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Abstract

Stem cells provide tremendous promise for the development of new therapeutic approaches for
musculoskeletal conditions. In addition to their multipotency, certain types of stem cells exhibit
immunomodulatory effects that can mitigate inflammation and enhance tissue repair. However, the
translation of stem cell therapies to clinical practice has proven difficult due to challenges in intra-
and inter-donor variability, engraftment, variability in recipient microenvironment and patient
indications, and limited therapeutic biological activity. In this regard, the success of stem cell-
based therapies may benefit from cellular engineering approaches to enhance factors such as
purification, homing and cell survival, trophic effects, or immunomodulatory signaling. By
combining recent advances in gene editing, synthetic biology, and tissue engineering, the potential
exists to create new classes of “designer” cells that have prescribed cell-surface molecules and
receptors, as well as synthetic gene circuits that provide for autoregulated drug delivery or
enhanced tissue repair.
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Stem Cell Research and Therapy in Orthopaedics

The field of orthopaedics has seen tremendous growth in the application of various types of
stem cells for musculoskeletal research, as well as in the development of new approaches for
translation of cell-based therapies to clinical orthopaedic practice. Stem cell research in
orthopaedics has spanned from embryonic stem (ES) cells and induced pluripotent stem
cells (iPSCs), to multiple types of adult stem cells, often termed mesenchymal stem cells
(MSCs). Indeed, much of the work in adult stem cell research was pioneered by
musculoskeletal researchers and initially directed toward the development of novel therapies
for orthopaedic conditions such as bone regeneration and cartilage repair. Following these
initial advances, the field has continued to investigate new methods to enhance regeneration
and repair of all the major musculoskeletal tissues, as well as cell-based therapies for
diseases such as osteoarthritis, tendonitis and tendon repair, intervertebral disc regeneration,
muscle repair, and many other conditions (reviewed in 2).

The prominent emphasis of applied stem cell research on musculoskeletal tissues may be
due to the initial identification of a multipotent, non-hematopoietic population of bone
marrow cells with the capacity to undergo osteogenic differentiation in culture.3 These cells
could be expanded through multiple population doublings and showed the ability to form
colony-forming units (CFUs) and self-renewal in culture.* Under defined /n vitro culture
conditions, such cells could be induced to express the phenotypic characteristics of multiple
musculoskeletal tissues of mesenchymal lineage.® Thus, they were named “mesenchymal
stem cells” to reflect the hypothesis that these cells served /n vivo as adult stem cells,
responsible for the development and/or regeneration of mesenchymally-derived tissues.!
However, in recent years, the name “MSC” has led to significant controversy and debate .5’
It can be argued that /n vitro, MSCs meet the two fundamental requirements of a “stem cell”
(i.e., self-renewal and capability for differentiation).8 However, it remains to be determined
if this definition is met broadly /7 vivo,? outside of specific situations such as the
engraftment and proliferation of immortalized MSCs into irradiated bone marrow.10
Additionally, the early pre-clinical work investigating the contribution of MSCs /7 vivo has
been limited by the techniques available to track and evaluate function of MSCs following
implantation. Further confusion has arisen by the identification of similar but distinct
populations of multipotent cells, likely of perivascular origin, in tissues such as adipose
tissue, muscle, tendon, bone, and synovium, but with mixed and inconsistent terminology
being used to describe them. Accumulating evidence indicates that multipotent cells derived
from bone marrow, fat, bone, muscle, and other tissues exhibit significantly different
properties, identities, and differentiation potential 1112 but in many cases are referred to as
“MSCS”.13'14

Beyond basic science research, the translational applications of stem cells in orthopaedics
has focused primarily on cell therapy or tissue engineering, with more recent expansion into
the development of microphysiologic systems and /n vitro disease modeling. “Cell therapy”
implies the introduction of isolated cells without a structural scaffold, usually through
injection into the target site (e.g., intra-articularly or intra-discally), or in some cases,
intravenously. “Tissue engineering” has generally focused on combining cells, biomaterial
scaffolds, and environmental factors (e.g., growth factors, bioreactors) to regenerate tissue
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replacements for implantation. Despite tremendous progress in these areas, however, there
have been few long-term successes in the translation of stem cell therapies to clinical
therapies.12:16 Preclinical studies for tissue-engineered repair of cartilage and bone have
been quite promising, but most clinical procedures either lack controls or have shown long-
term results that are equivocal to standard-of-care.17:18 Similarly, stem cell therapies have
shown significant promise in controlled preclinical animal studies, %21 but have not shown
consistent clinical efficacy in prospective and randomized trials.22-24

