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ABSTRACT
Background: Biomarkers of micronutrient status are needed to best
define deficiencies and excesses of essential nutrients.
Objective: We evaluated several supporting biomarkers of vitamin
A status in Zambian children to determine whether any of the bio-

markers were consistent with high liver retinol stores determined by

using retinol isotope dilution (RID).
Design: A randomized, placebo-controlled, biofortified maize effi-
cacy trial was conducted in 140 rural Zambian children from 4

villages. A series of biomarkers were investigated to better define

the vitamin A status of these children. In addition to the assessment

of total-body retinol stores (TBSs) by using RID, tests included

analyses of serum carotenoids, retinyl esters, and pyridoxal-5#-
phosphate (PLP) by using high-pressure liquid chromatography,

retinol-binding protein by using ELISA, and alanine aminotransfer-

ase (ALT) activity by using a colorimetric assay.
Results: Children (n = 133) were analyzed quantitatively for TBSs
by using RID. TBSs, retinyl esters, some carotenoids, and PLP

differed by village site. Serum carotenoids were elevated above most

nonintervened reference values for children. a-Carotene, b-carotene,

and lutein values were .95th percentile from children in the US

NHANES III, and 13% of children had hypercarotenemia (defined as

total carotenoid concentration .3.7 mmol/L). Although only 2% of

children had serum retinyl esters .10% of total retinol plus retinyl

esters, 16% of children had .5% as esters, which was consistent

with high liver retinol stores. Ratios of serum retinol to retinol-binding

protein did not deviate from 1.0, which indicated full saturation.

ALT activity was low, which was likely due to underlying vitamin

B-6 deficiency, which was confirmed by very low serum PLP

concentrations.
Conclusions: The finding of hypervitaminosis A in Zambian chil-
dren was supported by high circulating concentrations of caroten-

oids and mildly elevated serum retinyl esters. ALT-activity assays

may be compromised with co-existing vitamin B-6 deficiency. Nu-

trition education to improve intakes of whole grains and animal-

source foods may enhance vitamin B-6 status in Zambians. This

trial was registered at clinicaltrials.gov as NCT01814891. Am J

Clin Nutr 2015;102:497–504.
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INTRODUCTION

Vitamin A (VA)7 status assessment of humans is challenging
because liver VA concentrations are considered the gold standard
of VA status (1) but are difficult to assess. Serum retinol (SR)
concentrations are homeostatically controlled over a wide range
of liver reserves (2) and are decreased during the acute-phase
response (3, 4). Retinol isotope dilution (RID) is currently con-
sidered the most-sensitive indirect biomarker of VA status (1, 2)
and can be used to determine the response to interventions (5);
however, a quantitative estimation of total-body retinol stores
(TBSs) or total liver reserves requires the numerical estimation
of dose absorption, partitioning in organs, and catabolism and
excretion (6). Researchers have used different methodologies
and assumptions when calculating VA status by using RID (6).
Because of surprising findings that indicated adequate through
hypervitaminotic VA status of Zambian preschoolers (7), these
assumptions have been challenged (8). Therefore, other bio-
markers of VA status were investigated to qualify the findings of
high liver reserves in this group of children. Additional evidence
of actual VA status of a group could be evaluated with valid di-
etary and health biomarkers that can be applied at the population
level to support quantitative measurements.
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The distribution and concentration of carotenoids varies
widely in fruit and vegetables (9). Some carotenoids are pre-
cursors of VA that can be bioconverted by humans and other
animals; the most common of these carotenoids in the human
diet are a-carotene, b-carotene, and b-cryptoxanthin. Other
carotenoids in human circulation cannot be converted into
VA but serve other physiologic purposes (e.g., lutein in eye
health) (10), and serum concentrations can be used to verify
specific vegetables or fruit in the diet. Plant sources of pro-
vitamin A carotenoids are a major source of VA and have been
estimated at providing a substantial percentage (w68%) of
total worldwide VA (11). Serum carotenoid concentrations are
a function of a number of factors, the most pertinent being
dietary intake (5, 12–15). Other factors associated with serum
carotenoids are age, BMI, and the genetic variation in en-
zymes related to carotenoid absorption, transport, cleavage,
and degradation (16). Provitamin A carotenoid bioefficacy is
inversely related to VA status (5) and the VA content of the
diet (17), likely mediated by the VA-induced negative feedback
of carotenoid transporter scavenger receptor-B1 and cleavage
enzyme b-carotene 15,15’-oxygenase (BCO1) by transcription
factor intestine-specific homeobox (18, 19). Plasma carotenoids
and TBSs are increased in response to consumption of high-
carotenoid diets (5, 12, 14). Skin and serum carotenoids reflected
both a low-carotenoid regimen followed by a high-carotenoid
regimen (20).

