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ABSTRACT
Clostridium difficile has been documented as a major cause of uncontrolled outbreaks of enteritis
in neonatal pigs and antibiotic-associated infections in clinical settings. It belongs to the natural
cohort of early colonisers of the gastrointestinal tract of pigs and can be detected in faeces up to
two weeks post-partum. In older pigs, it often remains under the detection limit. Most neonatal
pigs show no clinical signs of disease although C. difficile and its toxins can be detected at high
levels in faeces. Increased mortality rates associated with C. difficile on pig farms are, so far,
considered “spontaneous” and the predisposing factors are mostly not defined. The infection
caused by C. difficile is multifactorial and it is likely that the repertoire of maternal factors, host
physiology, the individually developing gut microbiota, co-infections and environmental stress
define the conditions for disease development. In this addendum to our recently published work
on CDI in neonatal piglets, we discuss the “early-life events” that influence C. difficile spread and
infection in neonatal piglets.
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Introduction

For more than a decade Clostridium difficile has
been documented as a major cause of uncon-
trolled enteritis outbreaks in neonatal pigs.1,2

Nowadays, it is known that different farm ani-
mal species can be affected, making them also a
potential reservoir for C. difficile infection
(CDI) in humans.3 Besides the historic ribotype
027, a new type of C. difficile, ribotype 078,
originating from pigs, has been found to trans-
mit to farmworkers and cause CDI.4 In the
western industrialised countries, in hospitalised
patients, C. difficile is a leading cause of noso-
comial infection, morbidity, and mortality
where the latter is typically evident in the
elderly (> 80 years). Besides nosocomial infec-
tions, community acquired CDI is increasingly
important and the newly-reported ribotype
such as 078 has linked disease in humans and
pigs.5 Current treatment of CDI in pigs and

humans includes the use of antibiotics, however
treatment failure and infection relapse can
occur.6 A promising solution in current clinical
practice is faecal microbiome transplantation
(FMT) which supports the concept of “coloni-
sation resistance”. The outcomes of clinical
trials with the use of FMT are characterised
by high cure rates (up to 95%) and the method
is gaining interest among both health practi-
tioners and patients.7–9

Spores of C. difficile facilitate a rapid spread of the
bacterium between animals and in the environment.-
10,11 The diagnosis of CDI in pigs and humans usually
includes diarrhoea and colitis as well as the identifica-
tion of virulent C. difficile and detection of toxins.
However, clinical symptoms often do not correlate
with C. difficile and their toxins, making the diagnosis
of CDI extremely difficult.12,13 Interestingly, C. diffi-
cile belongs to the natural early colonisers of the
gastrointestinal tract of pigs and up to 100% of piglets
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test positive (and so increasing the probability of
being colonised by toxigenic ribotypes) within two
days after birth followed by a rapid decline with age.-
10,11 Increased pre-weaning mortality rates associated
with C. difficile on pig farms are so far termed “spon-
taneous” and the predisposing factors are largely not
known.14 It is very likely that maternal factors, host
physiology, the individually developing gut micro-
biota, co-infections and environmental stress are
important determinants.

In thisAddendum to our recently published work
on CDI in neonatal piglets,13 we aim at discussing
the “early-life events” that influence the spread of C.
difficile infection in neonatal piglets.

C. difficile infection in pigs

C. difficile colonises the piglet gut at birth and can be
detected in faeces up to two weeks post-partum.
Even more, most neonatal pigs show no clinical
signs of disease although C. difficile and its toxins
are present at high levels in the faeces. C. difficile is
also found in adult pigs though often at a very low
level.15 Although neonatal piglets are normally
asymptomatic carriers of C. difficile (including

toxigenic ribotypes), more severely infected animals
may be underweight by 10–15% and exhibit
decreased growth. The mortality rate among diar-
rhoeic neonatal piglets can be up to 14%.16

