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Abstract

Graph models of cerebral vasculature derived from 2-photon microscopy have shown to be 

relevant to study brain microphysiology. Automatic graphing of these microvessels remain 

problematic due to the vascular network complexity and 2-photon sensitivity limitations with 

depth. In this work, we propose a fully automatic processing pipeline to address this issue. The 

modeling scheme consists of a fully-convolution neural network to segment microvessels, a 3D 

surface model generator and a geometry contraction algorithm to produce graphical models with a 

single connected component. Quantitative assessment using NetMets metrics, at a tolerance of 60 

μm, false negative and false positive geometric error rates are 3.8% and 4.2%, respectively, 

whereas false negative and false positive topological error rates are 6.1% and 4.5%, respectively. 

Our qualitative evaluation confirms the efficiency of our scheme in generating useful and accurate 

graphical models.
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I. Introduction

WITH the emergence of two-photon microscopy (2PM), it has become feasible to obtain 

microscopic measurements of the cerebral vascular geometry and, more recently, of 
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associated oxygen distributions [1], [2]. Such investigations of cerebral microvasculature is 

essential to understand brain neurovascular coupling and neuro-metabolic activity [3]. It can 

also help in underpinning neurological pathologies associated with microvascular ischemic 

changes [4]. Furthermore, microscopic studies can be scaled: quantitative analysis of 

cerebral microvasculature has recently been used to establish a link between the microscopic 

vascular phenomena and the macroscopic (voxel size) observations found in the blood 

oxygenation level-dependent (BOLD) response [5], [6]. A key problem encountered in the 

efforts of [5] and [6] to model cerebral microvasculature is the construction of a sufficiently 

complete and detailed vascular network from noisy 2PM data. Physiological simulations 

were based on vascular connectivity which in turn required extensive manual annotations to 

reconstruct the microvascular topology of each dataset. This human interaction limits the 

applicability of such simulation frameworks in further neurological studies that would 

require scaling to large datasets.

Imaging brain tissue using 2PM is associated with high absorption and scattering of the 

emitted photons with depth leading to image degradation and intensity changes as laser 

power and detector gains are dynamically adjusted with depth. Also, scattering of excited 

photons by red blood cells degrades their focus and leads to shadows underneath large pial 

vessels. These deteriorations in the excited and emitted photons yields volumetric image 

intensity variations such that automatic processing of two-photon microscopic data is 

tedious and even problematic [1]. Modeling of angiographic information from 2PM includes 

segmentation of captured microvessels [7], [8], computation of the microvasculature 

network shape and topology [9], [10] and anatomical labeling of the extracted components 

(e.g. arterioles, venules and capillaries). Until recently, some work has been done to 

automate the processing of these microscopic datasets. However, the developed techniques 

were not sufficient to avoid significant manual corrections. With the emergence of 

sophisticated microvascular modeling, the design of a fully-automated scheme that is 

capable of generating topological models for vasculature in microscopy data is required to 

scale previous studies. This is the goal of this research work.

Numerous schemes for vascular segmentation have been proposed in the literature exploiting 

various image properties, such as the Hessian matrix [11], [12], moments of inertia [13], 

geometrical flux flow [14] and image gradient flux [15]. These schemes also vary in their 

segmentation strategies, e.g., vessellike prior modeling [11], [12], [15], tracing [16], 

evolution of deformable models [14] and deep learning [7], [17]–[19]. Applications to 

automatically segment microvessels captured with 2PM are further limited due to the very 

large number of segments, uneven intensities associated with optical imaging and shadowing 

effects. Previous studies have heavily relied on manual interactions to obtain satisfactory 

segmentations [5]. In recent works, models inspired by the success of ConvNets have been 

proposed to provide very good vascular segmentation [7], [17]–[19] with some applied to 

segmentation of microvessels in 2PM [7], [18]. In [7], the authors implemented a recursive 

architecture composed of 3D convolution blocks. However, their shallow model provides 

poor pixel-wise segmentation and is computationally demanding. In [18], the proposed 

scheme was not targeted to label the vascular space, but rather to provide a skeleton-like 

version of it. Other recent work, based on FC-ConvNets [20], performed end-to-end vessel 

segmentation using images from volumetric magnetic resonance angiography [19]. 
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However, the proposed scheme is patch-based, which makes it hard to apply when there is 

significant variation in local features as observed in 2PM.

Automated representations of data topology has been of importance in many research 

disciplines: aerial remote sensing [21], [22], neuroinformatics [23]–[26], and vascular 

imaging [9], [27], [28]. Some techniques [24]–[26] target the reconstruction of tree-like 

structures, by first generating seed points based on probabilistic measurements to then apply 

algorithms, such as Shortest Path Tree [24], Minimum Spanning Tree (MST) [25] or kMST 

[24], to extract an optimal graph. On the other hand, modeling loopy curvilinear structures 

has been investigated in [9], [21]–[23], [28]. The problem we aim to solve in this paper 

resembles that investigated in the latter work since 2PM angiograms capture capillaries 

connecting the arteries to the veins which together also form a topology that is not tree-like. 

In [21], intensities in road images are clustered into superpixels. The shortest path algorithm 

is then used to assign connections between superpixels based on road likelihood. Optimal 

subsets of the connections are finally processed in a framework of conditional random fields. 