Serum retinyl esters are used as a biomarker of high VA stores
although the limitations of this assessment in children are not
clear because the cutoff of 10% of the total as retinyl esters was
chosen on the basis of adults with unknown TBSs. The retinyl
ester concentration was first suggested as a biomarker on the basis
of 3 patients with chronic intakes of pharmaceutical doses that
caused hypervitaminosis A (21). The presentation of retinyl
esters in lipoproteins to cells instead of retinol on retinol-binding
protein (RBP) is hypothesized to cause VA toxicity (21, 22).
Hypervitaminosis A leads to liver fibrosis and elevated liver
enzymes in plasma. Additional assessments in Zambian children
were performed to gain more insight into the degree of hyper-
vitaminosis A present (7).

METHODS

Subjects

All field procedures involving children were approved by the
Ethics Review Committee of the Tropical Diseases Research
Centre (TDRC) in Zambia and the Health Sciences Human
Subjects Institutional Review Board of the University of
Wisconsin-Madison. This trial was registered at clinicaltrials.gov
as NCT01814891; outcomes related to the intervention have been
reported (7), and biomarkers reported herein are before the in-
tervention except for deworming, which was performed 1 wk
before the first blood sample. Written informed consent was
obtained from parents or caregivers. The trial was conducted in
2012 in the Nyimba District of the Eastern Province of Zambia in
preschool children (n = 143 at initial enrollment) because of
a high prevalence of low SR concentrations in a previous survey
(23). The following 4 sites were chosen: 2 sites adjacent to the
main paved roadway (coded as sites A and B) and 2 sitesw8 km
off the paved road (coded as sites C and D).

Inclusion criteria were as follows: 5–7-y-old children living in
the study area who were considered relatively healthy (no
clinical infection or fever, weight-for-age and weight-for-height
z scores greater than 23, and hemoglobin concentration .70 g/L
at recruitment), who had received antihelminthic treatment the
week before recruitment, and had not received a high-dose VA
supplement in the past 6 mo. Blood collection (7 mL) was
performed by the TDRC, followed by centrifugation at the local
clinic. Malaria parasites were counted on thick blood smears
prepared in the field as described (24). Serum was transferred
into 2 tubes, transported in nitrogen gas to the TDRC, shipped
on dry ice, and stored at 2808C until analysis at the University
of Wisconsin-Madison for all VA biomarkers or the University
of Florida for concentrations of pyridoxal-5#-phosphate (PLP),
which is the physiologically active form of vitamin B-6.

TBSs and liver concentrations of VA

TBSs and liver concentrations of VAwere determined by using
13C-RID and applying the mass balance equation with the fol-
lowing assumptions: 90% dose absorption, fractional catabolic
rate of 0.5%/d during the mixing period, equal serum and liver
13C-enrichment, and 80% of TBSs in the liver (7). A decrease to
80% absorption was made for children with elevated CRP at the
time of dosing. After a baseline blood draw, 1 mmol 13C2-retinyl
acetate dissolved in soybean oil was delivered directly to each
child by using a positive-displacement pipette and immediately
followed by a high-fat–containing snack to facilitate absorption.
After a 14-d mixing period during which subjects consumed
a controlled diet with limited VA (25), a second blood sample
was taken and the 13C:total C of SR at both blood draws was
determined by using gas chromatography–combustion isotope
ratio mass spectrometry to estimate TBSs and liver retinol
concentrations (7).

