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Abstract

The cardinal motor symptoms of Parkinson’s disease (PD) are caused by the death of 

dopaminergic neurons in the substantia nigra pars compacta (SNc). Alpha-synuclein (aSYN) 

pathology and mitochondrial dysfunction have been implicated in PD pathogenesis, but until 

recently it was unclear why SNc dopaminergic neurons should be particularly vulnerable to these 

two types of insult. In this brief review, the evidence that SNc dopaminergic neurons have an 

anatomical, physiological and biochemical phenotype that predisposes them to mitochondrial 

dysfunction and synuclein pathology is summarized. The recognition that certain traits may 

predispose neurons to PD-linked pathology creates translational opportunities for slowing or 

stopping disease progression.

Graphical Abstract

This review summarizes evidence that selective neuronal vulnerability in Parkinson’s disease 

results from several phenotypic traits: 1) calcium-dependent, feed-forward control of 

mitochondrial respiration leading to elevated reactive oxygen species and cytosolic calcium 

concentration; 2) an extensive axonal arbor; and 3) a reactive neurotransmitter. These traits 

increase vulnerability to genetic mutations associated with PD, age and environmental toxins.
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Introduction

PD is the second most common neurodegenerative disease, afflicting 1% of the population 

above the age of 65 [1]. The prevalence of PD in the U.S. is projected to steadily increase, 

reaching 2 million by 2030 [2, 3]. A similar trend is expected in developed countries around 

the world. The disease is debilitating, being characterized by progressive bradykinesia, 

rigidity, resting tremor and gait impairment, as well as a spectrum of non-motor symptoms 

including autonomic and cognitive dysfunction. These disabilities underlie the enormous 

economic burden of PD, estimated to be over $23 billion annually in the U.S. alone [4, 5]. 

PD has no cure and nothing is known to modify the progression of the disease. The cardinal 

motor symptoms of PD– bradykinesia and rigidity – stem from the loss of SNc 

dopaminergic (DA) neurons [6, 7]. Although it is widely recognized that the pathology in 

PD is not limited to SNc DA neurons [8, 9], this brief review focuses on current thinking 

about the vulnerability of this particular group of neurons. The reader is referred to another 

recent review that address the broader questions associated with distributed vulnerability in 

PD and common features of at-risk neurons [9].

Two competing theories of PD pathogenesis

There are two widely held theories of why SNc DA neurons are lost in PD. One is built upon 

the observation that Lewy pathology (LP) — proteinaceous inclusions that are rich in 

fibrillary forms of aSYN —is commonly observed in the SNc of PD patients [10]. These 

inclusions or an earlier oligomeric form of aggregated aSYN are commonly thought to be 

toxic [11, 12], resulting in the death of SNc DA neurons. Point mutations in the SNCA gene, 
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which encodes aSYN, or duplication or triplication of SNCA increase the risk of developing 

PD, solidifying the connection between PD and aSYN [13, 14].

A fundamental question is how LP (or oligomeric aSYN) arises in this small group of 

neurons in the mesencephalon. Comparison of patient brains taken at various times after a 

diagnosis has led to the hypothesis that in the preclinical stages of PD, LP first appears in 

either the olfactory bulb or the dorsal motor nucleus of vagus (DMV) in the caudal medulla 

and then propagates to the SNc through synaptically coupled networks [8, 15]. Indeed, there 

is compelling experimental evidence in support of the notion that some form of aggregated 

aSYN pathology can spread [16]. For example, histological analysis of fetal transplants into 

the striatum of patients with PD revealed that DA neurons exhibited proteinaceous 

inclusions that strongly resembled LP, suggesting that aSYN pathology has spread from the 

host into the graft [17, 18]. Moreover, when aSYN fibrils are directly injected into the brain, 

pathology can spread. In mice, synthetic, pre-formed aSYN fibrils propagate from the site of 

stererotaxic injection to neighboring structures, creating Lewy-like pathology [19, 20]. 

