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Abstract

Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier 

integrity but underlying cell signaling pathway is not fully understood at present. Here, we report 

opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO−) vs. S-

nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In 

cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress 

fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity 

participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin 

light chain) for F-actin stress fiber formation by increasing ONOO− levels. On the other hand, 

thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO 

metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling 

pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism 

(GSNO vs. ONOO−) toward ONOO− synthesis in cell signaling for endothelial barrier disruption. 

Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental 

autoimmune encephalomyelitis (EAE), ONOO− scavenger treatment as well as GSNO treatment 

were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of 

mononuclear cells. Taken together, these data document that eNOS-mediated NO production and 
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following redox-dependent NO metabolites (ONOO− vs. GSNO) are potential therapeutic target 

for CNS microvascular disease (traumatic and inflammatory) pathologies.
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1. Introduction

The blood–brain barrier (BBB) is a specialized microvascular endothelial structure in the 

central nervous system (CNS). There is growing body of evidence that BBB disruption is 

associated with multiple CNS diseases including ischemic and hemorrhagic stroke, 

traumatic brain injury (TBI), multiple sclerosis (MS), and Alzheimer’s disease [1]. In these 

disease conditions, the BBB disruption contributes to extravasation of peripheral immune/

inflammatory cells and blood-borne toxic molecules as well as edema formation leading to 

CNS inflammation and neurodegeneration [2]. BBB disruption is a complex and multistep 

process involving several interrelated factors, such as hemostasis (e.g. thrombin), oxidative 

stress, angiogenesis, and inflammation [2]. Recent studies report that the early events of 

BBB disruption are partially reversible [3; 4; 5], thus regarded as a potential target for 

therapeutic interventions [5]. At present the precise mechanism of BBB disruption is not 

fully understood. However, intracellular Ca2+ ([Ca2+]I) influx and RhoA activation induced 

sustained phosphorylation of endothelial myosin light chain (MLC) and assembly of F-actin 

stress fiber leading to deformation of endothelial cells and disassembly of tight junctional 

complex have been proposed as early events of BBB disruption [6].

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is known to play a 

key role in vascular/endothelial functions [7]. NO is known to exert its biological effect 

through cGMP-dependent mechanisms [8]. Alternatively, NO also exerts its action via 

formation of secondary redox derivatives, such as peroxynitrite (ONOO−) and S-

nitrosoglutathione (GSNO) [9]. ONOO−, the most powerful oxidative/nitrosative agent, is 

generated by reaction between NO and superoxide anion (O2
•− ) under oxidative stress 

conditions and has been implicated in various pathological events via irreversible 

modification of protein tyrosine (3-nitrotyrosine) [10]. On the other hand, GSNO, the most 

abundant low-molecular-weight S-nitrosothiol synthesized by reaction between NO and 

glutathione (GSH), participates in various physiological cellular processes via reversible 

modification of protein thiols, a process termed S-nitrosylation [11; 12]. GSNO is known to 
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be implicated in cardiovascular hemodynamics [13], inhibition of platelet activation [14], 

and modulation of inflammatory processes [15; 16].

In endothelial cells, eNOS derived NO signaling is known to induce RhoA-mediated cell 

signaling for endothelial barrier dysfunction via nitration of RhoA (Tyr34) [17; 18]. On the 

other hand, NO is also reported to inhibit RhoA activity and protects endothelial barrier 

function by S-nitrosylation of RhoA (Cys16, Cys20, and Cys159) [19]. These studies suggest 

that NO may play double-edged roles (protective or deleterious) in regulation of endothelial 

barrier integrity via its conversion to different redox metabolites (GSNO vs. ONOO−) and 

thus different type of protein modifications (S-nitrosylation vs. tyrosine-nitration). However, 

mechanisms underlying redox dependent NO signaling (ONOO− vs. GSNO) for endothelial 

barrier regulation are not well understood at present. Therefore, the aim of this study is to 

understand mechanisms underlying GSNO vs ONOO− mediated regulation of cell signaling 

pathways for early event of endothelial barrier disruption (e.g. RhoA/Ca2+ influx dependent 

MLC phosphorylation) using in vitro cell culture model of thrombin-induced endothelial 

hyper-permeability.

Thrombin participates in key processes of vascular hemostatic process for control of blood 

loss [20]. In addition, thrombin also induces non-hemostatic pathological processes via 

activation of protease-activated receptors (e.g. PAR1, PAR3, and PAR4) [21; 22; 23]. In 

endothelial cells, thrombin activates PAR1 by cleaving and unmasking of tethered ligand for 

self-activation [24; 25]. Activated PAR1 induces MLC kinase (MLCK) activation via 

inducing inositol-1,4,5-trisphosphate (IP3) mediated [Ca2+]i influx [26]. The PAR1 

activation also induces RhoA/ROCK activation via regulation of G-proteins [27; 28] leading 

to inhibition of MLC phosphatase (MLCP). Consequently, activation of MLCK and 

inhibition of MLCP lead to increased phosphorylation of Ser19 of MLC for assembly of 

stress fibers and focal adhesions [29]. Because of the similarity in these cell signaling 

pathways, we studied thrombin-induced hyper-permeability of human brain microvessel 

endothelial cell (hBMVEC) in culture as an in vitro model for early events in BBB 

disruption. Using this in vitro model, here, we report that thrombin-induced endothelial 

eNOS activation for NO synthesis and its conversion to ONOO− increases thrombin-induced 

[Ca2+]i influx, RhoA activation, and thus MLC phosphorylation for endothelial stress fiber 

formation associated with endothelial barrier disruption. On the other hand, GSNO inhibits 

thrombin-induced cell signaling for MLC phosphorylation and endothelial stress fiber 

formation thus barrier disruption. These observations underscore a role for balance between 

eNOS derived NO metabolites (ONOO− vs. GSNO) in cell signaling for endothelial barrier 

integrity.

Secondly, this study also evaluated the potential efficacies of exogenous GSNO and ONOO− 

scavenging compound FeTPPS on BBB disruption induced by TBI and experimental 

autoimmune encephalomyelitis (EAE), an animal model for MS. TBI is the leading cause of 

long‐term neurobehavioral dysfunctions in young as well as in adults. TBI is caused by 

mechanical forces on brain that results in primary injury, such as shearing injuries, 

contusions, and hematomas, as well as vascular and parenchymal damage leading to BBB 

disruption that results in secondary injury, such as edema, inflammation, and hyper-

excitability [30]. MS is a debilitating autoimmune inflammatory CNS disorder. The disease 
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is induced by activation of myelin specific autoreactive lymphocytes and their CNS 

infiltration resulting in encephalitogenic inflammatory disease [31]. Dysregulation of the 

BBB and transendothelial migration of activated leukocytes are among the earliest 

cerebrovascular abnormalities seen in MS brains [32]. Therefore, protection of early event of 

BBB disruption is important for preventing the progression of secondary brain injury in TBI 

[33] as well as the infiltration of peripheral immune and inflammatory cells under CNS 

inflammatory disease conditions [32]. In this study, we also reports that BBB disruption in 

animal model of TBI and EAE are inhibited by ONOO− scavenger (FeTPPS) or exogenous 

GSNO treatment and thus identifying redox-dependent NO metabolites (ONOO− vs. GSNO) 

as a potential therapeutic targets for neurovascular integrity in neurological disorders.