Carotenoid and retinyl ester extraction and analysis

Samples were extracted for carotenoids and retinyl esters
by using a modified published procedure (26). To 1 mL (or all
available) serum, ethanol (1.5 3 volume) with 0.1% butylated
hydroxytoluene as an antioxidant and 100 mL C23 b-apo-
carotenol as an internal standard were added. Samples were
extracted 3 times with 1.5-mL hexanes. Pooled hexane layers
were dried under nitrogen and reconstituted in 100 mL 50:50
(volume:volume) methanol:dichloroethane. To have high sensi-
tivity to detect some of the minor retinyl esters and to ensure
good separation of carotenoids, aliquots of the same extract were
run on 2 separate HPLC systems.

For carotenoid analysis, 25 mL extract was injected onto
a Waters HPLC system (Waters) comprised of a C18 Resolve
(5-mm, 3.9 3 300-mm) analytic column (Waters) equipped with
a guard column, 2707 autosampler, 1525 binary pump, and 2998
photodiode array detector. Samples were eluted at 2 mL/min by
using 95:5 (volume:volume) acetonitrile:water (solvent A) and
85:10:5 (volume:volume:volume) acetonitrile:methanol:dichloroethane
(solvent B) both with 10 mmol ammonium acetate/L as a mod-
ifier by using the following gradient method: 3 min at 100% A,
followed by a 7-min linear gradient to 100% B, a 15-min hold at
100% B, 1-min linear gradient back to 100% A, and a 5-min hold
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at 100% A for re-equilibration. Chromatograms were evaluated at
450 nm by using authentic HPLC-purified standards.

For the analysis of retinyl esters, 50 mL serum extract was
injected onto a Waters C18 Resolve (5-mm, 3.9 3 300-mm)
column equipped with guard column. AWaters Delta 600 binary
pump and controller (Waters), 2487 Dual-Wavelength Absorbance
Detector (Waters), and a CR7A Chromatopac data processor
(Shimadzu) comprised the HPLC system. Chromatograms were
generated at 325 nm to quantify retinol and retinyl esters, which
were confirmed by retinyl ester standards isolated and purified
from pig liver. The mobile phase was 1.5 mL 85:15 (volume:
volume) acetonitrile:water/min with 10 mmol/L ammonium
acetate (solvent A) as an initial condition followed by a 10-min
linear gradient to 100% 80:20 (volume:volume) acetonitrile:
dichloroethane (solvent B). Solvent B was held for 12 min
followed by a 2-min linear reverse gradient to 100% A and an
8-min hold at 100% A.

Other assays

Serum C-reactive protein (CRP) (Cayman Chemical Co.),
a1-acid glycoprotein (AGP) (Abcam), and RBP (Arbor Assays),
all of which are acute-phase proteins, were assayed by using
enzyme immunoassay kits. Alanine aminotransferase (ALT) ac-
tivity was assayed by using a colorimetric assay kit as recom-
mended by the manufacturer (Sigma-Aldrich) as part of a strategy
to gauge if any hepatocellular damage had occurred from ex-
cessive storage of retinyl esters in the liver. Once it was shown
that ALT activity was actually lower than normal, an inquiry into
vitamin B-6 status, which is a cofactor for ALT function, was
added to the protocol. With collaboration at the University of
Florida, PLP was determined by using HPLC followed by fluo-
rescence detection (27).

Statistical analysis

Data are reported as medians (first and third quartile values,
which are equivalent to 25th and 75th percentiles, respectively) to
control nonnormality in some outcome measures or means 6
SDs for in-text summaries. Data were analyzed by using the
General Linear Model procedure in the Statistical Analysis
System (version 9.4; SAS Institute). The normality of residuals

was assessed by using the Shapiro-Wilk test, and the homoge-
neity of variance was assessed by using Levene’s test. For data
that satisfied assumptions, outcomes of interest were evaluated
by using 1-factor ANOVA, and differences in study sites were
determined by using least-significant difference tests. For data
that failed assumptions, a nonparametric analysis was carried
out on ranked data. Proportions were compared by using x2

analysis. Significance was defined as P # 0.05.

RESULTS

Subject characteristics

Enrollment occurred at the end of May 2012. Children (n =
143) were recruited and consented, and 140 children met
baseline inclusion criteria and had blood samples taken (7).
Because of statistically significant effects of site on nutritional
outcome measures, baseline anthropometric data are presented
by site (Table 1). Of particular interest was that village B did not
have any cases of asymptomatic malaria, which was related to
higher hemoglobin concentrations than in other villages (P ,
0.0001). Although enrollment occurred during the dry season
when malaria transmission is low, children with active malaria
would not have been enrolled because of exclusion criteria.