Similarly, in monkeys, proteins extracted from human brains with LP (that would contain 

aSYN fibrils and other LP proteins) can propagate [21]. Recent work has identified surface 

proteins that specifically interact with aSYN fibrils and promote spreading [22, 23]. 

Although there are methodological and biological issues surrounding these studies [24–26], 

they do demonstrate that extracellular aSYN aggregates can be taken up, spread and induce 

LP.

Despite of the unequivocal evidence for distributed, aSYN-laden LP in PD and the ability of 

aSYN aggregates to spread in animal models, the relationship between aSYN pathology, cell 

death and symptoms remains uncertain [9]. In particular, it is unclear why SNc DA neurons 

should be particularly vulnerable to propagated aSYN aggregates [16, 27]. Although aSYN 

fibrils inoculated into the brain can kill neurons [19], at lower, more biologically meaningful 

levels, LP does not appear to be particularly toxic. In many parts of the brain (particularly 

the brainstem), LP can be present for decades without causing any obvious degeneration or 

death. Why should DMV neurons tolerate LP and SNc DA neurons not? A related criticism 

of this hypothesis is that SNc DA neurons appear to be lost in sporadic PD cases before LP 

is present in the SNc and LP is not present in some familial cases despite loss of SNc DA 

neurons [9].

It is also possible that LP is a ‘red herring’ and that oligomeric aSYN (rather than fibrillar 

aSYN found in LP) is the real culprit in pathogenesis [28–33]. The problem with this 

hypothesis at present is that oligomeric species of aSYN are difficult to track in a cellular 

setting, making a rigorous test of the hypothesis problematic.

An alternative (but not mutually exclusive) hypothesis is that the loss of SNc DA neurons in 

PD is driven by mitochondrial dysfunction [34–36]. A major piece of evidence for this 

conclusion comes from studies of familial cases of PD. Loss of function mutations in DJ-1 

(PARK 7), PINK1 (PARK 6) and parkin (PARK 2) cause recessive, early onset forms of PD 

and all three gene products are directly involved in mitochondrial biology, influencing a 

range of functions from oxidant defenses, to quality control and oxidative phosphorylation 

(OXPHOS) [37–39]. Mutations in genes associated with dominant forms of PD, including 
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SNCA (PARK 1), LRRK2 (PARK 8), and CHCHD2, also have been linked to mitochondrial 

dysfunction [36, 40]. Another piece of evidence implicating mitochondria in PD comes from 

studies of environmental toxins. Toxins linked to PD, like rotenone, are invariably inhibitors 

of the mitochondrial electron transport chain (ETC), most commonly mitochondrial complex 

I [41, 42]. Post-mortem examination of the brains of PD patients also has implicated 

mitochondria in pathogenesis. The levels of functional complex I are diminished in the SNc 

of PD patients [43]. This is not just a consequence of neurodegeneration, as functional 

complex I levels are lower even in surviving SNc DA neurons [44]. Mitochondrial 

deoxyribonucleic acid (mtDNA) deletions, which can be caused by reactive oxygen species 

(ROS), are elevated in the SNc of PD patients [45–47]. These observations have led to the 

proposition that there is a ‘vicious cycle’ of oxidant stress and mitochondrial damage behind 

PD that ultimately leads to a bioenergetic crisis and the death of SNc DA neurons [36].

Selective vulnerability – a convergence of traits?

But why should SNc DA neurons be particularly vulnerable to mitochondrial dysfunction, 

any more than aSYN pathology? There are three characteristics of SNc DA neurons that 

have been hypothesized to make them preferentially vulnerable to these insults.

One distinguishing feature of SNc DA neurons is a long and highly branched, unmyelinated 

axon with an extraordinary number of transmitter release sites. SNc DA neurons in the 

rodent have axons that branch profusely in the striatum and possess as many as 200,000 

vesicular release sites [48]. Why might a long and highly branched axon increase 

vulnerability? There are several theories that have been proposed [49, 50]. Mitochondrial 

oxidant stress – one of the potential drivers of neurodegeneration – is elevated in the axons 

of SNc DA neurons and this stress is reduced by diminishing the size of the arbor [51]. The 

extraordinary large axonal arbor of SNc DA neurons is very likely to increase the expression 

of aSYN (which is largely a synaptic protein), adding to the potential for aSYN pathology. 