Pathogenic C. difficile have the ability to produce
several toxins which may be associated with CDI
symptoms in neonatal piglets. The action of the
two major exotoxins secreted by the bacterium,
toxin A (TcdA) and toxin B (TcdB) is related to the
modulation of the intestinal epithelial cell physiology
and disruption of barrier function. The toxins can
inactivate Rho proteins involved in the formation of
the cell cytoskeleton, leading to disruption of tight
junctions (TJ) and finally epithelial integrity.17 Thus,
in the last phase of C. difficile infection, intestinal
pathology develops due to a fluent inflammatory
response induced by the toxins, virulence factors
and additionally by translocation of the gut micro-
biota. The loss of epithelial integrity and accompa-
nying reduction of transepithelial resistance can also
be demonstrated in an IPEC-J2 cell culture model
and it seems to be toxin dose-dependent (Figure 1).
The induction of pro-inflammatory cytokines by the
toxins leads to the migration of neutrophils and
macrophages into the site of infection and formation
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Figure 1. Response of the IPEC-J2 to different concentrations of toxin A (TcdA) and toxin B (TcdB) as measured by transepithelial
electrical resistance (TEER) in an in vitro assay up to 20 h of incubation. Control: growth media (Dulbecco’s Modified Eagle’s Medium –
DME, DMEM | Sigma-Aldrich). Spent supernatant containing TcdA (1 291 ng/ml) and TcdB (829 ng/ml) diluted 1:2, 1:10, 1:100 and 1:1
000. Methods in Supplementary file S1.
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of mesocolonic oedema.18,19 Typical clinical symp-
toms in infected piglets include pasty-to-watery diar-
rhoea, anorexia, growth retardation and
dehydration. These manifestations may finally lead
to animal death.16 The inflammation leads to harm-
ful epithelial damage that is responsible for the clin-
ical course of the infection and it triggers an adaptive
immune reaction that is essential as a long-lasting
specific defence. Besides the influence of the inflam-
matory response andmicrobiome shift on the course
of the disease, CDI is a risk factor for resistome
expansion in pigs and humans; in humans treated
in intensive care units or suffering from CDI, shifts
in the intestinal microbiome were recently linked
with resistome changes.20

The susceptibility to CDI in pigs decreases with
age21 but the reasons for this are not clear.
Differences in the susceptibility to CDI in neonatal
piglets could result from the presence of toxin
receptors or intestinal concentration of bile salts
which are critical for the germination of C. difficile
spores in the intestine.22,23 In addition, the synth-
esis of C. difficile toxins (major virulence factors)
have been found to depend on the presence of
certain amino acids (e.g., cysteine or proline as
inhibitors) and short chain fatty acids (e.g. butyric
acid as inducer)24,25 and are thus related to the
intestinal micro-environment.

Microbial dysbiosis in C. difficile infection

Still little is known about the phenomenon of
resistance and susceptibility to CDI in piglets. It
is unclear why and under which conditions piglets
become sick or are asymptomatic carriers of toxi-
genic ribotypes. Interestingly, the natural colonisa-
tion of porcine and human neonates with C.
difficile is more prominent when they are formula
fed.13,26 The pathogenesis of CDI is most likely
multifactorial and thus accompanied by co-infec-
tions with other pathogens or a predisposing
intestinal dysbiosis.27,28 There is increasing evi-
dence that certain diseases are not only associated
and due to a single causative pathogen29 but
rather, are associated (and may be due to) a collec-
tion of different microbes (i.e., the “pathobiome
hypothesis”).30 Thus, any disruption of the natural
colonisation process or perturbances of the intest-
inal ecosystem could enhance the susceptibility to

CDI. In line with this hypothesis, our recent data
on the CDI model show a high abundance of
Proteobacteria including putative pathogens such
as Escherichia spp. or Shigella spp..13

In humans, C. difficile is probably the best-
known pathogen that follows antibiotic-mediated
changes in the gut microbiome.28 Whether this is
also true in the pig is yet not clear. However, we
showed in a previous study that antibiotic treat-
ment in a sow was associated with an increased
concentrations of C. difficile and toxins in her
piglets as compared to non-treated sows.15

Antibiotics are known to alter the structure and
metabolism of the gut microbiota allowing the
expansion of opportunistic pathogens including
C. difficile. However, non-antibiotic treated piglets
may also develop CDI.31 A deeper knowledge
regarding the influence of feeding on microbiome
signatures, resistome, and C. difficile pathology
could assist the development of protective strate-
gies to combat CDI in piglets.