Despite the lack of clear evidence to support these “stem cell” therapies, numerous clinics
continue to offer unproven procedures in the United States, with an unknown number of
such clinics outside the United States offering various cell therapies as medical tourism. Not
only do many of these procedures not involve actual stem cells, there have been a number of
serious adverse effects that have been documented due to unproven stem cell therapies,2>
including growth of a mucus-producing nose in the spine,26 tumor formation,2’ blindness,28
and infection.2®

Indeed, the results of less than half of stem cell clinical trials are published, suggesting that
many negative findings in the stem cell field go unreported.30 Furthermore, many of these
clinics are misusing the term “stem cell” or “cellular therapy” to treat various
musculoskeletal conditions. The United States Food and Drug Administration (FDA) defines
a somatic cell therapy as the administration to humans of autologous, allogeneic, or
xenogeneic living cells that have been processed ex vivo (FDA Guidance for Industry). This
definition is important as many of these clinics claim bone marrow aspirate concentrate
(BMAC) as a stem cell therapy, with limited clinical data to support this notion. BMAC is
becoming more popular in the clinical community to treat musculoskeletal injuries and
diseases due to the limited regulatory barrier for clinical use - bone marrow aspirate is
concentrated and therefore, considered to be minimally manipulated but not processed and
expanded ex vivo. In fact, 48% of the businesses marketing “stem cells” describe use of
autologous stem cells obtained from bone marrow.3!

Challenges in Stem Cell Therapies

The promise of stem cell therapies for musculoskeletal conditions remains largely
unfulfilled, and despite a wealth of successful preclinical animal studies, proven success in
the clinic is still elusive.32:33 At the onset of the field, it was hypothesized that injected stem
cells can home directly to sites of injury, exhibit long-term engraftment and survival, and
perform the appropriate regenerative and trophic functions for the appropriate amount of
time. Unfortunately, most of these hypotheses around stem cell homing and engraftment
have turned out to be extremely difficult to show in clinical practice, particularly under the
scrutiny of randomized prospective clinical trials.33 More recently, the primary proposed
mechanism of action for stem cell therapies is based on the concept that the cells termed
“MSCs” may be in fact a type of perivascular cell — the pericyte — that exists with distinct
phenotypes in different vascular tissues sites.3* When activated or reintroduced to the body,
these cells exhibit trophic and anti-inflammatory effects through paracrine signaling.3°
Mounting evidence supports this notion, but similar to past hypotheses, controlled,
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randomized clinical studies have been limited and have shown somewhat variable response
capabilities.

For example, many studies that have shown evidence of therapeutic benefits of stem cell
therapies have also shown little, if any, homing and long-term engraftment to sites of injury,
with most stem cells dying or being cleared away within days of injection.19:36 Furthermore,
without defined exogenous factors to regulate their behavior /n situ, the differentiation and
growth of stem cells may be uncontrolled post implantation. For example, growing evidence
shows that MSCs used in the context of cartilage regeneration can experience hypertrophy
and ossification once implanted 7 vivo.37 Similarly, the first generation of therapies using
autologous chondrocyte implantation for focal cartilage defects experienced uncontrolled
growth and hyperplasia in approximately 40% of cases, which required additional surgery
for removal of the overgrowth.38

An important consideration in this regard is an improved understanding of the role that the
microenvironment may play on the therapeutic potential of MSCs. While MSCs exhibit
some anti-inflammatory and regenerative effects in controlled pre-clinical environments, in
the clinical setting, they are often being introduced into a highly inflammatory
microenvironment, such an injured or arthritic joint. In these cases, MSCs may not have the
ability to overcome pathophysiologic levels of inflammation or the harsh biomechanical
environment of the musculoskeletal system.39 Furthermore, preclinical studies of stem cell
therapies rarely consider the underlying disease state and co-morbidities of the recipient.
Factors such as obesity, aging, autoimmune disease, or systemic inflammation can greatly
influence stem cell responses such as engraftment, viability, and functional response.40

Similarly, intra-donor and inter-donor variability of stem cells still represents a major
limitation to clinical translation. Multiple factors can influence intra-donor variability, such
as the tissue sourcel4 or the isolation protocol.# Recent studies suggest that the standard
MSC preparation can include multiple distinct populations of cells types, and it remains to
be determined which sub-population is responsible for the different properties of these cells.
42 These issues are further exaggerated by inter-donor variability, where age, sex, and
multiple genetic or epigenetic factors may influence stem cell properties and function. In
addition to donor variability, cell therapies in general are limited by current cell culture
techniques. In general, current culture systems lack reproducibility and standardization,
influence and alter stem cell architecture and function, and limit the ability to scale-up and
manufacture.3

