significant increase of bait peptide phosphorylation after each anti-HER2 

treatment, in particular the 48-hour A+T treatment (Fig. 3, A and B), which may relate to the 

caspase-mediated hyper-activation of the apoptotic Ser/Thr kinases, such as PKCδ (31).

Next, significantly more highly phosphorylated peptides over the DMSO control treatment 

(P ≤ 0.05) in the peptide array were used for cognate kinase prediction in a group-based 

prediction system (http://gps.biocuckoo.org/). The sum of scores was calculated for each 

kinase from the individual peptide scores using a high-threshold prediction on all Tyr- or 

Ser/Thr-kinases, respectively (32), from which we determined the top 30 Tyr-kinases after 

the 48-hour ARRY and 48-hour TZB treatment (Fig. 3C) and the top 37 Ser/Thr-kinases 

after each 48-hour treatment (Fig. 3D). Unexpectedly, we scored almost the same active Tyr- 

Schwill et al. Page 6

Sci Signal. Author manuscript; available in PMC 2019 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://gps.biocuckoo.org/


and Ser/Thr- kinases in both non-apoptotic treatments. In fact, the group of active Tyr 

kinases after 48 hours’ exposure to TZB included all active Tyr kinases found after the 

ARRY 48-hour treatment and, thus, the Tyr kinase activation pattern followed again the 

onion principle (fig. S2D). We identified CSK, Tyr protein kinases Fyn and Lyn (FYN and 

LYN), EGFR, lymphocyte-specific protein Tyr kinase (LCK), protein Tyr kinase 6 (PTK6), 

Tyr kinase Yes (YES1), macrophage colony-stimulating factor 1 receptor (CSF1R) and 

PKT2 (FAK1) among the most active Tyr kinases after both non-apoptotic treatments (Fig. 

3C). In the STK array, we scored ribosomal protein S6 kinase alpha-3 and 5 (RPS6KA3 and 

RPS6KA5), cGMP-dependent protein kinase 1 (PRKG1), Rho-associated protein kinase 1 

(ROCK1) and protein kinase C beta (PRKCB) among the top five most activated Ser/Thr-

kinases after all anti-HER2 treatments (Fig. 3D). Furthermore, we scored the activity of a 

number of other cancer associated Ser/Thr- kinases such as e.g. RAC-alpha and beta Ser/

Thr- protein kinase (AKT½), cyclin-dependent kinase 2 (CDK2) and PKCδ (PRKCD). This 

suggests that the Ser/Thr- driver kinases of the adaptive response are to be found among this 

set and that a combined analysis of both datasets (TMT and peptide chip array) may identify 

the most relevant targets (this hypothesis was explored and is presented below). In summary, 

similar Tyr and Ser/Thr kinases were revealed after both non-apoptotic single agent 

treatments after 48 hours (ARRY and TZB) from the peptide chip array (Fig. 3, C and D) 

and from the TMT dataset (fig. S2F), respectively.

Adaptive kinase response and cancer cell signaling plasticity

To combine the phospho-status from the TMT dataset with the scored kinase activities from 

the peptide chip arrays into one biologically relevant system-wide analysis, we constructed a 

functional association network, based on high-confidence protein-protein interactions from 

the String database (33). Scored kinase activities (labeled nodes in the network diagram) 

were grouped according to their appearance in the fraction of persistent phosphorylated Tyr 

peptides in the TMT dataset (Fig. 2C) and placed in the center of the onion plot (Fig. 3E). 

Thus, active kinases shown in the core of the onion plot (dark grey inner core and light grey 

middle layer) were identified by two orthogonal large-scale measurements, and the inner 

core (darker grey) shows the consensus of ARRY (left) and TZB (right) treatment after 48 

hours from the TMT dataset (Fig. 2C). Furthermore, we kept the strongly connected non-

kinase Tyr peptide hits identified in the TMT dataset in this network (white circles/nodes in 

the network plot) and extended the protein associations by one layer of String DB 

interactions to additional hits from the PTK and STK peptide chip array after the 48-hour 

TZB treatment (Fig. 3, C and D).