2. Material and Methods

2. 1. Reagents

Thrombin was purchase from Sigma-Aldrich (Cat#: T4393, St. Louis, MO). L-NIO [N5-(1-

Iminoethyl)-L-ornithine dihydrochloride], SIN-1 (3-morpholinosydnonimine chloride), and 

BAPTA [1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid] were purchase from 

Tocris (Cat#: 0546, 0756, and 2786, respectively, Minneapolis, MN). RhoA inhibitor I 

(highly purified C3 transferase) was purchased from Cytoskeleton Inc. (Cat# CT04). 

FeTPPS [5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato Iron (III), Cl] and DETA-NO 

(diethylamine NONOate/AM) was purchase from Millipore-Calbiochem (Cat#: 341492 and 

292505, respectively, Billerica, MA). DAF-FM diacetate (4-amino-5-methylamino-2’,7’-

difluorofluorescein diacetate) was purchased from Thermofisher Scientific (Cat# D-23842, 

Waltham, MA) S-nitrosoglutathione (GSNO) was purchase from World precision 

instruments (Cat#: GSNO-100, Sarasota, FL). The effective concentration of the GSNO was 

calculated from the optical absorbance at 338 nm and the reported molar extinction 

coefficients as described previously [34].

2.2. Cell culture

Primary human brain microvascular endothelial cells (hBMVECs) were purchased from 

Angio-Proteomie (Cat#: cAP-0002, Atlanta, GA). The cells were cultured in cell culture 

flasks or plates precoated with Quick Coating Solution (Angio-Proteomie; Cat#: cAP-01) 

and maintained in Endothelial Growth Medium (Angio-Proteomie; Cat#: cAP-02) at 37°C 

under 5% CO2/95% air. When the cells were almost confluent, the medium was replaced 

with endothelial basal medium (Angio-Proteomie; Cat#: cAP-03) containing 0.5% fetal 

bovine serum (FBS; Life Technologies, Grand Island, NY) about 8–12 hours before the 

experiment. No institutional approval was required for this study. The study was not pre-

registered.

2.3. Assay of trans-endothelial electrical resistance (TEER)

For evaluation of the endothelial barrier function, hBMVECs were plated on fibronectin-

coated polycarbonate filters (Transwell system, Corning, Midland, NC) containing 

Endothelial Growth Medium (Angio-Proteomie Cat#: cAP-02). The medium was renewed 

every other day. Five daysm after seeding, the medium was replaced with Endothelial Basal 

Medium (Angio-Proteomie Cat#: cAP-03) containing 0.5% FBS and incubated for 2 days. 
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Following drug treatments, transendothelial electrical resistance (TEER) was measured by 

EVOM2 (Word Precision Instruments) as described previously [35].

2.4. RhoA activity assay

RhoA activity in hBMVECs was analyzed by RhoA Activation Assay Kit (Abcam Cat#: 

ab211164, Cambridge, MA). Briefly, following drug treatments, the cells were lysed with 

1XAssay buffer provided in the kit. Lysates were centrifuged (14,000 x g for 10 sec), and 

supernatants were incubated with agarose beads coupled to GST-Rhotekin-Rho binding 

domain (RBD) for 2 h at 4 °C. Beads were then washed with 1XAssay buffer and GTP-

bound RhoA was eluted with 2X SDS-PAGE sample buffer. Amounts of active (GTP-bound) 

RhoA were determined by Western blot analysis using antibody specific to RhoA (Abcam).

2.5. Assay for F-actin stress fiber development and endothelial cell contraction

hBMVECs were cultured on fibronectin-coated chamber slides (BD Bioscience). Following 

drug treatments, the cells were fixed with 4% (wt/vol) paraformaldehyde, permeabilized by 

the addition of 0.25% Triton X-100, and blocked by 2% bovine serum albumin (BSA) in 

phosphate buffered saline (PBS). The slides were immunostained for phospho-MLC (Ser19) 

as well as stained with Phalloidin for F-actin (F-actin Visualization Biochem kit, 

Cytoskeleton, Inc, Cat#: BK005, Denver, CO) and DAPI for nucleus (4′,6-diamidino-2-

phenylindole; ThermoFisher Scientific, Houston, TX). The cells were imaged by BX60 

Olympus fluorescent/light microscope equipped with DP-70 digital camera (Olympus, 

Tokyo, Japan). The density of fluorescence was analyzed by ImageJ (NIH, Bethesda, MD).

2.6. Assay for intracellular Ca2+ influx

Intracellular Ca2+ concentration ([Ca2+]i) was measured with Fluo-4 Direct Calcium Assay 

Kit (Thermo Fisher Scientific, Cat#: F10471, Grand Island, NY). Briefly, culture medium in 

the 96-well plate was replaced with a Ca2+ sensitive dye Fluo-4 in an endothelial basal 

medium. After 30 min incubation, the dye was removed and cells were incubated with the 

original medium with or without the drugs at 37°C for 15 min. Following thrombin 

treatment, time course changes of fluorescent intensity were quantified using a CLARIOstar 

multi-well fluorometer (BMG Labtech, Cary, NC).

2.7. Assay of intracellular NO production

The intracellular NO production was analyzed by DAF-FM fluorescence intensity. 

hBMVECs were cultured in 96-well plates and treated with 10µM DAF-FM diacetate for 

60min. Following the washing of the cells with fresh medium, the cells were incubated with 

thrombin (0.1 unit/ml) for 20min. The intracellular NO production was quantified using a 

CLARIOstar multi-well fluorometer (495nm for excitation and 515nm for emission).

2.8. Cell viability assay

Cell viability was determined by mitochondrial conversion of 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan as described previously [36]. 

hBMVECs were cultured in 96-well plates and treated with 1/20 media volume of MTT 

reagent (5 mg/ml; Sigma-Aldrich). Following incubation for 2 hours, the cells were washed 
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with PBS and dissolved in isopropanol, including 0.1N HCl. The index of cell viability was 

measured at an optical density of 570 nm by SpectraMax 190 (Molecular Devices, 

Sunnyvale, CA).

2.9. Western blot analysis

Western immunoblot analysis was performed by standard method using 50µg of cell lysates. 

Following the SDS-PAGE electrophoresis, proteins were transferred from the gel onto the 

Polyvinylidene fluoride membrane (GE Healthcare Life Sciences, Marlborough, MA). 

Membranes were blocked with non-fat dry milk (Santa Cruz Biotechnology) or I-Block™ 

(ThermoFisher Scientific, Waltham, MA) for detection of phospho-proteins and incubated 

with primary antibodies, such as MBP (Santa Cruz Biotech Cat#: sc13914; RRID: 

AB_648798), phospho-(Ser19) MLC (Abcam, Cat#: ab2480; RRID: AB_303094), MLC 

(Abcam, Cat#: ab79935; RRID:AB_1952220), β-actin (Santa Cruz Biotechnology, Cat#: 

sc-47778; RRID:AB_2714189), phospho-eNOS (Ser1177) (Cell Signaling, Cat#: 9571; 

RRID: AB_329837, Danvers, MA), eNOS (Cell Signaling, Cat#: 32027), RhoA (Santa Cruz 

Biotechnology; Cat#: sc418; RRID: AB_628218) or 3-nitrotyrosine (Abcam, Cat#: 

ab61392; RRID: AB_942087). Following washing, the membranes were incubated with 

horseradish peroxidase conjugated secondary antibody (Jackson Immunoresearch Lab, West 

Grove, PA), washed and then incubated with ECL reagent (Amersham Life Science, 

Pittsbrugh, PA), and exposed to Amersham Hyperfilm ECL film.