[52]. That said, not all neurons with long, branched axons are vulnerable in PD (e.g., striatal 

cholinergic interneurons [53]), suggesting that some other factor(s) is in play.

Another key feature of SNc DA neurons is their distinctive physiology. The action potential 

of these neurons is slow and broad, which maximizes calcium entry and promotes slow 

rhythmic activity [54]. The slow, rhythmic activity (2–10 Hz) in these neurons is 

autonomously generated and accompanied by slow oscillations in intracellular calcium 

concentration that are triggered by the opening of plasma membrane Cav1 calcium channels 

and release of calcium from intracellular, endoplasmic reticulum (ER) stores [55–58]. Once 

in the cytoplasm, calcium is relatively free to interact with other proteins as the abundance of 

calcium buffering proteins, like calbindin, is low [59]. This combination of features – broad 

spikes, pacemaking, low intrinsic calcium buffering and cytosolic calcium oscillations, 

distinguishes SNc DA neurons from the vast majority of neurons in the brain. For example, 

VTA DA neurons, which are significantly less vulnerable than SNc DA neurons (see above), 

are autonomous pacemakers with broad spikes, but have smaller Cav1 channel currents and 

strong intrinsic calcium buffering (by calbindin) [60–63].
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The slow calcium oscillations in SNc DA neurons sub-serve two complementary functions. 

First, they help maintain the slow tonic spiking by creating a membrane potential oscillation 

[56, 57, 64]. Second, they promote calcium entry into mitochondria at specialized junctions 

with the ER [65]; mitochondrial calcium entry stimulates OXPHOS and the production of 

adenosine triphosphate (ATP) [55](Zampese et al., unpublished observations). In principle, 

this anticipatory control of OXPHOS helps to ensure that bioenergetic needs are met even in 

conditions of sustained stress [66, 67] and that intracellular ATP levels do not fall into a 

range that would trigger protective activation of K-ATP channels and cessation of on-going 

activity [68]. Even temporary cessation of SNc activity would disrupt basal ganglia function, 

slow movement and lessen the chances of survival in a threatening environment. As a 

consequence, there should have been strong evolutionary pressure to maintain this kind of 

‘anticipatory’ (feed-forward) control mechanism.

Although anticipatory bioenergetic control clearly has an upside, but what are its downsides? 

There are two that are apparent. First, stimulating OXPHOS in the absence of strong ATP 

demand (which is most of the time) leads to mitochondrial hyperpolarization, slowed 

electron flux through the electron transport chain and increased production of ROS [69]. 

Both ROS and reactive nitrogen species (RNS) can damage proteins, lipids and DNA, 

particularly in mitochondria. This could be a major factor underlying declining 

mitochondrial function in at-risk neurons with age [70]. ROS and RNS also exacerbate the 

impact of genetic mutations and environmental toxins affecting mitochondria [71], as well as 

increase the propensity of aSYN to aggregate [72]. Moreover, mitochondrial damage 

stemming from oxidant stress should increase mitophagy, diminishing the ‘reserve’ 

autophagic capacity of neurons and their ability to deal with misfolded proteins, like aSYN 

fibrils [73]. Recent work by our group has demonstrated that mitophagy is in fact elevated in 

healthy SNc DA neurons [74]. The second downside associated with the anticipatory control 

of OXPHOS is that it results in high cytosolic calcium concentrations, which can have a 

variety of deleterious effects. Recent work has revealed that calcium concentrations in the 

dendrites of SNc DA neurons may rise into the low micromolar range with every spike 

during pacemaking, which is happening 2–10 times a second [74]. Elevated calcium directly 

promotes aSYN aggregation [75–77], activates the protease calpain (which increases 

aggregation) [78–80], activates the protein phosphatase calcineurin (which increases aSYN 

toxicity [81]); and impairs lysosomal motility and turnover of misfolded proteins, like 

aggregated aSYN [82]. aSYN oligomers may in turn elevate intracellular calcium, creating a 

damaging feedback loop [83].