Engineering the next generation of stem cells

Clearly, there is tremendous potential for stem cells to form the basis for a variety of
regenerative approaches for musculoskeletal conditions. However, in addition to many of the
limitations in cell isolation, expansion, and delivery noted above, it is now becoming
apparent that stem cells in their “naive” (i.e., unmodified) form often have limited
therapeutic potential and high variability in such responses. In this regard, the ability to
“engineer” stem cells to modify their properties and behavior could significantly improve
their therapeutic potential. Initial efforts at optimizing stem cell therapeutics involved a
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number of transgenic or peptide-based approaches.** For example, transgenic approaches
have been very effective in modifying stem cells to overexpress specific growth factors,
receptors, or transcription factors to enhance their differentiation into defined lineages,
particularly in the context of tissue engineering.*°

Similarly, several studies have shown that stem cells can be modified to produce desired
genes,*6 effectively providing a source for the production of specific cytokines or signaling
molecules in the context of autocrine or paracrine based signaling. For example, stem cells
that have been transduced to overexpress anti-inflammatory cytokines or inhibitors of
fibrosis can enhance wound healing if administered as either cell-based therapies or
implantable tissue-engineered constructs.#’ For further control of cell-based delivery of
biologic drugs, other approaches have incorporated tunable and inducible genetic switches
into stem cells, allowing for stem cells or tissue-engineered cartilage with exogenously
controllable drug delivery systems.48:49

To address issues of homing and retention, several approaches have shown that stem cells
can be targeted to specific tissues in the body by modifying cell surface receptors,* such as
stromal cell-derived factor 1 (SDF-1).50 For example, enzymatic modification of the CD44
surface receptor into an E-selectin binding domain significantly enhanced homing of MSCs
to the bone marrow.5! In other studies, anti-cartilage matrix antibodies have been coupled to
the surface of MSCs, allowing for the binding of virtually any Fc-bearing protein to the cell
and the targeting of cells to tissue-specific proteins in the body (such as type Il collagen).>2
These approaches provide a number of potential advantages in the application of cell
therapy, such as a need for reduced numbers of transplanted cells as well as fewer “off-
target” effects,3 but to date, have not been implemented in clinical practice.

Engineering Designer Stem Cells

Using recent advances in genome and epigenetic engineering in combination with synthetic
biology, new approaches are being developed for dynamic control of cellular behavior in
response to environmental signals. In initial approaches, several studies have used genetic
modification of endogenous inflammation-responsive promoters to drive the expression of
therapeutic transgenes, allowing for dynamic, self-regulating gene expression driven by
synthetic gene circuits. For example, Rachakonda et al. designed a truncated promoter
sequence of cyclooxygenase 2 (COX-2) upstream of the IL-4 gene to develop a self-limiting
promoter construct that expresses IL-4 in chondrocytes only in the presence of
inflammation.>* In other studies, a synthetic gene promoter system was developed based on
multiple consensus elements for nuclear factor kappa-light-chain-enhancer of activated B
cells (vr-kB), which was used to amplify and drive the expression of anti-cytokine drugs such
as IL-1Ra in response to IL-1 (Figure 1A).In a similar approach, Lin et al. generated an NF-
KB responsive lentiviral system to synthesize IL-4 as a potential regulator of macrophage
polarity in response to inflammatory cytokines.5¢ These strategies have generally involved
the use of viral vectors for gene delivery, which has the advantage of broad application to
multiple cell types, but could be impaired by epigenetic silencing or pose a risk for
insertional mutagenesis.
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Targeted Genome and Epigenome Engineering of Stem Cells

While the concept of cellular engineering is not new,° the molecular tools available for
targeted genome and epigenome engineering have greatly advanced over the past few years,
allowing for rapid modifications of cells, with unprecedented precision.>8:59 In particular,
the emergence of the CRISPR-Cas9 system and its applicability to mammalian cells has
revolutionized the ability for gene editing. Because of the highly-targeted nature of this

system, the chances for off-target effects or risks of tumorigenicity are considerably reduced.
60,61