2.10. Assay for protein-associated nitrotyrosine

Cellular levels of protein-associated 3-nitrotyrosine were analyzed by ELISA Kit (Abcam, 

Cat#: ab116691) and Western blot analysis using antibody specific to 3-nitrotyrosine 

(Abcam, Cat#: ab61392). For the ELISA, hBMVECs were lysed in extraction buffer 

provided with the kit followed by centrifugation at 16,000 x g 4°C. The cell lysate 

supernatants were subjected to protein quantification with Bio-Rad DC protein assay kit 

(Bio-Rad, Hercules, CA) and the equal amounts of proteins (500 µg) were loaded onto 96 

well microplate coated with 3-nitrotyrosine capture antibody and followed by incubation 

with biotin-conjugated 3-nitrotyrosine detector antibody. Following washing, the plates were 

incubated with HRP-conjugated streptoavidin and the levels of 3-nitrotyrosine were 

measured by incubation with 3,3’,5,5’-tetramethylbenzidine solution and colorimetric 

analysis at 600 nm using SpectraMax 190 Microplate Reader (Molecular Devices, 

Sunnyvale, CA). For analysis of degree of RhoA tyrosine nitration, the cell lysates were 

immunoprecipiated with antibody specific to 3-nitrotyrosine (Abcam) and the levels of 

tyrosine nitrated RhoA were analyzed by Western analysis for RhoA.

2.11. Assay for protein-associated S-nitrosylation

Protein S-Nitrosylation was analyzed by using biotin-switch method as described in our 

previous reports [16; 36]. hBMVECs were lysed in 250 mM HEPES, pH 7.7, 1 mM EDTA, 

0.1 mM neocuproine, 1% Nonidet P-40, 150 mM NaCl, 1 mM 

phenylmethanesulfonylfluoride, 20mM methyl methanethiosulfonate (MMTS), 80 µM 

carmustine, protease inhibitor mixture (Sigma-Aldrich), and mixed with an equal volume of 

25 mM HEPES, pH 7.7, 0.1 mM EDTA, 10 µM neocuproine, 5% SDS, 20 mM MMTS and 

incubated at 50°C for 20 min. Following acetone precipitation, the precipitates were 
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resuspended in 25 mM HEPES, pH 7.7, 0.1 mM EDTA, 10 µM neocuproine, 1% SDS and 

mixed with two volumes of 20 mM HEPES, pH 7.7, 1 mM EDTA, 100 mM NaCl, 0.5% 

Triton X-100. The S-nitrosylated proteins were then modified with biotin in 25 mM HEPES, 

pH 7.7, 0.1 mM EDTA, 1% SDS, 10 µM neocuproine, 10 mM ascorbate sodium salt, and 0.2 

mM N-[6-(biotinamido)hexyl]-30-(20-pyridyldithio) propionamide (biotin-HPDP, Pierce). 

Following acetone precipitation, biotinylated (S-nitrosylated) proteins were analyzed by 

Western analysis. For detection of S-nitrosylated RhoA, the biotinylated proteins were pull 

down with neutravidin-agarose and followed by Western analysis for RhoA.

2.12. Controlled cortical impact (CCI) rat model of focal TBI

All animals used in this study received humane care in compliance with the Medical 

University of South Carolina’s (MUSC) guidance and the National Research Council’s 

criteria for humane care. Animal procedures were approved by the institutional animal care 

and use committee of MUSC (AR# 2703). For generation of CCI model of TBI, young adult 

male (~3–4 months old) Sprague Dawley rats weighing between 260–300 g were randomly 

divided into four groups: 1) TBI animals treated with vehicle (TBI; n=13), 2) TBI with 

GSNO (0.05 mg/kg body weight/i.v.) treatment (TBI+GSNO; n=13), 3) TBI with FeTPPS (3 

mg/kg body weight, i.v.) treatment (TBI+FeTPPS; n=13), 4) sham-operated treated with 

vehicle (Sham; n=13). The group size was determined by power analysis based on our 

previous data [37; 38]. Ketamine (90 mg/kg body weight) and xylazine (10 mg/kg body 

weight) as surgical anesthesia were administered intraperitoneally. Analgesic buprenorphine 

was administered pre-emptively to alleviate pain following surgery. Utilizing aseptic 

techniques, CCI injury was produced as previously described from our laboratory [37; 38] 

and others [39; 40]. A cortical contusion was produced on the exposed cortex using a 

controlled impactor device as described in our previous TBI studies [37; 38]. Immediately 

after injury, the skin incision was closed with nylon sutures. Lidocaine jelly (2%) was 

applied to the lesion site to minimize any possible infection/discomfort. Sham animals had 

no cortical impact but underwent the same procedure otherwise.

2.13. Evaluation of BBB disruption by Evans blue (EB) extravasation

BBB leakage was assessed as previously described from our laboratory [37; 38]. The rats 

received 100 μl of a 5% solution of EB in saline administered intravenously 4 hours 

following CCI. At 24 hours, cardiac perfusion was performed under deep anesthesia with 

200 ml of saline to clear the cerebral circulation of EB. The brain was removed, 

photographed, and sliced. The brain tissues were homogenized in 750 μl of N, N-

dimethylformamide (DMF) and centrifuged at 10,000 x g for 25 minutes, and EB content in 

supernatant was fluorimetrically analyzed (λex 620 nm, λem 680 nm).

2.14. Measurement of edema (brain water content)

At 24 h following CCI, animals were euthanized to determine brain water content (edema) 

as described earlier [37; 41]. The cortices, excluding the cerebellum, were quickly removed, 

and the contralateral and ipsilateral hemispheres separately weighed. Each hemisphere was 

dried at 60°C for 72 hours, and the dry weight was determined. Water content was calculated 

in ipsilateral hemisphere as: water content (%) = (wet weight – dry weight)/wet weight x 

100.
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2.15. EAE induction

EAE was induced as described previously [42]. Animal procedures were approved by the 

institutional animal care and use committee of MUSC (AR# 1644). Briefly, female 

C57BL/6J mice of 8–12 weeks of age weighing 18–22g (The Jackson Laboratory, Bar 

Harbor, ME, USA) were randomly divided into four groups: 1) EAE animals treated with 

vehicle (EAE; n=8), 2) EAE with GSNO (1 mg/kg body weight per day; i.p.) treatment 

(EAE+GSNO; n=12), 3) EAE with FeTPPS (30 mg/kg body weight per day; i.p.) treatment 

(EAE+FeTPPS; n=8), 4) control with vehicle (Ctrl; n=8). The group size was determined by 

power analysis based on our previous data [42].Then, the mice were immunized 

subcutaneously in the flank regions with MOG35–55 peptide (MOG; 200ug; Peptide 

International) emulsified (1:1) in 100ul complete Freund’s adjuvant (CFA) on day 0 and day 

7. Additionally, 200 ng of Pertussis toxin (PTX; Sigma-Aldrich, St Louis, MO) was given on 

day 0 and day 2 by i.p. injection. PTX used as per the standardized protocol reported by us 

and other investigators for the induction of EAE [42]. Similarly, control group received 

subcutaneous injection of CFA emulsion and PTX. Clinical signs of EAE were scored in 

animal facility in a blinded fashion to experimenter between 2 and 4 pm daily by examiners 

blinded to experimental treatments using the following scale: 0 = no clinical signs of 

disease; 1 = limp tail or waddling gait with tail tonicity; 2 = waddling gait with limp tail 

(ataxia); 2.5 = ataxia with partial limb paralysis; 3 = full paralysis of one limb; 3.5 = full 

paralysis of one limb with partial paralysis of second limb; 4 = full paralysis of two limbs; 

4.5 = moribund stage; 5 = death. Starting the day of disease onset (with clinical score 

between 1 and 2), the animals were given daily treatment with drugs and vehicle (phosphate 

buffered saline).

