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identifies heterogeneous cell type and phenotype associations

A full list of authors and affiliations appears at the end of the article.

Abstract

Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory mortality 

worldwide. Genetic risk loci provide novel insights into disease pathogenesis. We performed a 

genome-wide association study in 35,735 cases and 222,076 controls from the UK Biobank and 

additional studies from the International COPD Genetics Consortium. We identified 82 loci with 

P-value < 5 × 10−8; 47 were previously described in association with either COPD or population-

based lung function. Of the remaining 35 novel loci, 13 were associated with lung function in 

79,055 individuals from the SpiroMeta consortium. Using gene expression and regulation data, we 

identified enrichment for loci in lung tissue, smooth muscle and several lung cell types. We found 

14 COPD loci shared with either asthma or pulmonary fibrosis. COPD genetic risk loci clustered 
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into groups of quantitative imaging features and comorbidity associations. Our analyses provide 

further support to the genetic susceptibility and heterogeneity of COPD.

Editorial summary

Genome-wide analysis of chronic obstructive pulmonary disease identifies 82 loci, 35 of which are 

new. Integration of gene expression and genomic annotation data shows enrichment of signals in 

lung tissue, smooth muscle and several lung cell types.

Introduction

Chronic obstructive pulmonary disease (COPD) is a disease of enormous and growing 

global burden1, ranked third as a global cause of death by the World Health Organization in 

20162. Environmental risk factors, predominately cigarette smoking, account for a large 

fraction of disease risk, but there is considerable variability in COPD susceptibility among 

individuals with similar smoking exposure. Studies in families and in populations 

demonstrate that genetic factors account for a substantial fraction of disease susceptibility. 

Similar to other adult-onset complex diseases, common variants likely account for the 

majority of population genetic susceptibility3,4. Our previous efforts identified 22 genome-

wide significant loci5. Expanding the number of loci can lead to novel insights into disease 

pathogenesis, not only through discovery of novel biology at individual loci6,7, but also 

across loci via identification functional links and specific cell types and phenotypes5.

We performed a genome-wide association study combining previously described studies 

from the International COPD Genetics Consortium (ICGC)5 with additional subjects from 

the UK Biobank8, a population-based study of several hundred thousand subjects with lung 

function and cigarette smoking assessment. We determined, through bioinformatic and 

computational analysis, the likely set of variants, genes, cell types, and biologic pathways 

implicated by these associations. Finally, we assessed our genetic findings for relevance to 

COPD-specific, respiratory, and other phenotypes.

Results

Genome-wide association study of COPD

We included a total of 257,811 individuals from 25 studies in the analysis, including studies 

from International COPD Genetics Consortium and UK Biobank (Figure 1). We defined 

COPD based on pre-bronchodilator spirometry according to modified Global Initiative for 

Chronic Obstructive Lung Disease (GOLD) criteria for moderate to very severe airflow 

limitation9, as done previously5. This definition resulted in 35,735 cases and 222,076 

controls (Supplementary Table 1). We tested association of COPD and 6,224,355 variants in 

a meta-analysis of 25 studies using a fixed-effects model. We found no evidence of 

confounding by population substructure using linkage disequilibrium score regression10 

(LDSC) intercept (1.0377, s.e. 0.0094).

We identified 82 loci (defined using 2-Mb windows) at genome-wide significance (P < 5 × 

10−8) (Figure 1 and 2; Supplementary Figures 1 and 2). Forty-seven of 82 loci were 
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previously described as genome-wide significant in COPD5,11 or lung function12–20 

(Supplementary Table 2), leaving 35 novel loci (Table 1) at the time of analysis. We then 

sought to replicate these loci. Given the strong genetic correlation between population-based 

lung function and COPD, we tested the lead variant at each locus for association with forced 

expiratory volume in 1 s (FEV1)or FEV1/forced vital capacity (FVC) in 79,055 individuals 

from SpiroMeta21 (Supplementary Table 3). We identified 13 loci - C1orf87, DENND2D, 
DDX1, SLMAP, BTC, FGF18, CITED2, ITGB8, STN1, ARNTL, SERP2, DTWD1, and 

ADAMTSL3 – that replicated using a Bonferroni correction for a one-sided P < 0.05/35; 

Table 1). Although not meeting the strict Bonferroni threshold, additional 14 novel loci were 

nominally significant in SpiroMeta (consistent direction of effect and one-sided P < 0.05): 

ASAP2, EML4, VGLL4, ADCY5, HSPA4, CCDC69, RREB1, ID4, IER3, RFX6, 
MFHAS1, COL15A1, TEPP, and THRA (Table 1), and all 82 loci showed consistent 

direction of effect with either FEV1 or FEV1/FVC ratio in SpiroMeta (Table 1 and 

Supplementary Table 2). We note that 9 of our 35 novel loci were recently described in a 

contemporaneous analysis of lung function in UK Biobank21. None of the novel loci 

appeared to be explained by cigarette smoking, and variant effect sizes in ever- and never-

smokers and including and excluding self-reported asthmatics were similar (Supplementary 

Note). In addition, we found no significant differences in variant effects by sex 

(Supplementary Note). Including all 82 genome-wide significant variants, we explain up to 

7.0% of the phenotypic variance in liability scale, using a 10% prevalence of COPD, 

acknowledging that these effects are likely overestimated in the discovery sample. This 

represents up to a 48% increase in COPD phenotypic variance explained by genetic loci 

compared to the 4.7% explained by 22 loci reported in a recent GWAS of COPD5.