In [22], a thinned version of segmented road maps is simplified and then passed through a 

shortest path algorithm [22] to generate an undirected graph for road networks. The works in 

[21], [22], are designed only for two dimensional natural images that have low scale 

variability and semi-constant luminosity, and which have few disconnected components. In 

[27], automatic topological annotation of macroscopic cerebral arteries forming the circle of 

Willis was achieved. However, the task was performed with a predefined knowledge about 

the topological structure of the annotated object. In [9], [23], [28] different schemes have 

been developed to extract graphs from more complex three dimensional images (microscopy 

data) by optimizing a designed objective function. These schemes first attempt at building an 

overcomplete weighted connections between seed points, which are detected based on 

tabularity [9] or bifurcation [23], [28] measures. They then search for optimal subgraph 

representations by solving a linear integer programming (LIP) problem with specific 

constraints.

In [9], [23], [28], pre-processing steps to provide preliminary weighted graphs, forming the 

basis of a LIP solution, are designed for less-noisy datasets containing tubular structures of 

high size uniformity. High noise level and variation in tubular sizes are exhibited across 

microscopic angiograms acquired with two-photon fluorescence scanning. Moreover, despite 

the cautious problem formulation in the mentioned works designed to approach a near-

optimal solution, LIP is theoretically a non-deterministic polynomial-time hard (NP-hard) 

problem. The hardness of the problem increases for applications on scalable datasets, which 

results in more decision variables. Lastly, practical solutions of LIP do not necessarily 

provide consistent output at different runs.

Our work below addresses the issue of extracting topological models from scalable and 

complex datasets, i.e. 2PM angiograms. We propose a fully-automated solution that provides 

a unique output for the same input data, in practical computational time. The proposed graph 

extraction scheme consists of 3 main stages, described in Figure 1. First, we take advantage 

of a recent development in deep learning semantic segmentation [20], [29] employing a fully 

convolution (FC) network based on the DenseNet architecture to segment potential 

microvessels [29]. A new well-labeled 2PM dataset is manually prepared to train our 
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segmentation model. The volumetric output of the segmentation model is processed by 3D 

morphological filters to omit small isolated segments and improve the connectivity pattern 

of microvessels. Second, we propose a data processing flow to generate a polygonal closed-

manifold geometry for the microvasculature from its volumetric mask obtained in the first 

stage. Finally, we exploite the 3D geometric skeletonization [30] to generate a direct 

representation of the microvessel network.

The paper is organized as follows. In the Methods Sections II–IV, we describe each phase of 

the graph extraction scheme: Section II details the proposed deep learning architecture for 

microvessels segmentation and explains the subsequent morphological refinements, Section 

III describes the techniques used to generate and post-process the polygonal mesh to 

represent the shape of the microvasculature, and Section IV provides the formalism of the 

3D skeletonization to produce a final graph-based model of the microvascular network. The 

Results Section V demonstrates the validity of the proposed modeling scheme. A discussion 

and concluding remarks are provided in Section VI.

II. Deep Segmentation of Microvessels

In this section, various versions of the recently developed FC-DenseNets [29] are employed 

to address the problem of microvessel segmentation in large-scale 2PM images. Our use of 

the FC-DenseNets architectures is inspired by their success in achieving the state-of-the-art 

performance in semantic segmentation in natural images. We prove that applying this data-

driven solution to segment microvessels in 2PM volumes can induce a substantially 

improved performance compared to that of other hand-crafted schemes. Below we discuss 

the architectures of the neural networks that were devised, data preparation and training 

procedure. Let ℐ:P ℝ|P ⊂ ℝ3 be the 3D image representing the observed microscopic 

measurements. The aim is to create a binary mask ℐmask:P 1, 0 |ℐ mask (p) = 1 ∀ p ∈ 𝒪

and ℐmask(p) = 0 otherwise, where 𝒪 ⊂ ℝ3 is the object that represents the vasculature.

A. Networks Architecture

Generally, in a neural network with layers ln, n = 0,1,2,…, N, each layer ln performs a non-

linear transformation Hn(·) that might include several operations, e.g. batch normalization, 

rectified linear units (ReLUs), convolutions or pooling. Let xn denote the output of the layer 

ln. In DenseNets [31], consisting of building units called dense blocks, the output xn of the 

layer ln is connected to its previous layers contained in the same dense block [31] by 

cascading operations. The layer transition is therefore described by the following formula:

xn = Hn xn − m − 1, …, xn − 2, xn − 1 (1)

where [·] operation denotes the concatenation process and m denotes the number subsequent 

layers contained in a dense block.

DenseNets are extended to a fully convolution scheme [29], analogous to that proposed in 

[20], comprising down- and up-sampling paths. The down-sampling pattern is composed of 

dense blocks and transition-down (T-down) layers, where T-down layers consist of three 
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operations: batch normalization, convolution and max-pooling. Alongside the down-

sampling path, the up-sampling path is inserted to recover the input spatial resolution. It is 

composed of dense blocks, transition-up (T-up) layers and skip connections where T-up 

layers are built of transposed convolution operations. To avoid the increase in the number of 

feature-maps in the up-sampling path, the input of dense blocks in this path is not 

concatenated with its output. Henceforth, we refer to dense blocks in the down-sampling 

path as type A, and that of the up-sampling path as type B. As in typical fully convolution 

networks [20], skip connections – from the down-sampling path to the up-sampling one – 

have been introduced to allow the network to compensate for the loss of information due to 

the pooling operations in the T-down layers.