Perhaps the most compelling piece of evidence that physiological phenotype is a 

determinant of pathology in PD is the observation that dihydropyridine inhibition of Cav1 

channels in SNc DA neurons – which lowers cytosolic calcium levels, lowers mitochondrial 

oxidant stress and turnover, increases mitochondrial mass and decreases the sensitivity to 

toxins [55, 62, 74, 84–86] – has consistently been linked by epidemiological studies to 

reduced risk of developing PD [87–92]. The combination of pre-clinical and clinical data 

implicating Cav1 channels in PD pathogenesis motivated the National Institutes of Health in 

the U.S. to mount a 5 year, Phase III, disease modification clinical trial in early stage PD 

patients with the dihydropyridine isradipine; this trial will be completed later this year.
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Thus, by design, SNc DA neurons appear to reside close to bioenergetic and protein 

degradation ‘tipping points’. Flagging mitochondrial and proteasomal/autophagic function 

with age [70, 93] – the biggest risk factor for PD – should undoubtedly push them closer to 

this tipping point, elevating the probability of de novo LP or an inability to handle the 

burden created by taking up pathological aSYN species from the extracellular space. Against 

this backdrop, it makes perfect sense that the genetic mutations and toxins associated with 

PD are ones that target mitochondria, protein degradation and aSYN expression, either 

directly or indirectly [94–96].

Is DA an accomplice?

Another trait that may contribute to selective vulnerability of SNc DA neurons is the reliance 

upon DA as a neurotransmitter. Cytosolic DA has long been known to be potentially toxic 

because of its oxidation to reactive quinones, but its role in pathogenesis has been contested 

for several reasons [97–99]. However, recent work has identified a new mechanism that 

might re-open the debate by tying DA toxicity to mitochondrial function, particularly in 

axons. First, mitochondrial oxidant stress in human (but not mouse) DA neurons promotes 

the generation of DA quinones that disrupt the function of glucocerebrosidase (GC) and 

lysosomes [100]. This species difference was linked to the relatively higher level of DA in 

human neurons and the accumulation of neuromelanin. GC was modified in its catalytic site 

by quinones, leading to lower activity. While it is widely accepted that lysosomal 

dysfunction can lead to the accumulation of damaged mitochondria [101], this work 

provides the first strong evidence that mitochondrial oxidant stress can cause lysosomal 

dysfunction. This observation complements earlier work linking DA, Cav1 channels, aSYN 

and lysosomes [102, 103]. Another potential linkage between DA and vulnerability could 

involve mitochondrially anchored monoamine oxidase (MAO). MAO degrades cytosolic 

DA, and is so doing, is widely thought to increase cytosolic oxidant stress by generating 

hydrogen peroxide [97]. Although appealing, this hypothesis has never been rigorously 

tested in situ. Moreover, this hypothesis doesn’t explain why MAO is anchored to the outer 

membrane of mitochondria. It is tempting to speculate that the electrons generated by DA 

metabolism are in fact shuttled to mitochondria to help with ATP production, rather than 

simply being ‘discarded’. If this were the case, there could be a summation in axonal 

mitochondrial oxidant stress arising from MAO metabolism of DA and that driven by 

calcium entry through Cav1 calcium channels [104].

The vast number of DA release sites of nigrostriatal axons also connects vulnerability to 

alterations in synaptic transmission per se. aSYN is strongly associated with vesicular 

trafficking at transmitter release sites [105, 106]. Other aspects of vesicular trafficking may 

also be disrupted in PD. Recent studies have implicated the synaptic proteins auxilin and 

synaptojanin-1, which regulate clathrin-mediated synaptic vesicle endocytosis, in PD [107–

111]. But, how synaptic dysfunction contributes to the molecular mechanisms mediating 

dysfunction and the degeneration of SNc DA neurons remain unclear.
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Does network dysfunction accelerate progression?