2.16. Histological and immuno-histological analysis

Animals were anesthetized and fixed with cardiac perfusion of 4% paraformaldehyde [43]. 

Tissue samples (lumbar spinal cords) were paraffin-embedded and sectioned transversely (4-

µm-thick). Haemotoxylin and Eosin (H&E) staining was performed to assess infiltration of 

mononuclear cells. To assess the status of myelin, the sections were stained with antibody 

specific to MBP and detected with secondary antibody conjugated with immunofluorescent 

analysis. DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) was used for staining of 

nuclei. All digital images were taken using BX-60 microscope equipped with DP70 camera 

unit (Olympus, Tokyo, Japan).

2.17. Statistical analysis

Statistical analysis was performed with Graphpad Prism5. Values are expressed as mean ± 

standard deviation (SD). Comparisons among means of groups were made with a two-tailed 

Student’s t-test for unpaired variables. Multiple comparisons were performed using one-way 

ANOVA followed by Bonferroni test. A value of p < 0.05 was considered statistically 

significant.
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3. Results

3.1. Thrombin induced cell signaling for endothelial F-actin stress fiber formation and 
barrier disruption in cultured hBMVECs

RhoA/ROCK activation and [Ca2+]i influx leading to MLC phosphorylation is a critical 

event in thrombin-induced F-actin stress fiber formation and actomyosin contraction in 

endothelial cells [29]. Fig. 1A shows time- and concentration-dependent activation of RhoA 

by thrombin treatment in hBMVECs where 0.1 unit of thrombin increased maximum 

activity of RhoA at 5 min after treatment. Fig. 1B shows time lapse (i) and cumulative value 

(ii) of [Ca2+]i influx where thrombin increased [Ca2+]i influx in a concentration dependent 

manner in hBMVECs. Along with the inductions of [Ca2+]i influx and RhoA activation, 

thrombin also induced cellular levels of phospho-MLC (Ser19) in time- and concentration-

dependent manners (Fig. 1C). Accordingly, thrombin treatment induced the formation of 

robust long F-actin filaments (Phalloidin staining), which contained higher amount of 

phospho-MLC (Fig. 1D-i), so called stress fibers. Thrombin treatment also decreased trans-

endothelial electrical resistance (TEER), thus indicating endothelial barrier disruption (Fig. 

1D-ii). Inhibition of thrombin-induced MLC phosphorylation by pretreatment with RhoA 

inhibitor I (C3 transferase/C3-Tr) or [Ca2+]I chelator (BAPTA) (Fig. 1E) indicates a causal 

relationship between thrombin-induced [Ca2+]i influx or RhoA activation and MLC 

phosphorylation in hBMVECs.

3.2. Thrombin activated eNOS causes increased protein nitration (3-nitrotyrosine) but not 
protein-associated S-nitrosothiols in hBMVECs

Endothelial cells predominantly express eNOS but they are also known to express nNOS 

under certain conditions [44]. In this study, we confirmed that cultured hBMVECs 

predominantly express eNOS and do not express any other NOS isoforms, such as nNOS or 

iNOS (Fig. 2A-). Stimulation of hBMVECs with thrombin (0.1 unit/ml) induced 

intracellular NO production as detected by increased DAF-FM fluorescence, a fluorescent 

dye for imaging nitric oxide (Fig. 2A-ii). Accordingly, thrombin induced eNOS activation by 

phosphorylation at Ser1177 (Fig. 2A-iii).

NO is a short-lived molecule and its longer effect can be achieved by formation of secondary 

redox metabolites, such as GSNO and ONOO−, and subsequent modifications of protein 

thiols (S-nitrosylation) or tyrosines (tyrosine nitration) [10; 12]. Fig. 1 shows that 0.1 unit of 

thrombin is effective for activation of cell signaling for endothelial barrier disruption. 

However, the same concentration of thrombin treatment had no effect on the cellular levels 

of protein-associated S-nitrosothiol (Pr-SNO) (Figs 2B-i and ii), which is in dynamic 

equilibrium with cellular levels of GSNO [45]. However, we also observed that higher 

concentration of thrombin (0.5 unit) significantly reduced cellular levels of Pr-SNO (Figs. 

2B-i and iii). On the other hand, thrombin treatment resulted in increased cellular levels of 

protein-associated 3-nitrotyrosine (Fig. 2C), which is formed by nitration of protein tyrosine 

residues by ONOO−. Therefore, these data indicate that thrombin induces eNOS activation 

for de novo synthesis of ONOO− instead of GSNO.
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3.3. Thrombin-induced eNOS activation for ONOO− production is involved in endothelial 
barrier disruption in hBMVECs

Next, we investigated the role of thrombin-induced eNOS activation and ONOO− production 

in cell signaling pathways for MLC phosphorylation. Fig. 3A shows that inhibition of 

thrombin-induced eNOS activation by NOS inhibitor L-NIO (10 µM) inhibited thrombin-

induced induction of MLC phosphorylation. In addition, L-NIO treatment also attenuated 

thrombin-induced production of 3-nitrotyrosine (Fig. 3B). Next, we assessed the role of 

ONOO− in thrombin-induced phosphorylation of MLC by treatment of the cells with ONOO
− scavenger FeTPPS (10 µM). As shown in Figs. 3B and C, FeTTPS treatment inhibited 

thrombin-induced increases in 3-nitrotyrosine levels (ONOO−) and MLC phosphorylation, 

indicating the role of eNOS-mediated ONOO− production in thrombin-induced MLC 

phosphorylation. Next, we examined the effects of L-NIO and FeTPPS on thrombin-induced 

RhoA activation and [Ca2+]i. influx. Figs. 3D shows that treatment of hBMVECs with either 

L-NIO or FeTPPS decreased thrombin-induced RhoA activation. However, L-NIO and 

FeTTPs treatment had no effect on thrombin-induced [Ca2+]i influx (Fig. 3E). As [Ca2+]I 

influx is a critical step for activation of eNOS [46], [Ca2+]I chelator BAPTA, but not RhoA 

inhibitor I (C3-transferase), inhibited thrombin-induced eNOS activation (Fig. 3F). These 

data indicate that thrombin-induced [Ca2+]I influx is an early and upstream event to eNOS 

activation and ONOO− synthesis as well as RhoA activation and MLC phosphorylation. 

Figure 3G shows that DETA-NO (free NO donor) treatment reversed the L-NIO-mediated 

inhibition of thrombin-induced MLC phosphorylation, thus indicating a role for eNOS 

produced NO in regulation of MLC phosphorylation.