The onion plot shows that CSK, EPHA1/7, EPHB4, PRKCD and PTK2 were activated after 

both non-apoptotic treatments, ARRY and TZB, and hence, activation of these kinases was a 

common process after 48 hours and apparently independent of the nature of the anti-HER2 

treatment. We found increased phosphorylation and increased kinase activity of HER2 

specifically after 48 hours exposure to the HER2-blocking antibody (TZB) but, as expected, 

not after the same duration exposure to the kinase inhibitor (ARRY), which represents the 

main differences between the two non-apoptotic treatments. In the middle layer, which 

shows the consensus hits from the TMT and the peptide chip array after the 48-hour TZB 

treatment, we found activation of YES1, EPHA2 and the Tyr-kinase Fer (FER) in response 
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to both non-apoptotic treatments. In the outer layer, activation of AKT1, EGFR, EPHB3/6, 

FYN, MAPK3, Ser/Thr- protein kinase PLK2 (PLK2), PRKCB and PTK6 was found after 

both non-apoptotic treatments. Consequently, the overall kinase activation pattern of both 

non-apoptotic anti- HER2 treatments showed a high positive PCC (Fig. 3F), which 

suggested that adaptive kinase activation follows a common response program.

FAK1 inhibition in HER2-overexpressing breast cancer cells

The kinase FAK1 (also known as PTK2) was the second largest signaling hub in our HER2- 

dependent network (Fig. 2, A and B) and both non-apoptotic treatments caused 

phosphorylation of FAK1 at Tyr570/576/577 in the TMT dataset (Fig. 2C) as well as increased 

activity of FAK1 kinase in the peptide chip array (Fig. 3C). Therefore, FAK1 became a 

central player in our combined adaptive response analysis (Fig. 3E) and, thus, may be a 

rational target for combination treatments. The abundance of FAK1 is often increased in 

breast cancers and is associated with cancer cell motility and migration, survival, and cancer 

stem-like cell proliferation (22, 34). A series of small molecule kinase inhibitors have been 

developed to block FAK1 activation, such as defactinib or PF562271, and these have 

proceeded to clinical trials (34). Furthermore, FAK1 reportedly also participates in the 

adaptive response after lapatinib treatment in HER2-positive breast cancer cells (13), but 

FAK1 phosphorylation appears suppressed upon increased phosphorylation of HER2 (15).

To analyze the effects of FAK1 inhibition in HER2-overexpressing breast cancer with and 

without a PI3K-activating mutation, we compared BT474, SKBR3 and HCC1419 cells 

(trastuzumab-responsive group) with MDA-MB361, MDA-MB453 and UACC893 cells 

(trastuzumab-resistant group). Constant activation of the PI3K/AKT-pathway by a PIK3CA- 

activating point mutation confers strong resistance against all the anti-HER2 treatments (Fig. 

4A). Furthermore, we included the allosteric small molecule inhibitor of AKT, MK2206 

(35), to block AKT activation independently of both PIK3CA mutation status and HER2/

HER3 signaling (Fig. 4, A and B). In comparison to the high basal abundance of 

phosphorylated AKT [p- AKT(Ser473)], we observed low basal abundance of p-

FAK1(Tyr397) at the unperturbed steady state in the HER2-overexpressing breast cancer 

cells (Fig. 4B). However, upon inhibition of p-AKT, either directly by MK2206 or upstream 

by an anti-HER2 treatments in BT474, SKBR3 and HCC1419 cells, the p-FAK1(Tyr397) 

abundance was subsequently increased in all cancer cell lines, which is in agreement with 

previous findings (13, 15). Conversely, FAK1 inhibition by PF562271 induced decreased 

abundance of p-FAK1(Tyr397) in all cancer cell lines but increased amounts of p-

AKT(Ser473) and reduced abundance of HER3 after 48 hours in BT474, SKBR3, HCC1419 

and UACC893 cells (Fig. 4B), presumably through the AKT-FOXO-HER3 negative 

feedback loop (12).