Markers of infection status were evaluated (7). Although
elevated AGP was universal in villages, CRP differed by site and
was lower in villages closer to the paved road (P , 0.0001)
(Table 2).

Total liver retinol reserves

Calculated mean liver reserves for all subjects were 1.136 0.41
mmol retinol/g liver, with 59% .1 mmol/g (7), which is the cur-
rent cutoff for defining hypervitaminosis A (2). No reserves were
,0.1 mmol/g, which is the deficiency cutoff (2). Village B had
statistically significantly higher TBSs than those of villages lo-
cated farther from the main road (i.e., villages C and D) (Table 2).

Serum carotenoid concentrations

After the primary outcome analysis (7), 123 samples had
sufficient serum to quantify the carotenoid profile and retinyl
esters. Carotenoids were not statistically significantly affected

TABLE 1

Baseline anthropometric and screening data for Zambian children (n = 140) by village1

A (n = 29) B (n = 36) C (n = 35) D (n = 40) P

Age,2 mo 72 (65, 80)3 68.5 (66.5,76) 69 (64, 75) 73 (66.5, 78.5) 0.34

Height, cm 107 (104, 113) 108 (105, 112) 107 (103, 110) 108 (103, 112) 0.57

Weight,2 kg 16.4 (15.4, 18.7) 17.5 (15.6, 18.7) 16.8 (15.8, 18.2) 16.9 (16.0, 18.6) 0.76

Height-for-age z score 21.2 (22.1, 20.9) 21.3 (22.0, 20.7) 21.6 (22.2, 20.8) 21.5 (22.0, 21.1) 0.82

Weight-for-age z score 21.4 (21.9, 21.0) 21.0 (21.7, 20.5) 21.3 (21.8, 20.8) 21.3 (21.8, 20.8) 0.48

BMI-for-age z score 20.6 (20.9, 20.3) 20.4 (20.6, 0.1) 20.4 (20.8, 0.2) 20.4 (20.7, 0.0) 0.14

Hemoglobin,2 g/L 118 (109, 123)b 125 (116, 128)a 117 (108, 123)b 112 (102, 120)b ,0.0001

Positive malaria blood smear, % 17.2 0 17.2 12.5 ,0.0001

1Villages A and B were closest to the paved road, and villages C and D were 8 km from the road. Groups with uncommon

superscript letters were different: a. b. P values are for testing the null hypothesis that each variable was equal in groups by using an

ANOVA or chi-square test.
2Nonnormally distributed residuals; P value reflects a nonparametric analysis.
3Median; first and third quartile values in parentheses (all such values). First and third quartile values are also known as 25th and

75th percentiles, respectively.
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by age, sex, BMI, CRP, or AGP; however, 3 individual carotenoids
(i.e., a-carotene, lutein, and lycopene; P# 0.0016) were affected
by site, and therefore, results are presented by site (Table 2).

Serum total carotenoids had an overall mean concentration of
2.486 1.2 mmol/L (median 2.41 mmol/L) and did not differ by site.
A common reference range for serum carotene is 0.9–3.7 mmol/L
(28), which would encompass the overall mean. Sixteen samples
(13%) had total carotenoid concentrations. 3.7 mmol/L, which
were considered hypercarotenemic.

Fasting serum retinyl esters and ratio of retinol to
retinol-binding protein

Retinyl oleate, palmitate, and stearate were identified in serum
extracts (n = 123). Other esters were present but sometimes
overlapped with other unidentified compounds, which could
have been carotenoids that might have been detectable at 325
nm at the high concentrations in many of the samples. Retinyl
esters were not statistically significantly affected by age, sex,
BMI, CRP, or AGP; however, the retinyl ester percentage of
serum total VA (P = 0.0009) was affected by site, and there-
fore, results are presented by site (Table 2). In all participants,
16% of subjects had retinyl esters .5% of serum total VA,
whereas 2% of subjects had retinyl esters .10% of serum total
VA. In line with higher TBSs, retinyl esters in village B were
also statistically significantly higher when based on total reti-
nol equivalents in the serum, and the third quartile value (75th
percentile) included the lower cutoff of .5% (Table 2). SR
and RBP concentrations did not differ by site. The ratio of
retinol to RBP was very close to 1.0 and did not differ by
site. As expected, but with low r2 values, RBP was negatively

correlated with CRP (P = 0.035, r2 = 0.06) and AGP (P = 0.010,
r2 = 0.09).

