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ABSTRACT
The TARGET OF RAPAMYCIN-SNF1-RELATED PROTEIN KINASE 1 (TOR-SnRK1) arms race is a key regulator
of plant growth in response to energy fluctuations and stress. Recently, we have identified that two
members of the FCS-LIKE ZINC FINGER (FLZ) protein family, FLZ6 and 10, repress SnRK1 signaling and
thereby involved in the activation of the TARGET OF RAPAMYCIN (TOR) signaling. In this study, we
demonstrate that FLZ6 and 10 are also involved in the regulation of osmotic stress responses.
Downregulation of FLZ6 and 10 results in enhanced expression of stress-responsive genes and better
resilience towards osmotic stress at the seedling stage. These results indicate that FLZ6 and 10 are
involved in the regulation of stress mitigation in plants through directly affecting SnRK1 signaling.
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Organisms constantly monitor the energy and nutrient sta-
tus to optimize growth according to nutrient/energy avail-
ability. The TARGET OF RAPAMYCIN- SNF1-RELATED
PROTEIN KINASE 1 (TOR-SnRK1) arms race in response
to energy status lies in the centre of nutrition-dependent
growth in plants.1,2 In response to energy and nutrient
sufficiency, TOR is activated which accelerates growth
through the promotion of protein synthesis, translation rein-
itiation, cell cycle progression etc.3-5 Upon nutrient defi-
ciency, SnRK1 inhibits TOR pathway and through other
phosphorylation events prepare the cell to survive under
nutrient deficiency2 Energy and stress signaling are highly
interconnected. Plants balance abiotic stress and growth
response through the interaction of TOR-SnRK1 and ABA
signaling. The TOR and ABA signaling were found to be
reciprocally regulated in response to stress and nutrient
sufficiency signals6 During normal growth conditions, TOR
represses ABA signaling through inhibiting the activity of
PYRABACTIN RESISTANCE 1-LIKE (PYL) receptors. In
response to stress, the SNF1-RELATED PROTEIN KINASE
2 (SnRK2), which is activated through PYL, phosphorylates
the regulatory component of TOR, REGULATORY-
ASSOCIATED PROTEIN OF TOR (RAPTOR) which culmi-
nates in the inhibition of TOR activity6 ABA positively
regulates SnRK1 signaling by inhibiting clade A type 2C
protein phosphatases (PP2Cs), which negatively regulate
SnRK1, SnRK2, and SnRK3 family members7 Intriguingly,
the upstream activating kinases of SnRK1, SnRK1-
ACTIVATING KINASE 1 and 2 (SnAK1 and 2) can phos-
phorylate and activate SnRK3 family members8 Collectively,
these studies indicate that the balance between TOR, ABA,

and SnRKs is necessary for optimizing growth and abiotic
stress response.

The FCS-LIKE ZINC FINGER (FLZ) proteins are a class of
land-plant specific C2-C2 zinc finger proteins which promis-
cuously interact with the subunits of SnRK1.9-12 In
Arabidopsis, the expression of this multigene family is highly
responsive to sugar and energy status and various abiotic
stresses and are proposed to work as adaptors of SnRK1
complex.11-14 Recently, we found that two starvation-
induced FLZ genes, FLZ6 and FLZ10, act as negative regula-
tors of SnRK1 signaling15 Mutants of these genes accumulated
more SnRK1α1, which culminated in enhanced SnRK1 activ-
ity and attenuated growth even under favourable growth
conditions. We found that the inhibition of TOR signaling
due to the enhanced SnRK1 activity is the major reason for
this growth suppression. Taken together, our results suggest
that FLZ6 and 10 are involved in the regulation of TOR-SnRK
1 dynamics and energy-dependent growth in plants. Similar to
SnRK1α1 overexpression lines, mutant lines of FLZ6 and 10
were ABA hypersensitive indicating that these genes may have
a role to play in ABA and stress responses15 The role of TOR-
SnRK1 dynamics in controlling stress responses and the ABA
hypersensitivity of flz6 and flz10 mutants prompted us to
analyze whether FLZ6 and 10 are also involved in regulating
stress response in plants. We focused our study on osmotic
stress responses because TOR-SnRK1 dynamics is implicated
in osmotic stress mitigation. Osmotic stress represses TOR
signaling and understandably, the mutant lines of TOR and
RAPTOR show altered sensitivity towards osmotic stress.6,16