Therefore, the AKT and FAK1 kinase pathways displayed a counter-regulation in these 

cancer cell lines; meaning when one is inhibited, the other is activated. Next, we analyzed 

the time- dependent phosphorylation of FAK1 after MK2206 treatment in BT474 cells and 

observed progressively increasing p-FAK1 (Tyr397) abundance from 6 to 24 hours (fig. 

S3A). On the other hand, treatment with PF562271 induced upregulation of p-AKT(Ser473) 

in the same period.
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Notably, MK2206 and PF562271 treatment induced marked PARP cleavage in MDA-

MB361 and UAC893 cells after 48 hours (Fig. 4B). Thus, both trastuzumab-resistant cell 

lines showed greater vulnerability to AKT and FAK1 inhibitors in comparison to BT474 

cells, which may indicate that a PI3K-activating mutation increases the dependency on 

PI3K/AKT and FAK1 pathway signaling.

Synergy by combined inhibition of FAK1 and HER2

As described above, we had found that FAK1 was a key player in the adaptive kinase 

signaling response to anti-HER2 treatments (Fig. 3E), and FAK1 showed counter-regulatory 

phosphorylation with AKT (Fig. 4B). Therefore, we combined the anti-HER2 treatments as 

well as the AKT inhibitor MK2206 with the FAK1 inhibitor PF562271 to test for potential 

combination benefits on the inhibition of cell proliferation (Fig. 4C and fig. S3B), induction 

of cell death (Fig. 4D and fig. S3C), and blockage of AKT-FAK1 counter phosphorylation 

(Fig. 4E). We indeed observed a strong anti-proliferative effect of the FAK1 inhibitor as 

single-agent treatment and a clearly additive effect of FAK1 inhibition with anti- HER2 or 

AKT combination treatments in both cell lines (Fig. 4C). The combination of TZB or 6L1G 

with PF562271 induced strong reduction of p-FAK(Tyr397), quantitatively blocked FAK1-

AKT counter-regulatory phosphorylation and showed significantly increased induction of 

cell death (Fig. 4D and fig. S3C). Thus, the combination of an anti-HER2 treatment with a 

small molecule inhibitor against FAK1 blocked the activation of the adaptive kinase 

response and significantly enhanced cell death in both HER2-positive breast cancer cell 

lines.

DISCUSSION

In this study, we analyzed the early kinome changes of a HER2-positive breast cancer cell 

line after different anti-HER2 treatments by TMT LC-MS/MS to identify critical signaling 

events that are associated with the development of cancer drug resistance. As hypothesized, 

we found that the anti-proliferative effect of a particular treatment was proportional to the 

number of p-Tyr peptides with reduced abundance and, thus, inhibition of cancer cell 

proliferation correlated with progressively reduced Tyr kinase activity after more potent 

combination treatments.

In contrast, and against our initial hypothesis, the overall pattern in the p-Tyr peptide 

abundance did not directly correlate with the ultimate cancer cell fate after the different 

treatments, but it showed high correlation with the mechanism of the particular drug. In fact, 

the overall pattern of the Tyr peptide phosphorylation after the different treatments with, for 

example, the HER2 kinase inhibitor ARRY-380 was highly similar to the combination 

treatment of ARRY-380 plus trastuzumab, but only the latter combination treatment induced 

apoptosis, and did so relatively robustly. We conclude that the induced cancer cell fate and, 

thus, the potential of developing cancer drug resistance depends on a rather small number of 

residually active or compensatory active kinases that maintain cancer cell survival after 

single inhibitor treatment. Assuming that cancer cell signaling plasticity is proportional to 

the number of persistently active kinases, we conclude that the potential for cancer plasticity 
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was reduced by the combination treatment and by the biparatopic DARPin in a similar 

manner.