Serum ALT activity and pyridoxal-5#-phosphate

The liver enzyme ALT was evaluated in serum to determine
whether liver damagewas present because of the hypervitaminotic
state of some children. ALT activity was below normal (range:
0.83–11.4 U/L), and only one child tested had normal activity
(10-40 U/L). ALT activity was not related to any other factors
evaluated. Because ALT activity was low, PLP concentrations
were determined and were also below normal; 79% of children
had serum concentrations ,20 nmol/L, which is the suggested
deficiency cutoff (29), and 29% of values were in the extremely
low range of ,10 nmol/L. Although the r2 was low (r2 = 0.06),
PLP was statistically significantly negatively associated with
CRP (P = 0.020).

DISCUSSION

This study reports supporting biomarkers of VA status in a group
of children with a large percentage diagnosed with hypervita-
minosis A by using an RID methodology (7). The children had
relatively low weight- and height-for-age, and some children had
subclinical malaria. Provitamin A carotenoid concentrations be-
fore the dietary intervention were higher than in most other global
populations, including in developed countries with minimal VA
deficiency (Table 3). Fasting retinyl esters were slightly elevated
in some children, and the retinol-to-RBP ratio was 1.0. Although
we assayed ALT activity to assess potential liver involvement,

TABLE 2

The following nutritional biomarkers were analyzed in Zambian preschool children1

A B C D P

Total-body stores,2 mmol 740 (483, 973) [27]a,b,3 796 (671, 922) [34]a 668 (512, 803) [34]b 640 (510, 781) [38]b 0.031

Estimated liver concentration,2

mmol/g

1.05 (0.82, 1.54) [27] 1.17 (0.98, 1.49) [34] 1.06 (0.78, 1.28) [34] 1.01 (0.83, 1.11) [38] 0.068

Serum retinol,2 mmol/L 0.95 (0.79, 1.16) [27] 1.00 (0.88, 1.19) [36] 0.90 (0.65, 1.05) [32] 0.96 (0.75, 1.12) [36] 0.24

Serum RBP, mmol//L 0.96 (0.79, 1.14) [19] 1.18 (0.85, 1.47) [18] 0.86 (0.61, 1.32) [18] 0.90 (0.67, 1.28) [23] 0.70

Retinol:RBP, molar ratio 0.96 (0.86, 1.10) [19] 1.02 (0.89, 1.20) [18] 0.95 (0.87, 1.09) [18] 1.04 (0.86, 1.21) [22] 0.45

Retinyl esters,2 molar

percentage of serum VA

3.0 (1.4, 3.7) [29]b 4.0 (2.2, 5.2) [31]a 1.5 (1.2, 2.7) [29]b 2.6 (1.4, 3.6) [32]b 0.0009

b-Carotene,2 mmol/L 0.65 (0.50, 1.00) [29] 0.74 (0.51, 1.14) [31] 0.61 (0.40, 0.91) [27] 0.57 (0.29, 1.00) [32] 0.42

a-Carotene,2 mmol/L 0.49 (0.35, 0.62) [29]b 0.81 (0.47, 1.06) [31]a 0.46 (0.29, 0.73) [30]b 0.45 (0.26, 0.67) [32]b 0.0016

b-Cryptoxanthin,2 mmol/L 0.07 (0.05, 0.10) [27] 0.07 (0.03, 0.19) [22] 0.07 (0.05, 0.12) [24] 0.10 (0.07, 0.13) [28] 0.60

Lutein,2 mmol/L 0.95 (0.67, 1.23) [29]a,b 0.50 (0.39, 0.67) [31]c 0.77 (0.41, 1.15) [30]b,c 0.98 (0.81, 1.23) [33]a 0.0003