3.4. Opposing roles of GSNO vs. ONOO− in thrombin-induced cell signaling for 
endothelial barrier disruption in hBMVECs

Next, we assessed the role of GSNO vs. ONOO− treatments on thrombin-induced cell 

signaling for endothelial barrier disruption. Figure 4A show that GSNO treatment of 

hBMVECs increased the cellular levels of protein-associated S-nitrosothiols, while SIN-1 (a 

donor of ONOO−) treatment increased the cellular levels of protein-associated 3-

nitrotyrosine. In addition, GSNO also increased RhoA S-nitrosylation while SIN-1 increased 

RhoA tyrosine nitration. RhoA activity is reported to be down-regulated by S-nitrosylation 

and up-regulated by 3-nitrotyrosinylation [17; 18; 19]. Accordingly, we observed that GSNO 

treatment inhibited the thrombin-induced RhoA activation while SIN-1 treatment enhanced 

the thrombin-induced RhoA activation (Fig. 4B). Interestingly, thrombin-induced [Ca2+]i 

influx in hBMVECs was also inhibited by GSNO treatment, while enhanced by SIN-1 

treatment (Figs. 4C-i and ii). Under these experimental conditions, neither GSNO nor SIN-1 

induced any obvious cell death observed by MTT assay (Fig. 4C-iii). Thrombin-induced 

MLC phosphorylation was also attenuated by GSNO treatment but enhanced by SIN-1 

treatment (Fig. 4D). On the other hand, decomposed GSNO and SIN-1 in culture media 

under ambient light and temperature for 48hr had no effect on thrombin-induced MLC 

phosphorylation, indicating roles for S-nitrosylation and tyrosine-nitration mediated 

mechanisms in cell signaling for MLC phosphorylation.

Next, we investigated the effect of GSNO vs. SIN-1 (ONOO−) on thrombin-induced F-actin 

stress fiber formation and endothelial barrier disruption. Figures 5A and B describe that 
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GSNO treatment inhibited thrombin-induced development of F-actin stress fiber formation 

(phalloidin staining and MLC-phosphorylation) as well as thrombin-induced loss of TEER 

(Fig. 5C). On the other hand, SIN-1 (ONOO−) treatment enhanced the thrombin-induced 

development of F-actin stress fiber formation and loss of TEER. Taken together, these data 

document regulation of endothelial barrier by different redox-dependent NO metabolites 

(GSNO vs. ONOO−) in opposing signaling mechanisms.

3.5. Roles of GSNO vs. ONOO− in regulation of endothelial barrier function in TBI model

Based on the observed opposing effects of GSNO vs. ONOO− in endothelial barrier 

disruption, we next investigated the roles of GSNO vs. ONOO− in regulation of vascular 

pathology leading to edema in rat model of TBI. TBI was induced by controlled cortical 

impact in adult male rats. GSNO (0.05 mg/kg/i.v./day) or FeTPPS (ONOO− scavenger; 3 

mg/kg/i.v./day) was administered at right after the impact. Next day, BBB leakage and 

degree of edema were assessed by Evan’s blue extravasation and brain water content. Figs. 

6A and B show that TBI-induced increases in Evan’s blue extravasation and degree of brain 

water content were reduced with GSNO as well as FeTTPS treatment, indicating the 

opposing roles of different redox dependent NO metabolites (GSNO vs. ONOO−) in post-

traumatic BBB leakage and edema formation. It is of interest to note that GSNO treatment, 

in addition to FeTTPs treatment, reduced the brain levels of 3-nitrotyrosine in rat brains with 

TBI (Fig. 6C), indicating that GSNO-mediated mechanisms also protect cerebrovascular 

nitrosative stress under TBI conditions.

3.6. Roles of GSNO vs. ONOO− in regulation of endothelial barrier function in EAE model:

MS is induced by peripheral activation of myelin specific autoreactive lymphocytes and their 

CNS infiltration across the leaky BBB leading to encephalitogenic inflammatory disease 

[31]. To investigate the role of GSNO vs ONOO− in endothelial barrier disruption, EAE 

mice were treated with daily dose of GSNO (1 mg/kg/i.p./day) or FeTPPS (30 mg/kg/i.p./

day) at the onset of disease with clinical score between 1 and 2 (day 13 post immunization) 

(Fig. 7A). Similar to our previous study [47], GSNO treatment provided great efficacy 

against clinical disease of EAE (Figs. 7A-i and -ii). FeTTPS treatment also provided 

significant efficacy but to a lower degree than GSNO treatment (Figs. 7A-i and -ii).

Next, degree of tissue levels of ONOO− (protein nitrotyrosine levels in Fig. 7B), BBB 

leakage (Evan’s blue extravasation assay in Fig. 7C), peripheral mononulcear cell infiltration 

(H&E staining in Figs. 7D-i and ii), and spinal cord demyelination (myelin basic 

protein/MBP staining in Fig. 7E-i and Western analysis in Figs. 7E-ii and iii) were analyzed. 

Consistent with effects on clinical disease, GSNO and FeTPPS treatments also significantly 

decreased the EAE-induced nitrotyrosine levels in spinal cords as well as extravasation of 

Evan’s blue dye and peripheral mononuclear cells into the CNS. Accordingly, both 

treatments also protected myelin in the spinal cord from EAE disease.

Taken together, in vitro cell culture studies and in vivo studies with animal models of TBI 

and EAE document that redox-dependent metabolites of eNOS produced NO (GSNO vs. 

ONOO−) play critical roles in cell signaling pathways for endothelial barrier integrity (e.g. 
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RhoA/ROCK, [Ca2+]i influx, and MLC phosphorylation) and thus BBB disruption under 

traumatic and inflammatory neurological disease conditions.

4. Discussion

BBB disruption, a characteristic feature of numerous neurological disease conditions [1], 

causes brain edema as well as greater influx of blood-borne cells and substances into brain 

parenchyma, thus exacerbating neuroinflammation and brain injuries [48]. Recent studies 

report that early events of BBB permeability (e.g. cell signaling pathways for F-actin stress 

fiber formation and junctional protein redistribution) may be partially reversible [3; 4; 5]. 

Therefore, early events of BBB permeability have been the potential targets for therapeutic 

interventions of various neurological diseases [5]. Here, we report that early events of BBB 

permeability, especially RhoA mediated MLC phosphorylation and endothelial F-actin stress 

fiber formation, is regulated by eNOS-derived NO metabolites (ONOO− and GSNO) in 

opposing manners, thus highlighting the potential therapeutic importance of redox 

dependent NO metabolites in BBB protection. These conclusions are supported by in vitro 

mechanistic studies using thrombin-induced endothelial hyper-permeability model and 

studies using animal models of traumatic and inflammatory brain injuries (TBI and MS).

Thrombin-induced endothelial hyper-permeability has been a useful model to investigate 

cellular mechanisms for MLC phosphorylation mediated barrier dysfunction induced by 

RhoA activation and [Ca2+]i influx [49; 50]. Thrombin induces endothelial cell signaling 

pathways for hyper-permeability via PAR1 activation and subsequent induction of [Ca2+]i 

influx and activation of RhoA/ROCK [29]. As a result, the activated MLC kinase and 

inactivated MLC phosphatase increase phosphorylation of MLC and induce actomyosin 

stress fiber formation [29] and thus alteration in endothelial cell shape, adhesion, and 

intercellular permeability [51]. As expected, thrombin induced MLC phosphorylation-

mediated endothelial F-actin stress fiber formation and endothelial barrier disruption via 

inducing RhoA activity and [Ca2+]i influx in in vitro hBMVEC culture model (Fig. 1). 