Through comparative analysis of different non-apoptotic treatments, we identified a 

common persistently phosphorylated Tyr peptide signature. Analyzing the time-dependent 

phosphorylation trends of this particular subset of p-Tyr peptides between treatments, we 

could distinguish, with high confidence, between apoptotic and non-apoptotic cell fates. This 

finding led us to the hypothesis that a common adaptive signaling program was executed 

upon different non-apoptotic anti-HER2 treatments, which may have maintained the survival 

of the cancer cells after single inhibitor treatment.

To test this hypothesis, we analyzed the residual kinase activities with a peptide chip array 

after these treatments. By a combined system-wide analysis, we characterized the common 

adaptive kinase-response program that essentially involved the activation of FAK1, PKCδ 
and several Eph family receptors. Thus, we conclude that the adaptive kinase response is a 

specific backup program of the given cancer host network and that it operates similarly and 

predictably after the different treatments against the same target. Therefore, we speculate 

that previously reported heterogeneity in the adaptive kinase response (13, 36) may have 

originated mainly from the different genetic backgrounds of the various cancer cell lines. 

However, we do not exclude that additional heterogeneity in the adaptive kinase response 

may arise later from changes in kinase expression after prolonged drug exposure (6–8, 11, 

12, 16).

Finally, we tested the effect of FAK1 inhibition in various HER2-overexpressing cancer cell 

lines with and without PI3KCA activating point mutations, which resemble a common mode 

of acquired cancer drug resistance to anti-HER2 therapies. By small-molecule inhibitor 

studies, we observed that FAK1 and AKT signaling are counter-regulated, such that 

inhibition of FAK1 causes activation of AKT and vice versa. The exact mechanism is 

currently unknown; however, we speculate that Pten 3-phosphoinositide phosphatase alpha 

(PTEN) may play a key role in the counter-regulation of both pathways, as previously 

suggested in the context of leukemia (37). Furthermore, FAK1 inhibitors showed an additive 

effect when combined with anti-HER2 treatments, such as trastuzumab or biparatopic 

DARPin, in trastuzumab-resistant cell lines.

In summary, we used a network topology-based approach to identify a common adaptive 

kinase-response program and its major signaling hubs after various HER2-targeted 

treatments in breast cancer cells. Our findings not only provide a larger resource to study 

HER2-dependent signaling, but also a novel approach to predict effective combination 

treatments against a dynamically adapting cancer signaling network.

Materials and Methods

Cell lines and reagents

The human mammary carcinoma cell lines BT474, SKBR3, HCC1419, MDA-MB453, 

UACC893 and MDA-MB361 were obtained from the American Type Culture Collection 

(ATCC; www.atcc.org) and cultured in RPMI-1640 medium from Life Technologies with 
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1 % penicillin streptomycin from Sigma Aldrich and 10 % fetal calf serum from PAA. Cells 

were seeded at a density of 10,000 cells/cm2 24 hours prior to treatment. Protease inhibitors 

pefabloc from Merck, leupeptin and pepstatin from Serva and marimastat from Calbiochem 

and the phosphatase inhibitors sodium orthovanadate, sodium metavanadate, sodium 

molybdate, sodium β-glycerol phosphate and sodium fluoride from Sigma Aldrich were 

used for western blot analysis. Antibodies against ErbB3 (D22C5) (#12708) (1:1000), p-

ErbB3 (Y1289) (#4791) (1:500), Erk½ (#9102) (1:1000), p-ERK½ (T202/Y204) (#4370) 

(1:1000), pan-AKT (C67E7) (1:2000) ,p-AKT (S473) (#4060) (1:2000), PARP (#9542) 