In this work, to perform the segmentation task, we investigate three different architectures of 

FC-DenseNets varying in their deepness, namely, Net71, Net97 and Net127. Our 

architectures consist of 71, 97 and 127 convolution layers, respectively, with an input size of 

256×256×1 for each. The detailed specifications for implemented convolution and pooling 

layers, with their number of feature-maps, in each architecture are listed in Table I. The 

down-sampling and up-sampling paths have 36 convolution layers each, whereas the 

networks bottlenecks have 11, 13 and 15, respectively. The down-sampling path is composed 

of dense blocks type A, that have input-output concatenation. This concatenation is omitted 

in the dense blocks type B forming the up-sampling path. Each T-down block is composed 

of one convolution layer followed by dropout [32] with p =0.2 and non-overlapping max-

pooling. Each T-up block is a transposed-convolution layer with stride =2. The growth rate 

of feature maps in each dense block is set to k =18 and a dropout of p =0.2 is applied in all 

contained layers. In each architecture, one convolution layer is applied on the input and 

another is placed before the last (softmax) layer that provides the bi-class predictions.

B. Data Collection

To train our segmentation networks, manual annotations were performed to create a ground 

truth labeling of mice cerebral microvessels captured using our custom-built two-photon 

laser scanning microscope. To image microvessels, 200 μL 2MDa dextran-FITC (50 mg/ml 

in saline, Sigma) was injected through the tail vein of mice. Due to the injected fluorescent 

dye, the plasma appeared bright in the images while red blood cells (RBCs) appeared as 

dark shadows. Acquisition was performed using 820 nm, 80 MHz, 150 fs pulses from 

MaiTai-BB laser oscillator (Newport corporation, USA) through an electro-optic modulator 

(ConOptics, USA) to adjust the gain. The optical beam was scanned in the x-y plane by 

galvanometric mirrors (Thorlabs, USA). Reflected light was collected by a 20× objective 

(Olympus XLUMPLFLNW, NA=1). Fluorescent photons were separated by dichroic 

mirrors, passed through a filter centered at 520 nm and relayed to a photomultiplier tube 

(PMT, R3896, Hamamatsu Photonics, Japan) for detection of the dextran-FITC. Manual 

annotations from the 3D microscopic measurements were done slice-by-slice. The 

annotation process was carried out with the assistance of MayaVi visualization tool to 

consider the final 3D structure of the microvessel network. Eight angiograms were labeled to 

produce a training dataset of images T = I(q), Imask
(q) |q ∈ Q = [1, 2, 3, …, 396] , each of size 

256 × 256. Next we omit the superscript q for notational simplicity.
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C. Networks Objective & Training

Let px, py, pz ∈ ℝ define the dimensions of one of our networks output F(I; θF), where θF is 

vector containing the model parameters. The model was trained to minimize the following 

cross-entropy loss function [33]:

Ψ(F) = − Σpx, py
Imask log F I; θF pz = 0

+ Σpx, py
1 − Imask  log F I; θF pz = 1 ] .

(2)

The stochastic RMSprop gradient descend algorithm was employed to solve our model 

parameters based on backpropagation [33]. Given an initial learning rate ρ and a decay 

parameter γ, model parameters were updated as follows:

θF(t + 1)
= θF(t)

− ρ
ζ(t)

∇θF
Ψ F I; θF , where

ζ(t) = (1 − γ) ∇θF
Ψ F I; θF

2
+ γζ(t − 1) .

(3)

The training procedure is described in Algorithm 1. In each training iteration, a set of 

samples from our dataset (“mini-batch”) was processed by the network models with their 

current parameters. Then, the gradient of the loss function Ψ was computed with respect to 

θF and parameters were updated by stepping in the descending direction of the gradient as 

stated in (3). In the algorithm, the training process was early-stopped if no minimization of 

the loss function Ψ was achieved after a certain number of consecutive training epochs, 

denoted as the patience period λ.

D. Morphological Post-Processing

The trained segmentation models can accept a 2D input I of an arbitrary size and produce an 

output F(I) of the same size. To segment microvessels in a 3D two-photon angiogram and 

obtain Imask, we first stacked the outputs of the trained neural networks applied to each slice 

in the z-direction. Morphological 3D closing and opening filtering was then applied on the 

resultant image stack with a spherical shape filter of radius=8 to refine the stacked 
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segmentation outputs. It has been found that by applying this 3D morphological processing 

to obtain Imask, a reduction in false positive structures emerging after the 2D segmentation is 

achieved.

III. Surface Modeling

This section describes the process used to construct a triangulated mesh ℳ = (V, C)

representing the shape of microvasculature, where V = v1
T, v2

T, …, vd
T T

 are the vertices 

positions, v ∈ ℝ3, and C = ci i = 1, …, l
, c ∈ v × v, are the edges connecting the vertices of the 

mesh. The extracted mesh should form a 2D manifold to allow successful geometrical 

contraction and convergence towards a curve skeleton formulation. Many computational 

paradigms have been proposed to provide isosurface representations of the binary output 

ℐmask obtained in the previous section. Examples are those based on the concepts of 

Marching Cubes (MC) [34]–[36], dual contouring [37] and advancing-front construction 

[38]. The MC algorithm [34] is arguably the most widely used due to its robustness and 

speed, however it has an ambiguity problem in its classical formulation due to lookup table 

redundancy. MC with asymptotic decider [35] was proposed to give better, topologically 

consistent, surface models. In [36], an interior ambiguity test was added to the scheme of 

[35] to achieve even higher topological correctness. A modified version of [36], introduced 

by Liener et. al.[39], was utilized to generate an initial triangulated mesh model for the 

microvessels surface.