Zeaxanthin,4 mmol/L 0.04 (0.03, 0.06) [23] 0.02 (0.02, 0.03) [14] 0.04 (0.02, 0.06) [23] 0.04 (0.03, 0.06) [23] 0.07

Lycopene,2,4 mmol/L 0.13 (0.09, 0.16) [17]c 0.34 (0.26, 0.57) [22]a 0.11 (0.10, 0.37) [9]b,c 0.20 (0.12, 0.54) [14]a,b ,0.0001

ALT activity,2 U/L 3.3 (2.8, 4.1) [19] 3.1 (2.6, 3.5) [24] 2.8 (2.4, 3.6) [25] 2.7 (2.2, 4.1) [20] 0.48

PLP,2 nmol/L 16.7 (11.9, 21.1) [26]a 15.6 (11.2, 19.1) [22]a 9.1 (7.1, 14.1) [21]b 13.2 (8.5, 18.2) [21]a,b 0.0044

Elevated CRP (.10 mg/L), % [n] 7.1 [28] 12.9 [31] 31.0 [29] 19.4 [36] ,0.0001

Elevated AGP (.1.2 g/L), % [n] 93.1 [29] 93.5 [31] 92.9 [28] 97.4 [38] 1.0

1Some biomarkers differed by site, which may have reflected local consumption of some foods. Villages A and B were closest to the paved road, and

villages C and D were 8 km from the road. Carotenoid values were reported only for separately identifiable peaks. Groups with uncommon superscript letters

were different: a . b . c. P values are for testing the null hypothesis that each variable was equal in treatment groups by using an ANOVA or chi-square test.

AGP, a1acid glycoprotein; ALT, alanine aminotransferase; CRP, C-reactive protein; RBP, retinol binding protein; VA, vitamin A.
2Nonnormally distributed residuals; P value reflects a nonparametric analysis.
3Median; first and third quartile values in parentheses; n in brackets (all such values). First and third quartile values are also known as 25th and 75th

percentiles, respectively.
4Values were not always quantifiable in samples that were ,100 mL serum.
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a high prevalence of vitamin B-6 deficiency was discovered,
which likely interfered with the ALT activity.

Inferences from serum carotenoids consistent with high
liver VA stores

Aside from dietary intake, serum carotenoid concentrations
can be altered by a number of factors including VA status, the
transcriptional regulation of or genetic variations in genes related
to carotenoid metabolism, and BMI. VA status is likely the most
important factor that influenced BCO1 activity (41). A negative-
feedback system induced by retinoic acid reduced b-carotene
intestinal absorption and cleavage proteins (19) and led to less-
efficient b-carotene conversion in rats that consumed a high-VA
diet (17), which explains the inverse relation between VA status
and provitamin A conversion in humans (5). Although serum
carotenoid increases were not analyzed by VA status in the study
of Ribaya-Mercado et al. (5), TBSs and serum carotenoids in-
creased during the intervention, indicating that, while under
negative feedback of VA status, carotenoids were still being
absorbed intact in most subjects despite a likely downregulation
of carotenoid transporter scavenger receptor-B1. The observa-
tions of adequate VA intakes including provitamin A sources
(23), elevated TBSs (7), and high serum carotenoids in Zambian
children are consistent with these hypotheses.

Polymorphisms in BCO1 are associated with elevated fasting
b-carotene concentrations (42), and a lower conversion effi-
ciency of b-carotene, albeit at pharmacologic doses (43). Al-
though statistically significant, a polymorphism associated with
a higher b-carotene concentration only explained 1.9% of the
variance at the population level (42), and other variations in
genes related to the absorption, transport, and cleavage of ca-
rotenoids are likely involved in the individual variation in re-
sponse to dietary carotenoids (16) as well as their transcription
factors (18).

BMI was negatively correlated with all serum carotenoids
except lycopene in the most-comprehensive survey of serum
carotenoid concentrations in US children as part of the NHANES
III (13). Responses of plasma carotenoids to a fruit and vegetable
intervention were also inversely related to BMI (14). Zambian
children in this study had low BMI-for-age z scores, which may
be associated with higher serum carotenoid concentrations.
However, even when NHANES III data were stratified by lowest
BMI category (#15th percentile), Zambian children mean values
were still above the 95th percentile for serum a-carotene,
b-carotene, and lutein (13).