(1:1000), FAK (D5O7U) XP (1:500), p-FAK Y397 (D20B1) (1:500) were used from Cell 

Signaling Technology. Anti-ErbB2 (3B5) (OP15) (1:5000) and p-ErbB2 (1248) (06–229) 

(1:10,000) were from Calbiochem. GAPDH (sc-365062) (1:2000) was used from Santa 

Cruz. Secondary anti-mouse IgG IRDye800 conjugate from Rockland (610–732-124) and 

anti-rabbit IgG Alexa680 (A-21109) from Invitrogen was used (1:10,000) for IR-western 

blot detection on an Odyssey system from Li-Cor. ARRY-380, MK-2206, PF-562271 were 

obtained from Selleckchem. DARPin expression and purification has been described 

previously (38). Trastuzumab (Herceptin®) was obtained from Kantonsapotheke Zürich.

Sample preparation for LC-MS/MS

BT474 cells were treated in biological duplicates with 100 nM trastuzumab, 100 nM 

DARPin 6L1G, 10 μM HER2 inhibitor ARRY-380 and the combination of 100 nM 

trastuzumab and 10 μM ARRY-380, each treatment for 6 and 48 hours. Cell pellets were 

lysed in 8 M urea supplemented with phosphatase inhibitors on ice and cell extract 

concentrations were determined by BCA assays (Pierce). Cell lysates were reduced with 1 

M DTT in ammonium acetate at pH 8.9 and 55 mM iodoacetamide was added to quench 

reformation of disulfide bridges. Afterwards, ~400 μg of sample was digested with trypsin 

overnight at room temperature and the reaction was stopped by adding acetic acid to a final 

concentration of approximately 90 %. Samples were loaded on a Sep-Pak columns, washed 

with 90 % acetonitrile/ 0.1 % acetic acid and eluted in 25 % acetonitrile/0.1 % acetic acid.

TMT peptide labeling and p-Tyr peptide IP

Peptides were labeled with TMT10plex Mass Tag Labeling Kits (Thermo) according to the 

following scheme: DMSO_6h (126), TZB_6h (127C), 6L1G_6h (127N), ARRY_6h (128C), 

A + T_6h (128N), DMSO_48h (129C), TZB_48h (129N), 6L1G_48h (130C), ARRY_48h 

(130N), A + T_48h (131). Samples were resuspended in 100 μL of 70% (v/v) ethanol, 30% 

(v/v) 0.5 M triethylammonium bicarbonate at pH 8.5 and incubated with TMT reagent 

resuspended in 40 μL anhydrous acetonitrile at room temperature for 1 hour. Dried samples 

were resuspended in 400 μL IP buffer (100 mM Tris-HCl, 1% Nonidet P-40 at pH 7.4) and 

added to 60 μL protein G agarose beads, which were loaded with anti-phosphotyrosine 

antibodies (12 μg 4G10 (Millipore), 12 μg PY-100 (Cell Signaling Technologies), and 12 μg 

PT-66 (Sigma)) overnight at 4 °C. Beads were centrifuged for 60 s at 4,000 × g for 

supernatant collection, washed once with 400 μL IP buffer, and washed three times with 400 

μL wash buffer (100 mM Tris-HCl at pH 7.4). Antibody-peptide complexes were eluted with 

70 μL 100 mM glycine at pH 2.5 for 30 min at room temperature.
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Immobilized metal affinity chromatography (IMAC)

After antibody-peptide complex elution, peptides were purified by IMAC as follows. A 10-

cm self-packed IMAC (Poros 20MC; Applied Biosystems) capillary column (inner diameter, 

200 μm; outer diameter, 360 μm) was rinsed with 100 mM EDTA at pH 8.9 at 10 μL/min for 