The output from the MC algorithm is a polygonal mesh with a high level of triangulation 

redundancy. The algorithm produces a large number of small coplanar triangles resulting in 

a big size model. Direct processing of this raw 3D model to generate a curve skeleton 

abstraction would be computationally expensive. Also, the MC process introduces excessive 

roughness with stair-step effects that need to be removed. We applied a polygonal 

simplification procedure to circumvent these concerns. Many mesh simplification 

approaches have been developed in the literature [40]–[44] with varied characteristics: 

topological invariance, view-dependency – based on objects location, illumination and 

motion in the scene – and the polygonal removal mechanism. The vertex clustering 

technique in [40] works by superimposing a grid with a predetermined resolution to the cells 

resulting after clustering the original meshes vertices. The resampling technique [41] is 

based on performing low-pass filtering of the original volumetric data. These approaches are 

topology insensitive and provide a drastic reduction in the number of elements of the 

original geometry. Other simplification approaches [42], [43] have been developed to ensure 

appearance/rendering quality in complex scenes that hinder the rendering process by 

assuming different levels of detail for the discovered objects. The vertex merging technique 

proposed by Garland et al. [44] gives an accurate geometry for the simplified model and 

works on non-manifold inputs that could result from the MC process [39]. We used these 

features of the vertex merging technique [45] to simplify our surface model.

The process undertaken to create a surface model is not guaranteed to be a manifold and 

even less a closed manifold [46]. Further processing was used to eliminate possible non-
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manifold local defects such as self-intersections based on the work done in [47]. Lastly, the 

hole filling algorithm illustrated in [48] was used to ensure a watertight surface model that 

can be further used in the next stage of our modeling pipeline.

IV. Graph Extraction

Various definitions have been suggested as a basis to compute formal skeletons (also called 

medial axes) [49]. These definitions emerged from conceptualizing the skeleton based on 

maximally-inscribed balls, Grassfire Analogy, Maxwell Set or Symmetry Set [50]. Let 

𝒮 = d𝒪 be the 2D-manifold surface of the 3D-manifold volume 𝒪 of interest. The idea of 

maximally-inscribed balls defines the skeleton of 𝒪 to be the locus of the centers of 

maximally inscribed balls in 𝒪. Extension to the Medial Axis transform is done by 

associating the radii of these balls to their center locations. The Grassfire analogy defines the 

skeleton as the locations inside 𝒪 where quenching happens if we let the surface 𝒮 propagate 

isotropically toward the interior of 𝒪. The Maxwell Set definition captures the curve 

skeleton as an extension of the Voronoi diagram by encoding the loci that are equidistant 

from at least two points on the surface 𝒮. In the Symmetry Set definition, a curve skeleton is 

regarded as the infinitesimal symmetry axes generated by first linking each pair-point on the 

surface to calculate their symmetry centers and then combine these centers to form a 

curvilinear infinitesimal axis. In all definitions, skeletonization depends only on the shape of 

𝒪 rather than its position or size in its embedding space.

In this study, the target is to generate a graphed form of 1D curve skeletons that capture the 

topology of the microvasculature. In general, the medial axes for 3D objects are 2D [49]. 

Therefore, two main solutions have been proposed, following the procedures to either 

simplify the 2D medial axes [51], [52] or to calculate the curve skeletons directly from 3D 

objects [30], [53], [54]. The techniques in [51], [52] are computationally expensive and very 

dependent on the quality of the associated surface skeletonization. From a geometric 

perspective, the techniques that are based on shape contraction [30], [54] are proven to be 

the most successful in extracting accurate and yet smooth curve skeletons from a variety of 

different shapes. Moreover, such techniques provide skeletonization embedded in the 

geometrical space, and thus it coincides with our goal in generating a graph-based 

representation of microvessel networks. Therefore, we adapt the work proposed in [30] to 

perform graph extraction in our last stage of the designed pipeline.

A. Geometric Contraction

Based on the triangulated mesh ℳ = (V, C) generated in the previous section, our goal is to 

extract a geometric graph 𝒢 with node positions N = n1
T, n2

T, …, nm
T T, n ∈ ℝ3, and edges 

(connections) E = {ei}i=1,…,h, e ∊ n × n. We follow the geometrical contraction technique in 

[30] to achieve our goal by iteratively moving the vertices of ℳ along the corresponding 

curvature normal directions. At iteration t, we minimize the constrained energy function:
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ℰ = WSLVt + 1 2 +

∑
i = 1

d
WV , i

2 vi
t + 1 − vi

t 2 +

∑
i = 1

d
WM, i

2 vi
t + 1 − ξ vi

2

(4)

where WS, WV and WM are diagonal matrices of size d × d that impose constraints on the 

geometrical contraction process, such that for the ith diagonal element: WS,i = wS, WV ,i = 

wV and WM ,i = wM·wS, wV and wM serve as tuning parameters to control the smoothness, 

velocity and mediality of the contraction process at each iteration. In (4), the function ξ(·) 

maps the vertex vi to the corresponding Voronoi pole calculated before the iteration process 

[30], and L is the d × d curvature-flow Laplace operator with its elements obtained as:

Li j =

wi j = cot αi j + cot βi j i, j ∈ C

−∑(i, k) ∈ C
k wi, k i = j

0 otherwise, 

(5)

where αij and βij are the angles opposite to the edge (i, j) in the two triangles which have this 

edge in common [55].