A comprehensive comparison of published serum carotenoid
and retinol concentrations in apparently healthy children was
conducted (Table 3); children with an infection or active malaria
were excluded, and control groups are presented. For provitamin

TABLE 3

Serum carotenoid concentrations in apparently healthy children from various regions of the world1

Country Age, y n Notes

Retinol,

mmol/L

b-Carotene,

mmol/L

a-Carotene,

mmol/L

b-Cryptoxanthin,

mmol/L

Lutein,

mmol/L

Lycopene,

mmol/L Reference

Zambia 5–7 123 — 0.98 0.76 0.62 0.10 0.86 0.30 Current

Belize 3–9 493 — — 0.21 0.093 0.15 0.23+z 0.11 Apgar and

Gunter (30)

China 0.5–2 254 — 0.96 0.056 0.003 0.027 0.22+z — Fan et al. (31)

Germany — 49 Native German 0.992 0.1252 0.0262 0.0902 0.093+z2 0.0172 Rühl et al. (32)

— 32 Turkish immigrants,

well-adapted

0.902 0.0932 0.0152 0.0612 0.11+z2 0.0172

— 41 Turkish immigrants,

weakly adapted

0.942 0.0712 0.0112 0.0562 0.10+z2 0.0192

Hungary 3.1–17.5 29 Noninfectious 1.17 0.16 0.049 0.16 0.12+z ,0.007 Cser et al. (33)

India 2–11 50 Nonmalarial 1.102 0.312 0.0352 0.122 0.422 0.0682 Das et al. (34)

Japan 10–11 216 — — 0.41 0.11 0.19 0.45+z 0.18 Okuda et al. (35)

Marshall Islands 1–6 189 SR ,0.7 mmol/L — 0.0113 0.0033 0.0233 0.044+z3 0.007 Gamble et al. (36)

89 SR .0.7 mmol/L — 0.0233 0.0063 0.0343 0.052+z3 0.012

Nigeria 0.7–8 19 Nonmalarial 0.78 1.29 — — — — Adelekan et al. (37)

Philippines 6.8–13.2 27 Baseline 0.68 0.13 0.02 0.06 0.50+z 0.05 Ribaya-Mercado

et al. (5)

After 12 wk F/V 1.06 0.66 0.15 0.19 0.47+z 0.25

Philippines 9–12 116 Baseline 0.87 0.23 0.03 0.07 0.22 — Ribaya-Mercado

et al. (12, 14)

After 9 wk F/V 0.90 1.17 0.57 0.12 1.29 —

Senegal 2–4 281 — — 0.16 0.030 0.020 0.46+z 0.070 Rankins et al. (38)

Sri Lanka 0.5–4.8 35 Individuals with

carotenodermia

1.35 0.61 0.63 0.26 — — Wageesha et al. (39)

United States 6–7 839 NHANES III — 0.34 0.075 0.21 0.34+z 0.46 Ford et al. (13)

United States 0.4–6 77 — 1.09 0.192 0.052 — — 0.152 Spannaus-Martin

et al. (40)

1All values are means unless otherwise indicated. After Zambia (current study), countries are listed in alphabetical order. F/V, fruit and vegetable

intervention; SR serum retinol; +z, zeaxanthin included in the published lutein value.
2Median.
3Geometric mean.
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A carotenoids, Zambian children had much-higher concentrations
of a-carotene and b-carotene than those of all other nonintervened
groups except for Nigerian children who were reported to have
been consuming red palm oil (37), which contains large amounts
of a-carotene and b-carotene (44). a-Carotene is not well dis-
tributed in vegetables but is present in pumpkin (9), which is
consumed in Zambia (23). b-Cryptoxanthin concentrations were
comparable to those of other groups but lower than for US children
(Table 3). For non–provitamin A, lutein concentrations were
higher than those of other nonintervened groups, and lycopene
concentrations were higher than those of all groups except of
US children (13). These findings reflect the availability of or-
anges and tomato-based products in the United States. Oranges
are not common in this part of Zambia, and tomatoes are eaten
freshly cooked and not concentrated. The only groups of children
with carotenoid concentrations close to those of this Zambian
cohort are those in individuals who consumed high fruit and
vegetable regimens that dramatically increased serum carot-
enoids (5, 12, 14) and in subjects with carotenodermia that
was due to excessive ingestion of carrot, pumpkin, and papaya
(39).