10 min, ultrapure water at 10 μL/min for 10 min, and charged with 100 mM FeCl3 for 40 

min. Excess iron was removed by washing with 0.1% HOAc at 10 μL/min for 10 min before 

loading the IP elution for 1 hour at room temperature. Nonspecific peptides were removed 

by washing with 25% MeCN, 1% HOAc, 100 mM NaCl for 10 min at 10 μL/min. The 

IMAC column was equilibrated with 0.1% HOAc for 10 min at 10 μl/min and bound 

phosphopeptides eluted onto a 10-cm self-packed C18 capillary precolumn [100 μm ID × 10 

cm packed with 10 μm C18 beads (YMC gel, ODS-A, 12 nm, S-10 μm, AA12S11)] with 40 

μL of 250 mM Na2HPO4, pH 8.0. The loaded precolumn was rinsed with 0.2 M acetic acid 

for 10 min before LC-MS analysis.

LC-MS/MS

The washed pre-column was connected in series with a self-packed analytical capillary 

column [50 μm ID × 12 cm packed with 5 μm C18 beads (YMC gel, ODS-AQ, 12 nm, S-5 

μm, AQ12S05)] with an integrated electrospray tip (~1 μm orifice). Peptides were eluted 

using a 140-min gradient from aqueous (0.2 M acetic acid) to organic [0.2 M acetic acid, 

70% (v/v) MeCN] at a flow rate of 0.2 μL/min with a flow split >99%. Peptides were 

ionized with a spray voltage of 2 kV and injected directly into a Thermo Q Exactive Hybrid 

Quadrupole-Orbitrap mass spectrometer. The 15 most abundant precursor peaks were 

selected in information-dependent acquisition mode with an isolation width of 2 m/z, an 

AGC target of 3e6, a maximum injection time of 350 ms, and previously selected peaks 

excluded for 30 s.

MS data analysis

Raw mass spectral data files were searched against the SwissProt database containing Homo 
sapiens protein sequences (20,199 sequences), using Mascot version 2.4 (Matrix Science). 

TMT reporter quantification was extracted and isotope-corrected using Proteome Discoverer 

software (Thermo) and was further normalized based on median relative protein 

quantification ratios obtained from total protein expression analysis. For each peptide, 

relative quantification was represented as a ratio between ion intensities for experimental 

conditions and normalization channel.

Peptide chip array

Biological quadruplicates of BT474 cells were treated for 6 or 48 hours with 100 nM 

trastuzumab, 10 μM ARRY-380, the combination of 100 nM trastuzumab and 10 μM 

ARRY-380 or 100 nM DARPin 6L1G. Cells were washed with ice-cold PBS and scraped in 

PBS containing Halt phosphatase and Halt protease inhibitor cocktails (Pierce) on ice. Cells 

were centrifuged at 300 rpm for 2 min, and afterwards pellets were lysed by addition of M-

PER mammalian extraction buffer (Pierce) containing both inhibitor cocktails for 30 min at 

4°C on a rocker. Cell extracts were cleared by centrifugation for 10 min at 12,000 rpm at 

4°C and protein concentrations were determined by BCA assays (Pierce). Aliquots of 1 
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mg/ml were prepared and snap-frozen in liquid nitrogen. 5 μg of protein extract was used for 

the PTK array protocol (V1.9) and 1.5 μg for the STK array protocol (V4.1). Measurements 

were performed on a Pamstation12 from PamGene (Wolvenhoek 10, ‘s-Hertogenbosch, 

Netherlands). Briefly, the PTK array was processed in a single-step reaction. Cell extracts, 

ATP and FITC-labelled pY20 antibody were incubated on the chip and the phosphorylation 

of the individual Tyr-peptides was followed by fluorescence detection in real time. The STK 

array was processed in a two- step reaction. First, the cell extracts, ATP and the primary 

antibody mixture was incubated with the chip for 110 min. Second, the reaction mix was 

removed and the secondary FITC-labelled antibody was added. Development of the 

fluorescence signal was detected again by Alexa488 fluorescence. Signal intensities were 

analyzed in the Bionavigator software (PamGen) as a function of time and expressed as log2 

fold-ratio versus DMSO treatment after 6 or 48 hours, respectively.