B. Geometric Decimation

At each iteration step in the geometric contraction process, higher levels of local anisotropy 

is introduced in the processed mesh. We follow the procedure described in [54] to reduce the 

mesh at each contraction step maintaining a water-tight manifold structure. After completing 

the iteration process, the degenerated surface mesh is reduced to form a graph model by 

applying a series of shortest edge-collapses [54] until all mesh faces have been removed. 

Lastly, to ensure that the output of our modeling framework is valid for running 

physiological simulations, we extract the largest single connected component (LSCC) of the 

resulting graph to be our final graphical model.

V. Validation Experiments

In this section, we carry out various experimentations to evaluate the designed pipeline in 

producing graph-based representation for microvessels captured with 2PM. First, we 

describe the parametric settings used to train the segmentation model, extract 3D surface 

models and generate final geometric graphs. We illustrate the manual procedure followed to 

prepare a graph-based ground truth baseline. Next, we discuss the validation mechanism and 

the metrics used to study the performance of the designed pipeline. Lastly, based on these 

metrics, we present a comprehensive evaluation of our proposed modeling scheme.
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A. Baseline, Parameters and Implementation

Here we discuss the issue of finding a baseline performance for the purpose of validation 

and the parametric setup of the model used to generate results. Also we describe 

implementation details.

1) Baseline: To study the segmentation performance of the our deep segmentation 

models before and after applying the 3D morphological processing (3DM). Segmentation 

results were compared with that of manual segmentation (gold-standard), optimally oriented 

flux method [15] (OOF) and the hessian-based method in [12], which are state-of-the 

techniques used in 3D vascular segmentation.

To our knowledge, this work is the first fully automatic scheme designed to extract graph-

based representation from sizable 3D 2PM datasets. Other baseline methods in the literature 

applicable to similar datasets rely on human interaction. Hence, in order to validate the 

correctness of our graphing scheme, we compare our results with manually prepared graphs 

recently utilized in [5], [56]. To create the manually-graphed datasets in [5], [56], manual 

annotations were performed on contrast-enhanced structural images of the cortical 

vasculature which were then skeletonized using erosion. Ensuing graphs were hand-

corrected and verified by visual inspection to generate a single connected component. 

Datasets of six graphs (from six different mice) were prepared from angiograms with 1.2 × 

1.2 × 2.0 μm voxel sizes acquired with a 20X Olympus objective (NA= 0.95). To illustrate 

our choice of the surface modeling and mesh contraction processes in the proposed pipeline, 

we compare our graph outputs with that resulting from applying the widely used 3D 

Thinning method [57] on the same binary masks.

2) Training the Segmentation Model: Implementation of the deep-learning portion of 

the pipeline was done in Python under the Theano framework. We ran the experiments on 

two 12GB NVIDIA TITAN X GPUs. The model was initialized using the HeUniform 

method as in [29]. The training was performed by setting ρ = 10−3 and γ = 0.995 in (3) for 

all epochs of training. To monitor the training process, we randomly selected 25% of the 

training data as a validation set. The selection of the validation set was performed by 

randomly picking several 2D slices after grouping all the slices forming the 2PM stacks in 

one pile. The validation set was used to early-stop the training based on the acquired 

accuracy, with a patience of 25 epochs. The model was regularized with a weight decay of 

10−5.

3) 3D Modeling and Contraction Process: We have followed a brute-force selection 

of parameters used in the processes of creating 3D surface and carrying out geometric 

contraction, based on the quality of the generated graphs. To reduce the 3D model using the 

vertex merging technique in [44], we set the target number of faces in the reduced model to 

be half of that of the original one. Our code for generating and processing the 3D surface 

model was based on the VTK Python library. The parameters wS, wV and wM were set to 1, 

20 and 35, with ∊vol = 10−6. We built Python bindings using SWIG to call the C++ API, 

CGAL, containing the implementation of the geometric contraction algorithm.
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B. Metrics

To quantify the performance of the various segmentation methods, the metrics of sensitivity 

= TN/(TN + FP), specificity= TP/(TP+FN), accuracy = (TP+TN)/(FP+ FN) and Intersection 

Over Union (IoU) = TP/(TP + FP + FN), were used. The terms TP and FP denote 

respectively the positive predictions (vessel) with true and false ground truth, whereas TN 
and FN denote respectively the negative predictions (not vessel) with true and false ground 

truth. It is to be noted that to generate binary masks using the methods in [15] and [12], 

empirical thresholding is performed to achieve the highest IOU value.

For the quantification and visualization of errors incurred by our graphing scheme, we used 

the NetMets metrics proposed in [58]: four measures were computed to compare both the 

geometry and connectivity between two interconnected graphs. Namely, the Graph False 

Negative/Positive Rate metrics GFNR and GFPR reflected the false negative rate and the 

false positive rate, respectively, in the geometry of the extracted graph while the metrics 

CFNR and CFPR provided measures about the false negative rate and the false positive rate 

in the topology of the graph.

Let us define 𝒢r and 𝒢e as the ground truth and experimentally generated graphs. In the 

validation process using NetMets, we first performed a two-way matching between the 

junction nodes in both graphs. These nodes, denoted as Jr and Je for 𝒢r and 𝒢e, respectively, 

were those representing bifurcations in the vascular network or terminals of vessel pathways. 