Thrombin induced eNOS activation resulted in synthesis of NO as well as ONOO− (protein-

associated 3-nitrotyrosine) (Figs. 2A and C), but not GSNO (Fig. 2B). Conversion of NO to 

ONOO− or GSNO requires O2¯ or GSH, respectively, and therefore, cellular redox potential 

is critical for metabolic fate of NO. Thrombin was reported to induce cellular oxidative 

stress by activating NADPH oxidase [52]. Therefore, thrombin may induce eNOS activation 

and shift eNOS-produced NO metabolism toward ONOO− synthesis via inducing oxidative 

stress, while limiting GSNO de novo synthesis.

In hBMVECs, thrombin induced eNOS activation and ONOO− synthesis correlated with the 

increased RhoA activation (Figs. 1 and 2) whereas pretreatment of hBMVECs with eNOS 

inhibitor or ONOO− scavenger inhibited the thrombin-induced RhoA activation (Fig. 3), 

indicating a role for eNOS-mediated ONOO− synthesis in thrombin-induced RhoA 

activation. Previous studies reported that tyrosine nitration of RhoA at Tyr34 enhances RhoA 

activity and accelerates endothelial barrier disruption [18]. On the other hand, S-

nitrosylation of RhoA at Cys16, Cys20, and Cys159 is reported to inhibit its activity in 

endothelial cells [19]. Accordingly, we observed that exogenous GSNO treatment increased 

the S-nitrosylation of RhoA and inhibited its activation by thrombin (Figs. 4A and B). On 
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the other hand, treatment of hBMVECs with SIN-1 (ONOO− donor) increased tyrosine 

nitration of RhoA and enhanced its activation by thrombin (Figs. 4A and B). These data 

document opposing roles of ONOO− (enhancement) vs. GSNO (inhibition) in thrombin-

induced RhoA activation, thus highlighting the importance of endothelial redox-dependent 

NO metabolism in RhoA and MLC phosphorylation-dependent early event of endothelial 

barrier disruption.

ONOO− and GSNO also regulated thrombin-induced [Ca2+]i influx but in opposing 

manners. In hBMVECs, thrombin-induced [Ca2+]i influx was enhanced by SIN-1 (ONOO− 

donor) pretreatment while inhibited by GSNO pretreatment (Fig. 4C). Though these data 

suggest possible roles of NO metabolites (ONOO− and GSNO) as feedback regulators of 

[Ca2+]i influx for eNOS activation, we observed that thrombin-induced [Ca2+]i influx was 

not affected by eNOS inhibition by L-NIO as well as ONOO− scavenge by FeTTPS (Fig. 

3E). These data indicate that NO and ONOO− produced by eNOS may not serve as feedback 

regulators for thrombin-induced [Ca2+]I influx. The timing of [Ca2+]I influx (earlier event) 

and eNOS activation (later event) following the thrombin treatment may account for these 

differences [53]. In addition, we observed that thrombin-induced NO synthesis did not 

increase GSNO de novo synthesis (Fig. 2B), thus indicating lack of GSNO mediated 

feedback regulation of [Ca2+]I influx. At present, ir is not fully understood how ONOO− and 

GSNO regulate thrombin-induced [Ca2+]i. However, the previous studies with smooth 

muscle cells suggested possible roles of L-type voltage-gated Ca2+ channels in ONOO− 

induced [Ca2+]i influx [54] and inositol-1,4,5-trisphosphate (IP3) in GSNO induced 

inhibition of [Ca2+]i influx [55]. These data suggest potential role of endothelial 

preconditioning by GSNO or ONOO− in thrombin-induced [Ca2+]i influx and early events 

of BBB disruption. [Ca2+]I influx in endothelial cells is known to activate eNOS as well as 

other cell signaling including Ca2+/calmodulin dependent protein kinases, protein kinase C, 

and NADPH oxidase [56]. Therefore, participation of other cellular mechanisms in 

endothelial pathobiology cannot be excluded.

Brain edema, especially vasogenic edema caused by BBB disruption, is a significant 

challenge in clinical management of TBI during the acute period of diseases. If edema 

reaches a critical point, it leads to severe morbidity or death if left untreated. Current 

therapies for management of post-traumatic edema include osmotherapy, diuretics, 

corticosteroids, barbiturates, propofol, and/or hyperventilation. However, endothelial 

mechanism underlying the vasogenic brain edema is still elusive and thus no specific 

mechanism-based-therapy is currently available. Our laboratory has studied the efficacy of 

GSNO treatment during the acute disease of stroke and TBI to attenuate brain endothelial 

barrier disruption, abnormal BBB permeability, edema formation, and vascular inflammation 

in rat models [37; 57]. Later on, we also reported that GSNO treatment attenuates 

neurodegeneration and accelerates neovascularization and neuro-repair and thus improved 

functional outcome in TBI animals [38; 58; 59]. In the present study, we have described the 

opposing roles of redox-dependent NO metabolites (ONOO− vs. GSNO) in regulation of 

RhoA activation and [Ca2+]i influx and thus MLC phosphorylation leading to endothelial 

stress fiber formation and barrier disruption in hBMVECs. We previously reported increased 

oxidative stress in the brains of TBI animal models, observed as decreased ratio of GSH/

GSSG and increased levels of 4-hydroxynonenal [59]. Accordingly, we also observed 
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increased levels of ONOO− in the brains of TBI animals (Fig. 6C). Although we have not 

measured GSNO levels in the TBI brain tissue, we expect decreased GSNO synthesis due to 

increased ONOO− synthesis as a result of oxidative stress. Consistent with in vitro studies, 

we observed in animal model of TBI that treatment with GSNO or ONOO− scavenger 

(FeTPPS) shifts balance of NO metabolites (GSNO vs. ONOO−) toward GSNO, thus 

ameliorated TBI-induced BBB leakage and edema formation (Fig. 6).

In MS, CNS infiltration of myelin specific autoreactive lymphocytes across the disrupted 

BBB is one of the critical pathological events leading to inflammatory demyelination [31]. 

Brain imaging studies have shown that patients with relapsing-remitting MS (RRMS), the 

most common type of MS (> 80 %), have generally increase in BBB permeability [60; 61]. 

Accordingly, EAE mice had increased nitrosative stress and BBB permeability in the spinal 

cords (Figs. 7B and C), and treatment of these mice with GSNO or ONOO− scavenger 

(FeTPPS) attenuated BBB leakage as well as CNS infiltration of mononuclear cells (Figs. 

7C and D). Consequently, GSNO or FeTPPS treatment ameliorated inflammatory 

demyelination as well as clinical EAE disease (Figs. 7A AND E). These data document the 

roles of GSNO vs. ONOO− mediated mechanisms for maintenance of BBB integrity during 

the course of traumatic and inflammatory neurological diseases.

Recent studies underscore the pathological role of thrombin in BBB disruption and CNS 

inflammation [62; 63; 64; 65; 66]. In this study, we observed that GSNO and FeTPPS 

treatments inhibited endothelial cell signaling for early event of BBB disruption (MLC 

phosphorylation) as well as BBB disruption under conditions of TBI and EAE diseases. 