Software and statistical analysis

One-sided Student’s f-test was performed in SigmaPlot. Heatmaps and Pearson cluster 

correlation was performed in Perseus from the Max Planck Institute of Biochemistry (39). 

Venn diagram analyses were performed in Venny2.0 (http://bioinfogp.cnb.csic.es/tools/

venny/index.html). Direct interaction networks were generated in MetaCore V6.31 (https://

portal.genego.com/). Functional protein association networks were generated in String 

database V10.5 (https://string-db.org/). Cognate kinase prediction was performed in an 

offline version of a group-based prediction system (GPS3.0) (http://gps.biocuckoo.org/

userguide.php). High-throughput image analysis was performed in Gen5 Image+ from 

Biotek. Western blot analysis was performed in the Odyssey application software. Network 

plots were generated in Cytoscape 3.5.1 (http://cytoscape.org/) and analyzed by Network 

Analyzer 2.7 and ClusterMaker2.0 V1.1.0 (http://www.cgl.ucsf.edu/cytoscape/cluster/

clusterMaker.html).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Quantitative effects and patterns in the phospho-Tyr kinome in BT474 cells after anti-
HER2 treatments by TMT LC-MS/MS.
(A) Study design, sample preparation, and dataset analysis. (B) Global changes of Tyr 

peptide phosphorylation in BT474 cells after 6 and 48 hours of continuous treatment with 

100 nM trastuzumab (TZB), 10 μM ARRY-380 (ARRY), the combination of ARRY-380 (10 

μM) and trastuzumab (100 nM) (A+T), or 100 nM biparatopic DARPin (6L1G), as 

determined by TMT LC-MS/MS. 95% confidence interval (CI) of increase, decrease, or no 

change was based on the two-fold standard deviation of the data from the 48-hour DMSO 
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treatment and used to determine upper and lower log2 fold-change ratio (LFC) thresholds. 

Plots are based on mean values of two biological replicates. (C) Venn diagram of the 

fractions of p-Tyr peptides identified in (B) of which the abundance was reduced below the 

threshold (95 % CI) after 48 hours of the indicated treatment. Linked tables list the 

associated kinases and specific Tyr (Y) phosphosites. (D and E) Pearson clustering of 471 

unique p-Tyr peptides from the TMT LC-MS/MS dataset (D) and pairwise comparison of 

LFC values computed by absolute Pearson correlation coefficient (PCC) (E). Data are 

analyzed from the 2 biological replicates described in (B).
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Fig. 2. HER2-dependent “off-state” network and feedback activation of Tyr kinases in BT474 
cells by TMT LC-MS/MS.
(A and B) Direct protein interaction network derived from a search of the MetaCore 

database in which p-Tyr peptide phosphorylation was significantly inhibited (below 95 % 

CI) after the 48-hour A+T treatment (Fig. 1B). Node (“hub”) size indicates number of 

connections (edges) to other nodes (degree) or proteins, as determined by the MetaCore 

algorithm (n=2 biological replicates) and edges represent known binding, phosphorylation or 

dephosphorylation events between both proteins. (C) Comparison of the fractions of 
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persistently phosphorylated Tyr peptides (all which are not downregulated) after 48 hours of 

treatment, arranged by Venn diagram and tables of the associated kinases. A consensus of 54 

p-Tyr peptides was identified after TZB_48h and ARRY_48h treatment (n=2 biological 

replicates). (D) Heat map of time-dependent Tyr phosphorylation trends of the 54 consensus 

peptides from Fig. 2C. Trends were calculated from the slope of a simple linear regression 

on LFC values from 6 to 48 hours of treatment based on the mean of two biological 

replicates. (E) Pairwise comparison of Tyr phosphorylation trends computed by absolute 