Neonatal microbial programming through
mother-offspring association

The association between mother and offspring gut
microbiota during early life is a critical factor for
the subsequent succession of intestinal commensal
bacteria and immune development later on.32,33

The newborn piglet is continuously exposed to
microbes from its mother and the environment,
which enter the gut together with the mother’s
milk. The early gut colonisers in neonatal piglets
between 1 and 3 days of age include clostridia,
enterobacteria, enterococci, streptococci and pep-
tostreptococci, whereas lactobacilli and other spe-
cies become predominant afterwards.34 This early
neonatal phase also seems to determine the micro-
bial profile and intestinal health later in life.35 In
contrast to early-life colonisation patterns, changes
in the intestinal microbial ecosystem during the
abrupt weaning process in pigs have been studied
intensively during the past decades and are accom-
panied with functional adaptations related to diet
complexity.36,37 Compared to humans,26,32,38 the
aspect of mother-offspring association and its
effect on early microbial programming in pigs
has not been studied in detail. Still, little is
known about the impact of diet on the microbial
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association between the mother sows and their
offspring as well as the establishment of the infant
gut microbiota early in life. Few studies suggest a
positive impact of sow milk on the intestinal
microbiota and immune system of the piglets39,40

and that certain probiotics given to sows may alter
the microbiota composition and immune status of
their offspring.41,42

The only source of nutrients for the new-born
piglet is milk, which contains numerous growth
factors, microbial antigens and host antibodies
e.g., directed against certain pathogens and con-
tributing to passive immunisation in the
offspring.43,44 Interestingly, antibodies against
TcdA have been identified in human blood
serum45 which may protect against CDI.46 We
could demonstrate that the IgG antibodies against
TcdA can be found in sows’ blood serum and
milk (Figure 2). Recent studies have shown that
the administration of TcdB-specific bovine colos-
trum could prevent and treat CDI in mice and
reduced disease recurrence by 67%.47 Thus,
immunisation offers promising tools to actively
protect the individuals against CDI. The above
data suggest that manipulating the mother’s anti-
body repertoire in milk could protect neonatal

piglets from CDI. In several studies it has been
demonstrated that the amount of immunoglobu-
lins targeting toxin A and B are decisive for
asymptomatic carriage or recurrent courses.45,46

In addition to the humoral reaction of the host
itself, also intravenously administered human
monoclonal antibodies that bind to TcdB show
evidence of protection.48 Although one must sup-
pose that serum titres of antibodies only reflect
the amount of mucosal antibody production that
is a prerequisite for a direct defence of the muco-
sal surface, nothing is known about the mucosal
secretion of immunoglobulins specific for toxins.
In addition, the mechanism of how intravenous
administered antibody can protect mucosal sur-
faces from toxin-mediated damage has to be elu-
cidated. Interestingly, human milk
oligosaccharides were found to adhere to TcdA
and TcdB and slightly inactivate their toxicity in
in vitro cell culture49 and such an effect might
also be demonstrated using porcine milk oligo-
saccharides but this has yet to be studied . In
addition, porcine milk oligosaccharides could
provide an important selective advantage to
some bacteria, thereby modulating C. difficile
colonisation.
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Figure 2. Estimation of the strength of the relationship between the antibody titres (anti-IgG-anti-toxinA) in serum and milk from
four lactating sows, as assessed by enzymatic immunoassay method and measured by spectrophotometry. Methods in
Supplementary file S2. Animals and study approval were described previously.13.
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Mechanisms by which other bacteria could pre-
vent colonisation by virulent C. difficile have not
been clarified in pigs. The diversity of the gut micro-
biome may influence on the complete recovery from
CDI or recurrent disease: patients with severe disease
harbour a significantly less diverse microbiome as
compared to patients with non-recurrent infections.-
50 Therefore, a phenomenon termed “colonisation
resistance”, where C. difficile is replaced by other
bacteria in the developing ecosystem could thereby
contribute to protection of the host from CDI.51 For
example, it has been shown in humans that
Clostridium scindens can successfully outcompete
C. difficile and prevent or ameliorate CDI.52 Even
more, non-pathogenic or less virulent C. difficile
ribotypes (natural colonisers of neonatal piglets)
may successfully outcompete the toxigenic ribotypes,
which we have recently observed in co-culture, in
vitro (Figure 3). Similar effects have been previously
demonstrated in neonatal pigs53 and hamsters.54

These observations indicate that colonisation with
the commensal microbiota including non-toxigenic
C. difficile could provide protection to CDI.
However, the horizontal transfer of toxin genes
between toxigenic and non-toxigenic C. difficile

cannot be overruled,55,56 especially when using this
bacterium as a probiotic.