Pathoanatomical consequences of contusion TBI include mechanical stress associated blood 

vessel injuries as well as hemorrhages [62]. Following vascular damage and hemorrhage, 

thrombin controls blood loss [67], but its excessive production is also known to cause BBB 

disruption leading to edema formation [21]. In MS, proteomic analysis of chronic active 

lesions identified several dysregulated coagulation factors, highlighting a potential link 

between the coagulation cascade and MS pathology [68]. Moreover, observations of high 

levels of activated platelets, which are activated by thrombin, in MS and EAE lesions/bloods 

and amelioration of EAE disease by platelet depletion [69; 70; 71], and spatial correlation of 

increased thrombin activity to local BBB disruption, CNS inflammation, and 

neurodegeneration [63; 72] indicate potential role of thrombin in BBB disruption and 

subsequent CNS disease of MS (EAE). Overall, these studies document pathological role of 

thrombin-induced BBB disruption in CNS disease of TBI and MS, thus suggesting the 

potential efficacies of GSNO and FeTTPS in thrombin associated pathologies under these 

disease conditions.

In summary, the present study demonstrates the role of redox-based NO metabolites 

(ONOO– vs. GSNO) in endothelial barrier disruption leading to vasogenic edema formation 

and peripheral immune cell infiltration under traumatic and inflammatory neurological 

disease conditions. ONOO− accelerates endothelial barrier disruption via enhancing cell 

signaling for MLC phosphorylation (e.g. RhoA activation and [Ca2+]i influx) and 

endothelial stress fiber formation whereas GSNO inhibits endothelial barrier disruption via 

inhibiting these cell-signaling mechanisms, thus documenting that ONOO− and GSNO 

levels mechanistically antagonize each other in endothelial barrier disruption. This study 
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also shows that BBB disruption in animal model of TBI and EAE are inhibited by ONOO− 

scavenger (FeTPPS) or GSNO treatment and thus identifying redox-dependent NO 

metabolites (ONOO− vs. GSNO) as a potential therapeutic targets for neurovascular 

integrity in neurological disorders.
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List of Abbreviations:

[Ca2+]i intracellular calcium ion

BBB blood–brain barrier

CCI Controlled cortical impact

CFA complete Freund’s adjuvant

DAPI 4’,6-Diamidino-2-Phenylindole, Dihydrochloride

EAE experimental autoimmune encephalomyelitis

EB Evans blue

eNOS endothelial nitric oxide synthase

FeTTPS 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato Iron (III)

Cl Fig.,figure

GSH glutathione

GSNO S-nitrosoglutathione

H&E hematoxylin and eosin

hBMVEC human brain microvessel endothelial cell

IP3 inositol-1,4,5-trisphosphate

L-NIO N5-(1-Iminoethyl)-L-ornithine dihydrochloride

MBP myelin basic protein

MLC myosin lingh chain

MLCK myosin lingh chain kinase

MLCP myosin lingh chain phosphatase

MS multiple sclerosis

NO nitric oxide
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ONOO− peroxynitrite

PAR protease-activated receptor

Pr-SNO protein-associated S-nitrosothiol

PTX pertussis toxin

SEM standard error mean

SIN-1 3-morpholinosydnonimine chloride

TBI traumatic brain injury

TEER trans-endothelial electrical resistance
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Highlights

• eNOS/NO controls brain endothelial actin structure and thus barrier integrity.

• Different redox metabolites of NO differently regulate actin stress fiber 

formation.

• ONOO− increases RhoA and Ca2+ dependent actin stress fiber formation.

• On contrary, GSNO inhibits RhoA and Ca2+ dependent actin stress fiber 

formation.

• These NO metabolites are potential targets for vascular diseases of CNS.
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Figure 1. Thrombin induces cell signaling for endothelial barrier disruption in cultured 
hBMVECs.
Human brain microvessel endothelial cells (hBMVECs) were treated with thrombin 

(0.1unit/ml) and time dependent activation of RhoA activity was analyzed (left panel). The 

cells were also treated with various concentrations of thrombin and a dose dependent 

activation of RhoA activation was analyzed at 5 min following the treatment as described in 

method section (A). hBMVECs were treated with various concentrations of thrombin and 

intracellular Ca2+ ([Ca2+]i) influx was analyzed by fluorometric assay as described in 

method section (B-i). Twenty five seconds following thrombin treatment, the increased 

[Ca2+]i influxes were represented by bar graph (B-ii). In another set of experiment, 

thrombin-induced time- and concentration-dependent phosphorylation of myosin light chain 

(Ser19) was analyzed in hBMVECs by Western analysis. β-actin was used for internal 

loading control for Western analysis (C). hBMVECs were treated with thrombin (0.1unit/ml 
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for 30 min) and development of F-actin stress fiber was analyzed by immunofluorescent 

staining of F-actin bundles by Phalloidin (red) and phosphorylated MLC (p-MLC; green). 

Nuclei were stained by DAPI (blue) (D-i). For endothelial barrier study, hBMVECs cultured 

on transwell plates were analyzed for transendothelial electric resistance (TEER) in the 

absence or presence of thrombin (0.1unit/ml for 30 min) treatment (D-ii). To investigate 

causal relationships between RhoA activation or [Ca2+]i influx and MLC phosphorylation, 

hBMVECs were pretreated with RhoA inhibitor I (C3 transferase/C3-Tr; 1µg/ml) or [Ca2+]i 

chelator BAPTA (100µM) for 30min, followed by thrombin treatment (0.1unit/ml) for 10 

min, and then cellular levels of phospho- and total-MLC levels were analyzed by Western 

analysis (E). The vertical bars (B-ii) and dots (D-ii) are means of individual data set (n=3) 

and T-bars are standard deviation. *** p ≤ 0.001 as compared to control group. All 

experiments were repeated at least three times and representative data are shown.
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Figure 2. Effect of thrombin on endothelial eNOS activity and NO metabolism in hBMVECs.
Cell lysates from cultured human brain microvessel endothelial cells (hBMVECs), neurons, 

and activated microglia were analyzed for expression levels of eNOS, nNOS, and iNOS (A-
i). hBMVECs were treated with thrombin (0.1 unit/ml) and the cellular levels of NO was 

analyzed by fluorometric analysis using dye DAF-FM (A-ii). hBMVECs were treated with 

thrombin (0.1 unit/ml) and time course activation of eNOS was analyzed by Western 

analysis using antibody specific to phospho (Ser1177) eNOS (A-iii). β-actin was used for 

internal loading control and lysate extracted from glutamate treated cultured neurons was 
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used for positive control for nNOS activation. hBMVEC were treated with thrombin and 

time and concentration dependent accumulation of protein-associated S-nitrosothiols (Pr-

SNO) (B) or protein-associated 3-nitrotyrosine (N-Tyr) (C) or were analyzed by biotin 

switch assay or ELISA, respectively. The vertical columns represent means of individual 

data set and T-bars are standard deviation. ** p ≤ 0.01 and *** p ≤ 0.001 as compared to the 

control group. All experiments were repeated at least three times and representative data are 

shown.
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Figure 3. Effects of eNOS inhibitor and peroxynitrite scavenger on thrombin-induced cell 
signaling for endothelial barrier disruption in hBMVECs.
Human brain microvessel endothelial cells (hBMVECs) in the presence or absence of NOS 

inhibitor L-NIO (10µM; pretreated for 30min) were treated with thrombin (0.1 unit/ml for 