In addition to phenotypic traits that predispose SNc DA neurons to mitochondrial pathology, 

network dysfunction could contribute to their mitochondrial stress and disease progression, 

particularly in the symptomatic stages of the disease [112–117]. With symptom onset, 

rhythmic, synchronous bursting activity emerges in subthalamic nucleus (STN) 

glutamatergic neurons; because these STN neurons innervate SNc DA neurons, this 

pathological activity has been hypothesized to increase glutamate release in the SNc, 

initially compensating for DA release deficits but ultimately driving excitotoxicity [112, 118, 

119]. Moreover, lesions of the STN or regularizing the output of the STN with deep brain 

stimulation has been reported to protect SNc DA neurons [112, 113, 115–117]. Another 

potential player in network-driven pathology is the pedunculopontine nucleus (PPN). PPN 

provides a potent glutamatergic innervation of vulnerable ventral tier SNc DA neurons [120–

122]. Activity in the PPN, like that of the STN, rises in PD models [119, 123, 124] and in 

PD patients[125], suggesting that it could provide an additional excitotoxic drive.

Neuronal degeneration induced by glutamate is thought to be mediated by N-methyl-d-

aspartate receptors that flux calcium [114]. Certainly, in SNc DA neurons adding to the 

calcium burden created by Cav1 calcium channels during pacemaking could prove 

problematic. However, there is another potential glutamatergic mechanism, particularly in 

SNc DA neurons with impaired mitochondrial function. Group I metabotropic glutamate 

receptors potently harness ER calcium stores to elevate cytosolic calcium levels and increase 

mitochondrial calcium loading in SNc DA neurons (Zampese et al. unpublished 

observations). This mechanism complements that engaged by Cav1 calcium channels during 

pacemaking, allowing excitatory glutamatergic synaptic input to stimulate mitochondrial 

ATP production in anticipation of the need created by synaptically evoked depolarization 

and spiking. Normally, this mechanism should be adaptive, helping mitochondrial ATP 

production meet demand. But, when mitochondrial function is impaired in PD or when 

glutamate rises in the absence of synaptic demand [118], mitochondrial calcium loading 

could drive pathology. Indeed, several lines of study suggest that antagonism of Group I 

mGluRs protects SNc DA neurons against toxins that compromise mitochondrial function 

[126–128].

Not an either-or proposition

Thus, in SNc DA neurons there may be a ‘perfect storm’ created by the convergence of their 

peculiar phenotype, aSYN pathology and mitochondrial dysfunction (Fig. 1). The available 

evidence clearly suggests that elevated mitochrondrial oxidant stress and cytosolic calcium 

will promote aSYN aggregation, increase aSYN toxicity and impair clearance, making SNc 

DA neurons not only more prone to de novo pathology, but to propagated aSYN pathology 

as well. Conversely, aSYN aggregates disrupt mitochondrial function [95, 129–133] and 

impair autophagy (see above), potentially leading to the accumulation of damaged and mis-

regulated mitochondria. Recent work in SNc DA neurons over-expressing aSYN has 

provided new evidence that this interaction with mitochondria could create a ‘death spiral’ 

[134].
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Unanswered questions and tools to build

Given all we know about aSYN pathology, mitochondrial dysfunction and SNc DA neurons, 

why is aging the most important risk factor for cPD? There are a number of recent reviews 

that have focused on the potential role of aging in the selective vulnerability of SNc DA 

neurons [70, 135, 136]. It is unclear to what extent aging diminishes the capacity of SNc DA 

neurons to successfully cope with stress arising from their phenotype and to what extent 

their phenotype actually accelerates the aging process. Many if not all of the causes of aging 