Graph paths between junction nodes were referred to as graph branches ℬ. Junction node 

mappings Jr to Je were denoted as Jr → Je, whereas Je → Jr denoted the opposite 

matching processes. In the matching process, we assigned each junction node in the first 

graph with one in the second graph based on the shortest Euclidean distance measured. 

GFNR was computed as 1/nJr
∑i ∈ Jr

1 − e
D i, 𝒢e

2/2δ2
 and that of GFPR as 

1/nJe
∑i ∈ Jr

1 − e
D i, 𝒢r

2/2δ2
, where nJr

 and nJe are the number of junction nodes in 𝒢r and 

𝒢e, respectively, D(i, 𝒢) is the Euclidean distance between a node i and its matched node in 

𝒢, and δ is a sensitivity parameter.

Now, to compute CFNR and CFPR as described in [58], core graphs 𝒢r and 𝒢e were 

extracted from 𝒢r and 𝒢e. Core graphs were obtained by first reducing both graphs, 𝒢r and 

𝒢e, by eliminating each junction node and its immediate branches if the distance D from the 

corresponding nodes was greater than δ. Then, in the reduced graphs of 𝒢r and 𝒢e, we 

further eliminated junction nodes, and their corresponding branches, that did not form the 

same matching pair in the two-way matching process. Lastly, we compared the reduced 𝒢r

and 𝒢e to calculate the following: ℬTP = number of graph branches in 𝒢r or 𝒢e; ℬFN = 

number of graph branches in 𝒢r but not in 𝒢e; ℬFN = number of graph branches in 𝒢e but 
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not in 𝒢e. CFNR and CFPR were calculated as ℬFN / ℬFN + ℬTP , and ℬFP/ ℬFP + ℬTP , 

respectively.

C. Results

1) Microvessels Segmentation: In this section, we study the performances of the 

various segmentation schemes used to generate microvessels binary masks. Table II provides 

the averaged quantitative results obtained after applying the various segmentation schemes 

on the 2PM slices in our validation set. From the table, despite the slight degradation in 

sensitivity scores, one can notice that carrying out the 3DM post-processing on the FC-

DenseNets outputs substantially improves the measures of accuracy, specificity and IOU. 

The table obviously shows that the method in [15] is not a suitable choice for extracting 

microvessel maps. The highest sensitivity value of 98.9% ± 0.01 was achieved by the Net71 

architecture but at the expense of very poor specificity. The method in [12] achieved the 

highest specificity value of 57.33% ± 2.20. However, it produces vessel masks with poor 

IOU scores. The table proves that the Net97+3DM architecture achieves the best accuracy 

and IOU values, 92.3% ± 0.1 and 41.1% ± 0.4, respectively, with comparable values of 

sensitivity and specificity corresponding to the schemes of Net97 and that in [12], 

respectively.

To qualitatively assess the segmentation performances, Fig. 2 depicts two raw 2PM slices, 

obtained from our validation set, with their binary masks counterparts generated by applying 

the various segmentation schemes. It is clearly seen that the scheme in [15] and those of 

Net71, Net71+3DM, Net127 and Net127+3DM, produce microvessel mappings that suffer 

from over-segmentation. On the other hand, the scheme in [12] is highly specific in a way 

that generates outputs with large portion of false negatives, thus missing important 

vesselness structures. This observation coincides the low IOU measure of this scheme 

reported in Table II. From the figure, one can see that the schemes of Net97, Net97+3DM 

exhibit better segmentation results with superiority of the Net97+3DM scheme in providing 

less over-segmentation. Hence, based on the previous experimental demonstration, in our 

study, we choose the scheme Net97+3DM to generate binary maps needed for extracting 

graph-based models of microvessels.

2) Graph Modeling: The six ground-truth graph datasets were carefully annotated, 

ensuring a fully interconnected topology for the captured micro vessel networks. Each graph 

provides a model for descending arterioles, capillary bed, and then ascending venules. These 

graphical models have been employed in [5] to simulate oxygen-dependent quantities across 

the network, and then generate synthetic MRI signals based on these measurements. Fig. 3 

shows the six maximum intensity projections of the raw cerebral micro vascular spaces 

captured with 2PM, with their corresponding ground truth and experimental graphical 

modelings depicted in Fig. 4. The reader is also referred to Supplemental Fig. 1 in the 

supplementary material for assessing the proposed graph models based on visualizing only 

thin slices (10–30 μm thick) of the stack in Fig. 1 (a,1) at various depth levels. Empirical 

visual inspection shows that the outputs of our graph modeling scheme are significantly 

superior to that of the 3D Thinning method and are globally comparable to the ground-truth 

annotations. However, some defects are present for some boundary parts of the vascular 
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networks, especially the capillary bed where one can observe that microvessel terminals are 

present for the experimentally generated models but not in the manually prepared ones. It is 

to be noted that the experimental models in Fig. 4 are fully interconnected graphs obtained 

after attaining the LSCC from the raw graph outputs. The ratio of these LSCCs to the 

original models generated from the first-sixth 2PM datasets, respectively, are listed in Table 

III. The table demonstrate that the proposed scheme generates less disconnected components 

compared to that produced by the 3D Thinning method.