SnRK1α1 was found to be essential for the induction of
autophagy in response to mannitol treatment17
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In order to test the role of FLZ6 and 10 in osmotic stress at
the physiological level, we used previously characterized
mutant lines (flz6.1 and flz10.1) with enhanced SnRK1 activity
for the physiological assays15 Stratified seeds were grown for
5 days in 0.5X MS medium. Five days after germination
(DAG) seedlings were transferred to 0.5X MS medium sup-
plemented with different concentrations (0, 100, 200 and
300 mM) of mannitol and phenotype was compared with
control seedlings after 5 days (Figure 1A). Mannitol treatment
caused a dose-dependent reduction in the primary root length
and fresh weight in all lines (Figure 1B). As observed
previously,15 the mutant lines showed a significant reduction
in the growth parameters in control conditions. However,
growth inhibition in response to stress treatment in the
mutants was significantly attenuated at many concentrations.
The flz6.1 line showed stronger resistance towards mannitol
treatment with significantly long primary root growth at
severe osmotic stress condition (300 mM mannitol). The

flz10.1 line also showed resistance towards osmotic stress
treatment especially at severe osmotic stress condition
(Figure 1B).

Overexpression of SnRK1α1 cause induction of many stress-
responsive genes.18,19 We tested the level of five stress-
responsive genes in 5DAG seedlings by qRT-PCR using the
primers listed in Table S1. We observed a modest increase in
the expression of many of these genes in both mutant lines
(Figure 2A). Remarkably the expression was more pronounced
in the flz6.1 in comparison with flz10.1 which correlates with
the stress response of these lines in the physiological assays. The
expression of most of these genes were also high in the pub-
lically available microarray data in which SnRK1α1 is overex-
pressed in mesophyll protoplasts (Figure 2B)19

Along with its central role in controlling adaptive responses
during energy deficiency, the role of SnRK1 in promoting
tolerance towards abiotic stresses such as drought and submer-
gence has recently been appreciated.20-22 Our physiological and

Figure 1. Osmotic stress sensitivity of flz6 and flz10 mutants. 5DAG seedlings were transferred to 0.5X MS medium supplemented with different concentrations of
mannitol and sensitivity was assayed after the 5th day of transfer. (A) The phenotype of WT and flz6.1 and flz10.1 lines with and without mannitol treatment.
(B) Primary root length and fresh weight of WT and flz mutant lines under different mannitol treatment. The bar graph represents the absolute values and the line
graph represents the reduction in the studied parameter due to mannitol treatment relative to the control experiment. The experiment was repeated three times
yielding similar results. At least 10 seedlings were used for each treatment. The letters above the bars indicate the statistical difference in the studied parameter in
the mutant in comparison with the WT grown under the same condition (Two-tailed Student’s t-test; a = p ≤ 0.001, b = p ≤ 0.01, c = p ≤ 0.05).
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gene expression assays using mutant lines indicate that FLZ6
and 10 are involved in stress responses possibly through their
effect on SnRK1α1 stability. The enhanced tolerance observed in
the mutant lines of FLZ6 and 10 could be partly due to con-
stitutive downregulation of TOR activity in these lines because
TOR activity was found to be rapidly inhibited in response to
osmotic stress.6,15,16 Further, SnRK1 is known to activate the
transcription of a wide variety of general and specific stress-
responsive genes19 Indeed, a significant overlap was observed in
the transcriptome of SnRK1 and ABA indicating synergism of
both pathways7 However, molecular nodes of SnRK1 and stress
interaction is still elusive. It would be critical to analyze whether
SnRK1 can phosphorylate and activate transcription factors and
key signaling proteins involved in the stress tolerance pathways.
FLZ proteins might be involved in these events by working as an
adaptor which can modulate the recruitment of target proteins
to the kinase complex. Future experiments will be directed at
testing these hypotheses at the molecular level. A deeper under-
standing of the intricacies of SnRK1-FLZ signaling and its
interaction with stress pathways will help us in improving
crop plants. Taken together, our recent report15 and the present
study highlights FLZ6 and FLZ10 as the land-plant specific
regulatory modules of SnRK1 and this regulation has wide
influence in controlling the growth and stress resilience in
plants.
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