– genetic mutations, mitochondrial dysfunction, proteostatic dysfunction and telomere 

shortening [137] – could be promoted by the conditions found in SNc DA neurons. Telomere 

shortening, which is a new addition to this list, has recently been found to be driven by 

oxidant stress [138], making it relevant to aging of non-dividing neurons in the brain. In 

non-human primates, neurons in the ventral tier of the SNc, which is the among the first 

regions to degenerate in patients with PD, manifest signs of senescence (e.g., down-regulate 

tyrosine hydroxylase) sooner than do neurons in the dorsal tier or VTA [136]. ‘Premature’ 

cellular aging should increase vulnerability to challenges posed by protein aggregation, 

genetic mutations, environmental toxins, or infection, just as aging increases our 

vulnerability at the organismal level. Interestingly, rodent models do not recapitulate 

telomere shortening with aging seen in humans. This provides a potential explanation for 

why mouse genetic models of PD have consistently failed to reproduce the pattern of 

pathology observed in patients with PD.

This leads to another major shortcoming in the field of PD pathogenesis: the near absence of 

progressive models of pathogenesis that have construct validity. By construct validity, I 

mean a model that starts with an intervention that mimics a key event in human 

pathogenesis. Models predicated upon doses of toxin that kill SNc DA neurons virtually 

overnight do not fall into this category. For unknown reasons, mice harboring genetic 

mutations mimicking those found in human PD patients have failed to provide robust models 

of PD. Mice with intrastriatal injections of pre-formed fibrils of aSYN do manifest SNc 

degeneration and parkinsonism and, since LP is a feature of many forms of PD, these 

models do have construct validity [19, 139]. Moreover, our work and that of others suggests 

that aSYN pathology increases cytosolic and mitochondrial oxidant stress in SNc DA 

neurons [9, 132, 140]. However, the mitochondrial challenge in these mice is secondary to 

broader cellular stress, making it difficult to use them to assess the specific role of 

mitochondrial dysfunction and aSYN pathology in the evolution of PD – a question that is of 

fundamental importance for the development of therapies that slow SNc DA neuron loss in 

the early stages of PD. Moreover, these aSYN models do not manifest the progressive 

features of idiopathic PD; in particular, the early loss of DA axons innervating the striatum 

followed by loss of somatodendritic integrity [141]. The lack of progressive models not only 

makes hypothesis testing about the mechanisms underlying pathogenesis problematic, it 

makes it difficult to connect the motor symptoms of PD to stages in the degeneration of SNc 

DA neurons. Developing such a model would be a great leap forward.
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Abbreviations:

(ATP) adenosine triphosphate

(aSYN) alpha-synuclein

(DA) dopaminergic

(DMV) dorsal motor nucleus of vagus

(ETC) electron transport chain

(ER) endoplasmic reticulum

(GC) glucocerebrosidase

(LP) Lewy pathology

(mtDNA) mitochondrial deoxyribonucleic acid

(MAO) monoamine oxidase

(PD) Parkinson’s disease

(PPN) pedunculopontine nucleus

(OXPHOS) oxidative phosphorylation

(RNS) reactive nitrogen species

(ROS) reactive oxygen species

(SNc) substantia nigra pars compacta

(STN) subthalamic nucleus
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Figure 1: 
Schematic summary of the key traits of neurons that are vulnerable in PD. Two major drivers 

of pathogenesis are mitochondrial and proteostatic dysfunction. Mitochondrial dysfunction 

is proposed to be a consequence of anticipatory (feed-forward) control of mitochondrial 

respiration by calcium, and yet undefined axonal bioenergetic factors working in 

combination with genetic and environmental factors (e.g., toxins). Proteostatic dysfunction 

is proposed to arise from aSYN aggregation promoted by oxidant stress, elevated cytosolic 

calcium and DA quinones, in addition to lysosomal dysfunction promoted by increased 

mitophagy and oxidant damage to lysosomal proteins like glucocerebrosidase. Solid lines 

make connections between events that are well-established in mammalian models; dashed 

lines connect mechanisms for which there is good but not unequivocal support.
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