As previously mentioned, in order to quantify the performance of the modeling schemes, we 

performed a two-way matching, based on the shortest Euclidean distance, between junction 

nodes in the ground truth graphs and those in the generated ones. Fig. 5 plots the estimated 

probability distribution, using a Gaussian kernel, of the mapping distances D obtained after 

performing the matching process. It is seen that, in the case of the proposed graph modeling, 

the Je → Jr matching process produced D mappings similar to that resulting from the Je → 
Jr process. This implies that the localization of junction nodes coincides in both manual and 

experimental modelings, thus resulting a negligible difference between the statistics obtained 

from the two matching processes. On the other hand, the figure shows a big statistical 

difference between Je → Jr and Je → Jr calculated based on the graphs extracted by the 3D 

Thinning method.

Table III shows the number of nodes in the graphs generated manually, by the 3D Thinning 

method and by our automatic processing. It is seen from the table that, in all cases, the 3D 

Thinning method produces sparser models having dramatically fewer nodes than that in the 

ground truth ones. Our modeling scheme produces fewer nodes in some cases (datasets 1, 5 

and 6), whereas the opposite was observed in the other cases. To interpret this, Fig. 6 depicts 

magnified versions of the dataset 1 graph. It is clearly seen that manually processed graphs 

are composed of nodes with almost uniform Euclidean distances between all nodes and their 

neighboring ones. This is due to regraphing procedures [56]. In contrast, our automatic 

graphing results in non-regularized placement of nodes due to the dependency of the 

geometric contraction process on the complexity and tortuosity of the surface modeling for 

microvessels. However, the figure explains the superiority of the proposed modeling scheme 

compared to the 3D Thinning method in extracting more accurate graphs. Also from Table 

III, one can note a variation in the number of junction nodes observed in the ground-truth 

and the experimental models generated by the proposed scheme. Hence, our modeling 

produces either denser or sparser interconnections than that of the manually processed 

graphs when applied to different raw 2PM angiographies.

Fig. 7 plots the measurements of the GFNR, GFPR, CFNR, CFPR metrics obtained for the 

various datasets at different tolerance values δ. It is noted that these measurements are 

bounded between zero and one; the lower the value the better the performance. The figure 

illustrates that in all cases, the proposed modeling achieves lower geometrical and 

topological error rates than that of the 3D Thinning method. At the highest tolerance, δ = 60, 

our scheme achieves an average of 3.8 ± 2.1% and 4.2 ± 2.6% of false negative and false 

positive error rates, respectively, in modeling the geometry of the vascular networks. These 

error rates decrease to 3.5±2.6% and 3.0 ± 1.9% respectively, when excluding boundary 

microvessels (≈ 25 % of the angiograms) from our assessment. At the same value of δ, our 
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scheme is able to capture the topology of the vascular networks with an average false 

negative and false positive error rates of 6.1 ± 2.6% and 4.5 ± 2.9%, respectively. When 

excluding the boundary microvessels, the average error rates decrease to 4.4 ± 2.8% and 1.5 

± 0.9%, respectively. It is to be noted the 3D Thinning method achieves even higher false 

negative rates when excluding the boundary microvessles, thus proving that this method is 

poor in capturing the geometrical and topological details from the segmented angiograms. 

We provide a visual illustration in Fig. 8 to interpret the improved performance when 

excluding the boundary vascular structures in the experimental graphs generated by the 

proposed scheme. The figure shows the false positive and false negative edges obtained at δ 
= 60 to compute the corresponding CFNR, CFPR values. One can inspect that a large 

portion of the mismodeled edges are those located at the boundary of the angiograms. As a 

result, a better performance of our modeling is achieved at the center of the angiograms, due 

to 2-photon sensitivity limitations. One goal of our proposed scheme is to generate 

topological models of microvessel networks that can be used for calculating physiological 

quantities. Towards that goal, we study the propagation of microvessels in the modeled 

networks. Fig. 9 depicts examples of ground-truth and experimental sub-graphs generated by 

propagating through the microvessel networks, beginning with nodes at the start pf a 

penetrating arteriole and ending with bifurcation nodes after 5 levels of consecutive 

branching. Despite some few mismodeled network branches, propagation through our 

experimental networks is very similar to that achieved in ground-truth ones.

3) Computational Complexity: To provide a comprehensive performance evaluation of 

the proposed graphing scheme, analysis of its complexity in terms of computational time is 

necessary. We have run the experiments on a 3.0 GHz Rayzen AMD processor (8 cores, 16 

threads in each) with 64 GB of RAM. Segmentation of microvessels has been carried out on 

a 12GB NVIDIA TITAN X GPU. The times required to perform the computations in each 

stage of our modeling pipeline are reported in Table IV. It is noted that most of the 

computation times (≈ 91.8%) is used for segmenting microvessels and contracting the 

generated mesh-based models. From the table, the averaged calculation time for processing 

one 2PM angiogram, begining with the segmentation of microvessels and ending with the 

extraction of their graphed networks, reaches 53 minutes. Hence, our fully automatic scheme 

is proved to provide a very reliable solution when applied to study cerebral microvasculature 

in large cohorts and can save weeks of manual labor.