5min) and MLC phosphorylation (Ser19) was analyzed by Western analysis with β-actin as 

internal loading control (A). hBMVECs were treated with thrombin (0.1 unit/ml for 20min) 

in the presence or absence of L-NIO (10µM; pretreated for 30min) or ONOO− scavenger 

FeTTPS (10µM; pretreated for 30min) and cellular levels of protein-associated 3-
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nitrotyrosine (a protein adduct formed by ONOO−) was analyzed by ELISA (B). hBMVECs 

were treated with thrombin (0.1 unit/ml for 5min) in the presence or absence of FeTPPS or 

L-NIO and MLC phosphorylation (C), RhoA activity (D), and intracellular Ca2+ ([Ca2+]i) 

influx (E) were analyzed. To investigate causal relationship between RhoA activation or 

[Ca2+]i influx and eNOS phosphorylation (Ser1177), hBMVECs were pretreated with RhoA 

inhibitor I (C3 transferase/C3-Tr; 1µg/ml) or [Ca2+]i chelator BAPTA [1,2-bis(o-

aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; 100µM] for 30min, followed by 

thrombin treatment (0.1unit/ml) for 10 min, then cellular levels of phospho and total eNOS 

levels were analyzed by Western analysis (F). To confirm the role of eNOS in regulation of 

MLC phosphorylation, hBMVECs were treated with NOS inhibitor L-NIO (10µM), in the 

presence or absence of DETA-NO (free NO donor; 1mM), for 30min and effect of thrombin 

(0.1 unit/ml for 5min) on MLC phosphorylation was analyzed by Western analysis. The 

vertical bars are means of individual data and T-bars are standard deviation. *** p ≤ 0.001 as 

compared to the control group. +++ p ≤ 0.001 as compared to thrombin treated group. All 

experiments were repeated at least three times and representative data are shown.
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Figure 4. Opposing roles of GSNO vs. ONOO− in thrombin-induced cell signaling for endothelial 
barrier disruption in hBMVECs.
Human brain microvessel endothelial cells (hBMVECs) were treated with various 

concentrations of GSNO or SIN-1 (ONOO− donor), incubated for 2hr, and cellular levels of 

S-nitrosylated proteins and RhoA (A-i) and tyrosine-nitrated proteins and RhoA (A-ii) were 

analyzed as described in method section. hBMVECs were treated with thrombin (0.1 unit/ml 

for 5min), in the presence or absence of various concentrations GSNO or SIN-1 (pretreated 

for 2hr), and RhoA activity was analyzed as described in method section (B). hBMVECs 

were treated with thrombin (0.1 unit/ml) in the presence or absence of various 

concentrations GSNO or SIN-1 and intracellular Ca2+ ([Ca2+]i) influx (C-i and ii) and cell 

viability (MTT assay) (C-iii) were analyzed. hBMVECs were treated with thrombin (0.1 

unit/ml for 5min), in the presence or absence of various concentrations GSNO or SIN-1 (D-
i) or decomposed GSNO (100µM) or SIN-1 (1000µM) (D-ii), and MLC phosphorylation 

was analyzed by Western analysis. β-actin was used for internal loading control for Western 

analysis. The vertical bars are means of individual data and T-bars are standard deviation. 

*** p ≤ 0.001 as compared to the control group. + p ≤ 0.05 and ++ p ≤ 0.01 as compared to 

thrombin treated group. All experiments were repeated at least three times.
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Figure 5. Opposing roles of GSNO vs. ONOO− in thrombin-induced cell signaling for endothelial 
barrier disruption in hBMVECs.
A. Human brain microvessel endothelial cells (hBMVECs) were treated with thrombin (0.1 

unit/ml for 30min) in the presence or absence of GSNO (100µM; pretreated for 2hr) or 

SIN-1 (100µM; pretreated for 2hr) and development of F-actin stress fiber was analyzed by 

immunofluorescent staining of F-actin bundles by Phalloidin (red-i) and phosphorylated 

MLC (p-MLC; green-ii). Nuclei were stained by DAPI (blue). B. The resulting digital 

images were used for quantification of fluorescence and the data is represented by RFU 

(relative fluorescence unit). C. hBMVECs were cultured on transwell plates and 

transendothelial electric resistance (TEER) was analyzed. The cells were treated with 
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thrombin (0.1 unit/ml for 5min) in the absence or presence of GSNO (100µM; pretreated for 

2hr) or SIN-1 (500µM; pretreated for 2hr). The vertical bars and dotted lines are means of 

individual data and T-bars are standard deviation. ** p ≤ 0.01 and *** p ≤ 0.001 as 

compared to the control group. + p ≤ 0.05, ++ p ≤ 0.01, and +++ p ≤ 0.001 as compared to 

thrombin treated group. All experiments were repeated at least three times.
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Figure 6. Roles of GSNO and FeTPPS on BBB leakage, edema and the expression of 3-NT in TBI 
rat model.
A. Photographs showing Evan’s blue (EB) extravasations in brain starting at 4 hr after TBI. 

Animals were sacrificed at 24 hr, the brain was photographed (i) and the intensity of EB (ii) 

was determined by spectrofluorometric estimation. EB extravasations were not observed in 

sham brain. B. Edema (tissue water content) was measured at 24 hr after TBI. C. The levels 

of nitrotyrosine (N-Tyr) as an index of ONOO− were also measured at 24 hr in the traumatic 

penumbra region using Western and its quantitation by densitometry. Data are expressed as 

mean ± standard deviation from five different experiments for Evan’s blue and edema each 

and three different experiments for western blot. * p ≤ 0.05, *** p ≤ 0.001 vs. Sham and + p 

≤ 0.05, ++ p ≤ 0.01, and +++ p ≤ 0.001 vs. TBI.
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Figure 7. Roles of GSNO and FeTPPS on clinical disease, expression of 3-nitrotyrosine, BBB 
leakage, and spinal cord demyelination in mouse EAE model.
A. Clinical score of control C57BL/6 mice (Ctrl: n=8), C57BL/6 mice immunized with 

MOG35–55 peptide (EAE: n=8), EAE mice treated with 1mg/kg/day of GSNO (EAE

+GSNO: n=12) or 30 mg/kg/day of FeTPPS (EAE+FeTPPS: n=8) was determined daily as 

described in Materials and Methods (A-i). All drugs were administered starting at the day of 

disease onset (day 13 post-immunization) via intraperitoneal routes. The area under the 

curve (AUC) between post immunization day 14 and 24 of the overall disease severity was 

calculated and represented as bar graph (A-ii). B. At 24 day post-immunization, the mice 

(n=3) were sacrificed and the levels of 3-nitrotyrosine (N-Tyr), as an index of ONOO−, were 

measured by Western (B-i) and densitometry analysis (B-ii). C. In addition, another set of 

mice were injected with Evans blue for analysis of BBB leakage. D. Spinal cord infiltration 

of mononuclear cells was analyzed by H&E staining of paraffin-embedded spinal cord 

section (D-i). The number of mononuclear cells (dark-brown nuclei aggregates indicated by 

yellow triangles) was counted manually and represented by bar graph (D-ii). E. The spinal 

cord sections and tissue lysates were also subjected to immunofluorescent staining (E-i) and 

Western analysis for MBP (E-ii and -iii) for degree of demyelination. Data are expressed as 
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mean ± standard deviation. *p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 vs. control and + p ≤ 0.05, 
++ p ≤ 0.01, and +++ p ≤ 0.001 vs. EAE.
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