Differences existed by site in serum carotenoid concentrations.
Village B stood out from the others as having the highesta-carotene
and lycopene concentrations but lowest lutein concentrations,
which likely reflected greater consumption of pumpkin and
tomatoes and less intake of leafy green vegetables relative to
other sites. All of these plant-source foods would have been
available during this harvest and early postharvest season (23).

Inferences from retinyl ester distribution and retinol:RBP

Evidence from animal and human studies suggested that
serum retinyl esters are a potential biomarker for hypervita-
minosis A. In hypervitaminotic rhesus monkeys, serum retinyl
esters as a percentage of the total ranged from 5.5% to 23% for
animals experiencing hypertrophy and hyperplasia of liver
stellate cells (45, 46) but with normal SR concentrations (i.e.,
1.21 6 0.28 mmol/L) (46). In 2 groups of postmenopausal
women, serum retinyl esters were not considered elevated
(2.26 6 1.39% and 2.45 6 1.30%) despite dietary intakes that
were 2 times the current RDA of 700 mg retinol activity
equivalents/d (47). Therefore, we suggest that 5% retinyl
esters of total VA, which is more than twice the mean of these
healthy women with high intakes, may be a more-useful
cutoff in fasting blood samples to infer potential hypervita-
minosis A in children than is the 10% cutoff when more-
quantitative methods, such as RID and liver biopsy, are not
available.

RBP is used as a surrogate for SR concentrations, which
were not elevated. Seventeen percent of subjects were mis-
diagnosed with VA deficiency on the basis of an SR cutoff
,0.7 mmol/L (7). In this study, the retinol-to-RBP molar ratio
was essentially 1.0, suggesting that RBP was highly satu-
rated; free retinol was not circulating unbound to RBP, which
is a concern in hypervitaminotic states (22), and apo-RBP
was not released into the serum from the liver, which can
occur in VA deficiency (48, 49). Furthermore, considering
that our children were not overweight, apo-RBP was not
shown circulating without its ligand, which is characteristic
of excess adipose tissue (50).

Paradoxical response of ALT and its explanation by
impaired vitamin B-6 status

Serum ALT activity was assayed to determine whether el-
evated VA stores resulted in hepatotoxicity (51); however,
values were below normal. PLP is a cofactor for ALT; there-
fore, vitamin B-6 deficiency interferes with ALT-activity as-
sessment. Although inflammation was reportedly associated
with lower PLP values (52), as observed here, the observation
of extremely low PLP concentrations (29.3% of values,10 nmol/L)
and a very-high incidence (79%) of serum PLP concentrations
,20 nmol/L strongly indicated widespread vitamin B-6 de-
ficiency in these children. Functional biomarkers of vitamin
B-6 status (53, 54) are needed to confirm and extend these
findings.

Maize is the Zambian staple food, and the common practice of
refining maize and removing the nutritious germ and hull to
improve consistency impacts intakes of vitamin B-6 and other
nutrients (55). Although fish is consumed in this area, con-
sumption is likely w50 g one or 2 times/wk (23). Other animal
source foods are expensive or scarce in rural Zambia. A modi-
fication to use whole-grain maize instead of refined could impact
human nutrient intake and merits additional investigation. Site
differences were noted, and children from village C had the
lowest PLP concentrations of all sites, and villages closest to the
main road (i.e., villages A and B) had the highest concentrations,
which possibly reflected greater access to foods containing vi-
tamin B-6.

In conclusion, although this study used sophisticated RID
methods to estimate TBSs, which requires the use of mass
spectrometry, less-technical methods were used to support the
original diagnosis of a high degree of hypervitaminosis A in these
children. Carotenoid and retinyl ester profiles can be performed
with gradient HPLC. To have high sensitivity to detect minor
retinyl esters in addition to palmitate, we analyzed the carotenoid
and retinyl ester profiles on different systems. A method could be
developed to run both profiles simultaneously especially if retinyl
palmitate is targeted. The findings of hypercarotenemia, saturated
RBP, and elevated retinyl esters in some of the children support
excessive stores of VA in this community.
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