VI. Conclusion and Future Work

In this work, we have proposed a novel fully-automatic processing pipeline to produce 

graphical models for cerebral microvasculature captured with 2-photon microscopy. Our 

scheme is composed of three main processing blocks. First, a 3D binary mapping of 

microvasculature is obtained using a fully-convolution deep learning model. Then, a surface 

mesh is computed using a variant of the marching cube algorithm. Lastly, a reduced version 

of the generated surface model is contracted toward the 1D medial axis of the enclosed 

vasculature. The contracted mesh is post-processed to generate a final graphical model with 

a single connected component. We used a set of manually processed graphing of 6 

angiograms to validate our graphs. From the quantitative validation based on NetMet 
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measures, our model was able to produce accurate graphs with low geometrical and 

topological error rates, especially at a tolerance > 30μm. Further qualitative assessment has 

shown that automatic processing generates realistic models of the underlying microvascular 

networks having accurate propagation through the modeled vessels. One important issue that 

could be addressed in a future work is related to the difficulty in generating watertight 

surface models. The employed contraction algorithm is not applicable to surfaces lacking 

such characteristics. Introducing a geometric contraction not restricted to such conditions on 

the obtained surface model could be an area of further investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
A schematic diagram describing the proposed multistage graph extraction scheme.
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Fig. 2: 
Examples of microvessel masks obtained after applying the various segmentation schemes: 

(a,1–2) Raw 2PM, (b,1–2) true label, (c,1–2) OOF method [15], (d,1–2) Hessian-based 

method [12], (e,1–2) Net71, (f,1–2) net71+3DM , (g,1–2) Net97, (h,1–2) Net97+3DM, (i,1–

2) Net127 and (j,1–2) Net127+3DM.
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Fig. 3: 
Maximum intensity projections of raw angiograms used to validate the proposed graph 

extraction scheme.
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Fig. 4: 
Visual assessment of our graph modeling scheme applied on the six raw 2PM datasets. For 

all datasets (1–6), manually processed graphs (ground-truth) are depicted in the left column 

(a-f,1); the graphs generated based on 3D Thinning are depicted in the middle column (a-f,

2); the graphs generated using our scheme are depicted in the right column.
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Fig. 5: 
Experimental probability distributions of mapping distances D for the two-way matchings 

between the ground-truth and experimental graphs.
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Fig. 6: 
Magnified perspective view of Fig. 4 (a,1): (a), Fig. 4 (a,2): (b) and Fig. 4 (a,3): (c) with 

enlarged and recolored graph nodes.
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Fig. 7: 
Quantitative assessment of the 3D Thinning method (a-d, 1) and the proposed graphing 

scheme (a-d,2), as a function of the δ parameter based on (a,1–2) GFNR, (b,1–2) GFPR, (c,

1–2) CFNR and (d,1–2) CFPR metrics. Dashed lines quantify the performance excluding the 

graphs boundary parts from the assessment process.
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Fig. 8: 
Visual illustration of mismodeled edges (blue-colored) for all datasets: false negative edges 

in (a-f,1); false positive edges in (a-f,2).
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Fig. 9: 
Propagating through the various microvessel networks for five consecutive branching levels 

beginning at the start of a penetrating arteriole (represented by white spheres), ground-truth 

(a-f,1) and automatically modeled (a-f,2). Each branching level is assigned a different 

colour.
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TABLE I:

The various FC-DenseNet architectures tested to perform the segmentation task. At each component, we report 

the number of convolution layers followed by the number of feature maps.

Architecture

Component Net71 Net97 Netl27

Input -; 1 -; 1 -; 1

3×3 Convolution 1; 48 1; 48 1; 48

Dense block type A 4; 120 4; 120 4; 120

T-down layer 1; 120 1; 120 1; 120

Dense block type A 5; 210 5; 210 5; 210

T-down layer 1; 210 1; 210 1; 210

Dense block type A 7; 336 7; 336 7; 336

T-down layer 1; 336 1; 336 1; 336

Dense block type A 9; 498 9; 498 9; 498

T-down layer 1; 498 1; 498 1; 498

Dense block type A - 11; 696 11; 696

T-down layer - 1; 696 1; 696

Dense block type A - - 13; 930

T-down layer - - 1; 930

Bottleneck 11; 198 13; 234 15; 270

T-up layer + concatenation - - 1; 1200

Dense block type B - - 13; 234

T-up layer + concatenation - 1; 930 1; 930

Dense block type B - 11; 198 11; 198

T-up layer + concatenation 1; 696 1; 696 1; 696

Dense block type B 9; 162 9; 162 9; 162

T-up layer + concatenation 1; 498 1; 498 1; 498

Dense block type B 7; 126 7; 126 7; 126

T-up layer + concatenation 1; 336 1; 336 1; 336

Dense block type B 5; 90 5; 90 5; 90

T-up layer + concatenation 1; 210 1; 210 1; 210

Dense block type B 4; 72 4; 72 4; 72

1×1 Convolution 1; 2 l; 2 1; 2

Softmax -; 2 -; 2 -; 2

Convolution layer Transition-down
layer (T-down)

Transition-up layer
(T-up)

Batch Normalization Batch Normalization 3×3 Transposed convolution, stride = 2

ReLu ReLu

3×3 Convolution
Dropout p = 0.2

1×1 Convolution
Dropout p = 0.2

2×2 Max-pooling
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TABLE IV:

Computational times (in seconds) required by each processing stage in our modeling pipeline.

Dataset

1 2 3 4 5 6

Segmentation/ morphology 1053/37 1183/43 1059/42 1111/44 1262/43 1113/40

Surface Modeling 177 206 204 250 291 195

Graph Extraction 1981 2463 2210 1524 2930 1860
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