Skip to main content
. 2019 Apr 12;14(6):1601952. doi: 10.1080/15592324.2019.1601952

Table 1.

Definition of energy fluxes and fluorescence transients parameters were used in the OJIP-test. These parameters are used to analyse the ‘fast’ (<1 s) chlorophyll a fluorescence transient.41

Technical fluorescence parameters Meaning
FV = FM–FO Maximum variable fluorescence
Vt = (Ft–FO)/FV Relative variable fluorescence
Fo Minimum fluorescence intensity
Fm Maximum fluorescence intensity
M0 = (ΔV/Δt) 0 ≈ 4(F0.3ms–F 0.05ms)/FV Initial slope (in ms−1) of the O-J fluorescence rise
Sm = Area/FV Normalized area between the OJIP curve and the line F = FM, which is a proxy of the number of electron carriers per electron transport chain
Efficiencies and quantum yields
δR0 = ψR0/ψE0 = RE0/ET0 Efficiency with which an electron from PQH 2 is transferred to final PSI acceptors
TR0/ABS = ϕP0 = FV/FM Maximum quantum yield of primary PSII photochemistry
ϕE0 = ET0/ABS = ϕP0× ψE0 Quantum yield of electron transport from QA to PQ
Specific energy fluxes (per active PSII)
ABS/RC = (M0/VJ)/ϕP0 Apparent antenna size of an active PSII
TR0/RC = M0/VJ Maximum trapped exciton flux per active PSII
ET0/RC = (M0/VJ)×ψE0 The flux of electrons transferred from QA to PQ per active PSII
RE0/RC = (M0/VJ)×ψR0 The flux of electrons transferred from QA to final PSI acceptors per active PSII
DI0/RC = ABS/RC–TR0/RC The flux of energy dissipated in processes other than trapping per active PSII
Quantum efficiencies, flux ratios
ϕP0 Quantum yield of the QA reduction ϕP0 = (1−F0)/FM = TR0/ABS
ϕE0 Quantum yield of the electron transport beyond QA
ϕE0 = (1−F0/FM0 = ET0/ABS
Ψ0 Probability that a trapped exciton is used for electron transport beyond QA.
ψ0 = 1−VJ = ET0/TR 0
Performance Index and derived parameters
PIABS Performance Index on absorption basis.
PI abs = RC/ABS [ϕP0/(1−ϕP0)] [ψ0/(1−ψ0)]
PIABS,total = PIABS × [δR0/(1–δR0)] Total performance index on absorption basis