Among the abundant commensal microorgan-
isms, lactic acid bacteria are generally considered
as beneficial due to their antagonistic properties
against putative pathogens.57 Despite (lactic) acid
production, they can modulate the intestinal envir-
onment and host metabolism through bile salt
deconjugation and dehydroxylation,58 which in
turn may affect the growth and activity of C.
difficile. In fact, primary bile salts (e.g. taurocho-
late) act as germinants for C. difficile, while sec-
ondary bile salts (e.g. deoxycholate) inhibit its
growth in vitro.22,23 Changing the activity of lactic
acid bacteria could therefore change the suscept-
ibility of the host to CDI.

Finally, the normal proteolytic activity of the
developing gut microbiota could also have some
advantage in suppressing CDI by contributing to
the biological inactivation of the clostridial tox-
ins TcdA and TcdB (N-terminal glucosyltrans-
ferase domain, responsible for the initiation of
infection). Such mechanisms could in part
explain the lack of clinical manifestation of
infection in piglets, although the toxins are still
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Figure 3. Percentage distribution of three C. difficile ribotypes (078, 014/020, 005) co-incubated all together at equal concentrations
in BHIS media, plated and identified from a mixed culture by PCR-ribotyping coupled with Agilent 2100 Bioanalyzer (Agilent; Santa
Clara, CA-USA). Methods in Supplementary file S3.
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detectable using immunochemical or cell culture
tools.15

Taken together, the above-mentioned factors
point towards the importance of mother-offspring
interaction early in life and that maternal nutrition
may play a role in CDI in neonatal pigs.

C. difficile and diet

To date, only a few animal studies have focused
directly on the influence of diet on C. difficile
colonisation and susceptibility to CDI in animals.
It has been reported that hamsters and mice fed
either atherogenic, axenic or elemental diets
demonstrate higher C. difficile and toxin concen-
trations in their gut and their survival rates are
lower as compared to animals fed normal diets.59–
62 The results highlight the potential to directly
manipulate the susceptibility to CDI by dietary
means, at least in these animal models. However,
direct or indirect dietary effects on C. difficile
colonisation and infection in pigs still need to be
clarified.

A negative impact of high levels of SCFA and
low pH on C. difficile growth and toxin production
has been shown in a previous in vitro study.63 A
higher concentration of SCFA and low pH could
inhibit or stimulate toxin production by C. diffi-
cile, in vitro.25,63 Therefore, this approach could
offer an attractive way to control the colonisation
patterns in the offspring via modulation of the
mother sow diet and thereby protect against C.
difficile expansion in suckling piglets.

Conclusions

C. difficile is still one of the most important
emerging pathogens in clinical settings and has
been shown to be relevant for pig farming. The
disease is multifactorial and the repertoire of dif-
ferent maternal and environmental factors seems
to set the conditions for C. difficile expansion and
development of infection. There are fundamental
knowledge gaps that define an urgent need to
substantially expand research into the conditions
and factors that contribute to the transmission
and development of CDI. One relevant gap is a
better insight into a very short “window of
opportunity” for C. difficile to outgrow in the

colon of piglets which is up to two weeks of age
only, while beyond this the bacterium remains
under current detection limits. Such early coloni-
sation of C. difficile in neonatal piglets only up to
two weeks post-partum could raise questions
about when the piglet starts to contact the envir-
onmental microbiota. Next is an explanation of
how healthy carriers of toxigenic C. difficile can
remain free of symptoms since asymptomatic
carriage of this bacterium in piglets and humans
is well recognised. In addition, the zoonotic
potential of C. difficile and resistant pathogens
as a consequence of antibiotic treatment is of
major importance for human health. Thus, the
long-term goal would be to develop strategies to
modulate the resistance patterns to CDI under
normal conditions. Finally, the emerging presence
of C. difficile in animals and foods and the need
for science-based prevention strategies of serious
CDI necessitates a deeper knowledge about the
protective potential of diet, microbiota, immuno-
globulins, mucosal immune reactions following
distinct host factors that determine the course of
infection in piglets and humans.
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