Nonetheless, in the orthopaedic field, there have been few applications of CRISPR-Cas9
genome engineering in stem cells. Some of the first applications have been in the
engineering of stem cells to allow for controlled attenuation of their detrimental responses to
inflammatory cytokines [e.g., interleukin-1 (IL-1), tumor necrosis factor (TNF)%2.63], For
example, murine iPSCs have been engineered to harbor a functional deletion of the
interleukin-1 receptor | (//1r1).64 These cells were capable of synthesizing a cartilaginous
matrix that was protected against IL-1 - mediated inflammation or tissue degradation, as
measured by a decreased expression of pro-inflammatory genes and a reduced loss of
proteoglycan content. In other studies, dead Cas9 (dCas9)-KRAB was used for epigenome
editing at loci encoding cytokine receptors /LZR1 and tumor necrosis factor receptor 1
(TNFRI) to inactivate these receptors.85 This approach showed the ability to inhibit
downstream activation of NF-xB and to increase stem cell survival, without changes in the
gene sequence. Coupling dCas9 with a transactivation domain such as VP64 has been used
for highly targeted gene activation providing alternative approaches for conferring anti-
inflammatory properties to stem cells or activation of specific transcription factors for
inducing stem cell differentiation.56

Creating Self-Regulating “Smart” Cells

The CRISPR-Cas9 provides a system for targeted gene editing that can allow for
epigenetically stable, robust transgene expression for applications in which the use of viral
vectors may not be desired. For example, we have used this approach to engineer iPSCs that
contain artificial gene circuits that are cytokine-activated and feedback-controlled to regulate
the expression of biologic therapies.6” Such “smart” stem cells were used to engineer
articular cartilage capable of inducible and transient anti-inflammatory responses to
inflammatory cytokines. Specifically, using CRISPR gene editing, targeted gene addition of
IL1-Ra or soluble TNF receptor (STNFRI) cDNA downstream of the Cc/2 promoter was
used to produce “smart” iPSCs that initiated a dynamic negative feedback loop upon
stimulation with 1L-1 or TNF87 (Figure 1B). These iPSCs were engineered to form
implantable self-regulating tissue constructs and have shown promising efficacy in early
studies in a model of inflammatory arthritis.58

“Designer” stem cells have the potential to overcome challenges with long-term therapeutic
delivery of biologic drugs, as well as limitations involved in cell homing and engraftment.
The development of self-regulating®’ or exogenously controlled*® systems for transgene
expression may allow for a new generation of stem cells that can not only be used to
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engineer tissue replacements, but simultaneously may serve as an inducible and tunable
depot for localized delivery of biologic drugs. Furthermore, the field of synthetic biology has
made significant advances in the creation of biologic components with precise and
controlled responses to stimuli.® Application of this toolkit of gene switches, classifiers,
and synthetic transcription systems to stem cell therapies for orthopaedic problems may
allow for more specific control of the delivery of therapeutic transgenes.

Conclusions

Stem cells provide tremendous opportunities for the development of novel therapies for a
range of musculoskeletal disorders, but to date, their full potential has not been realized.
While stem cells clearly exhibit a range of trophic and anti-inflammatory capabilities,
increasing evidence suggests that in many cases, stem cells in their naive state may not
possess sufficient disease-modifying characteristics to justify the added costs and potential
risks involved in their use. With the advent of a multitude of new methods for cellular
engineering, we propose that a new generation of stem cell therapies will emerge that can
provide functional tissue replacements as well as exogenous or even self-regulating
capabilities for biologic drug delivery. In addition to such therapeutic applications of stem
cells /n vivo, genome edited stem cells may also allow for the development of /n vitro
models’ of disease or reporter systems’? for stem cell purification, or for investigating the
consequences of causative or associate genetic elements such as coding/noncoding single
nucleotide polymorphisms (SNPs), variable number tandem repeats (VNTRS), etc. identified
through genome-wide association studies (GWAS)."2
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Figure 1. Synthetic genecircuits used to develop self-regulating biologic drug delivery systems.
A. Synthetic promoter containing multiple NF-kB recognition motifs upstream of /LIRN

(gene for IL-1Ra) to create an inducible promoter that is activated by inflammation. In
response to 1L-1, the synthetic promoter is activated and produces IL-1 Ra, which then
inhibits IL-1 in an autoregulated manner. B. CRISPR-Cas9 targeted gene editing was used to
insert a therapeutic transgene (s7NVFRI) in the Cc/2locus. Activation of the endogenous
Ccl2promoter by TNF results in dynamic expression of sTAMFRI, which then inhibits TNF,
creating a self-regulating system.
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