PCC (n=2 biological replicates).
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Fig. 3. Peptide chip array, cognate kinase prediction, and combined adaptive kinase response 
analysis in BT474 cells.
(A) Heat map of up- and down-regulated Tyr (PTK, top) and Ser/Thr (STK, bottom) bait 

peptide phosphorylation versus DMSO treatment by peptide chip array (n=4 biological 

replicates). BT474 cells were treated the same as in Fig. 1B. (B) Volcano plots of the bait 

peptide phosphorylation from PTK (top) and STK (bottom) chip arrays in (A), which shows 

significantly up- and downregulated peptide phosphorylation as defined by ANOVA and 

post-hoc Dunnett’s test versus DMSO treatment (p≤ 0.05). (C-D) Sum of scores from group-

based prediction system (GPS) based on significantly upregulated phosphorylation of Tyr- 

(C) and Ser/Thr- (D) bait peptides (as determined in B). (E) Combined adaptive kinase 

response analysis in onion diagram representation, depicting adaptive signaling proteins (as 

nodes) based on co-appearance in TMT data and in the set of predicted kinases from peptide 

chip array data after 48 hours’ treatment with ARRY (left) or TZB (right) in a high-

confidence interaction network (edges) from String DB. Inner core (dark grey) represents 
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proteins from the consensus of the 54 persistently phosphorylated Tyr peptides after ARRY 

and TZB treatment from the TMT data (Fig. 2C). Middle layer (light grey) represents 

remaining hits form same TZB treatment (Fig. 2C). Node size and color indicates sum of 

GPS scores (predicted active) from indicated treatment (from C and D). Outer layer (white) 

represents String DB interactions to additional predicted kinases (from C and D) after TZB 

treatment. (F) Comparison of the upregulated Tyr- and Ser/Thr- kinases from (E).
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Fig. 4. FAK1 activation in response to AKT inhibition and effects of combination treatments.
(A) XTT cell proliferation assays of HER2-positive breast cancer cell lines with or without 

PIK3CA point mutations [BT474 (K111N), SKBR3 (WT), HCC1419 (WT), MDA-MB361 

(E345K), MDAMB453 (H1047R) and UACCC893 (H1047R)] treated for 4 days with the 

indicated concentration of HER2-targeted therapy (TZB, 6L1G, ARRY, A+T), AKT 

inhibitor (MK2206), or FAK inhibitor (PF562271). Data are mean ± SD of n=3 experiments. 

(B) Western blot analysis of a HER2-dependent signaling cascade after 6 (top) and 48 hours 

(bottom) of treatment with the indicated drug (DMSO, 100 nM TZB, 100 nM 6L1G, 10 μM 
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ARRY380, 10 μM PF562271, or 5 μM MK2206) or combination (A+T, 10 μM ARRY380 

and 100 nM TZB). Blots are representative of 2–4 independent experiments. (C) XTT cell 

proliferation assays of BT474 and MDAMB361 cells after 4 days of continuous treatment 

with titration of the FAK1-inhibitor PF562271, and subsequent addition at day 0 (less than 5 

min) of the indicated anti-HER2 agents TZB (100 nM) and 6L1G (100 nM), or the AKT-

inhibitor MK2206 (5 μM). Data are mean ± SD of n=3 experiments. (D) High-throughput 

microscopy analysis of breast cancer cells continuously treated for 3 days 10 μM ARRY-380 

or 10 μM PF562271 in combination with 100 nM TZB or 6L1G, then stained with 

propidium iodide (PI) and Hoechst-33342 to detect the number of membrane-permeable (PI-

positive, inferred as dead) cells in the population. Data are mean ± SD of n=5 experiments. 

***P ≤ 0.005 by one-sided pairwise t-test. (E) Western blot analysis for the indicated 

proteins in BT474 and MDA-MB361 cells treated for 2 days with 10 μM PF562271 or 5 μM 

MK2206, either alone or in combination with either 100 nM TZB or 6L1G. Blots are 

representative of 2 independent experiments.
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