Identification of secondary association signals

We used approximate conditional and joint analysis22 to find secondary signals at each of 

the 82 genome-wide significant loci. We found 82 secondary signals at 50 loci, resulting in a 

total of 164 independent associations in 82 loci (Supplementary Table 4). Of 50 loci 

containing secondary associations, 33 were at loci previously described for COPD or lung 

function, and six at Bonferroni-replicated novel loci. Of 82 secondary associations, 20 

reached genome-wide significance (P < 5 × 10−8) (Supplementary Table 4). Of 61 novel (not 

previously described in COPD or lung function) independent associations, 21 reached a 

region-wise Bonferroni-corrected threshold (one-sided P < 0.05/novel independent 

association(s) in each locus) in unconditioned associations from SpiroMeta (Methods and 

Supplementary Table 4).

Tissue and specific cell types

In determining the tissue in which COPD genetic variants function to increase COPD risk, 

lung is the obvious tissue to consider. However, COPD is a systemic disease23,24 and within 

the lung the cell-types collectively contributing to disease pathogenesis are largely unknown. 

Furthermore, available databases include cell types relevant to lung (e.g. smooth muscle) but 

from other organs (e.g. the gastrointestinal tract). To identify putative causal tissues and cell 

types, we assessed the heritability enrichment in integrated genome annotations at the single 

tissue level25 and tissue-specific epigenomic marks26. Lung tissue showed the most 

significant enrichment (enrichment = 9.25, P = 1.36 × 10−9), as previously described, though 
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significant enrichment was also seen in heart (enrichment = 6.85, P = 3.83 × 10−8) and the 

gastrointestinal (GI) tract (enrichment = 5.53, P = 6.45 × 10−11). In an analysis of enriched 

epigenomic marks, the most significant enrichment was in fetal lung and GI smooth muscle 

DNase hypersensitivity sites (DHS) (P = 6.75 × 10−8) and H3K4me1 (P = 7.31 × 10−7) 

(Supplementary Table 5). To identify the source of association within lung tissue, we tested 

for heritability enrichment using single-cell chromatin accessibility27 (ATAC-Seq) and gene 

expression (RNA-Seq) from human28,29 and murine30 lung (Supplementary Table 5). Using 

LD score regression in murine ATAC-Seq data, we found enrichment of chromatin 

accessibility in several cell types, including endothelial cells (most significant), type 1, and 

type 2 alveolar cells (the latter among the highest fold-enrichment [Supplementary Table 

5a]). Results using LD score regression31 or SNPsea32 on single-cell RNA-Seq varied, with 

nominal P-values for genes expressed in type 2 alveolar cells, basal-like cells, club cells, 

fibroblasts and smooth muscle cells (Supplementary Tables 5b,c).

Fine-mapping of associated loci

To identify the most likely causal variants at each locus, we performed fine mapping using 

Bayesian credible sets33. Including 160 potential primary and secondary association signals 

(excluding four variants in the major histocompatibility complex [MHC] region), 61 

independent signals had a 99% credible set with fewer than 50 variants; 34 signals had 

credible sets with fewer than 20 variants (Supplementary Figure 3). Eighteen loci had a 

single variant with a posterior probability of driving association (PPA) greater than 60% 

including the NPNT (4q24) locus, where the association could be fine-mapped to a single 

intronic variant, rs34712979 (NC_000004.11:g.106819053G>A, see Supplementary Note 

and Supplementary Table 6). Most sets included variants that overlapped genic enhancers of 

lung-related cell types (e.g., fetal lung fibroblasts, fetal lung, and adult lung fibroblasts) and 

were predicted to alter transcription binding motifs (Supplementary Table 6). Of 61 credible 

sets with fewer than 50 variants, eight sets contained at least one deleterious variant. These 

deleterious variants included 1) missense variants affecting TNS1, RIN3, ADGRG6, 
ADAM19, ATP13A2, BTC, and CRLF3; and 2) a splice donor variant affecting a lincRNA - 

AP003059.2.

Candidate target genes

In most cases, the closest gene to a lead SNP will not be the gene most likely to be the 

causal or effector gene of disease-associated variants34–36. Thus, to identify the potential 

effector (‘target’) genes underlying these genetic associations, we integrated additional 

molecular information including gene expression, gene regulation (open chromatin and 

methylation data), chromatin interaction, co-regulation of gene expression with gene sets, 

and coding variant data (Methods and Figure 3).

At 82 loci, 472 genes within +/− 1 Mb of top associated variants were implicated by analysis 

of least one dataset; 106 genes were implicated by lung gene expression37,38, and an 

additional 50 genes by >= 2 other datasets (methylation39, chromatin interaction40, open 

chromatin regions41, similarity in gene sets42 or deleterious coding variants43 [Figure 3]), 

for a total of 156 genes meeting more stringent criteria. Excluding loci in the MHC region, 

the median number of potentially implicated genes per locus was four, with a maximum of 
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17 genes (7q22.1 and 17q21.1). The median distance of implicated genes to top associated 

variants was 346 Kb. Among 82 loci, 60 (73%) included the nearest gene. We identified 20 

genes with supportive evidence from exome sequencing data. Two genes (ADAM19 and 

ADAMTSL3) were implicated by five datasets (Figure 3) and another two (EML4 and 

RIN3) were implicated by four datasets. A summary of all genes implicated using these 

approaches is included in Supplementary Table 7.

Associated pathways

To gain further functional insight of associated genetic loci, we performed gene-set 

enrichment analysis using DEPICT42. Among 165 enriched gene sets at false discovery rate 

(FDR) < 5%, 44% of them were related to the developmental process term, with nominal P 
for lung development of 1.02 × 10−6; significant sub-terms included lung alveolus 

development (P = 0.0003) and lung morphogenesis (P = 0.0005). We also found enrichment 

of extracellular matrix-related pathways including laminin binding, integrin binding, 

mesenchyme development, cell-matrix adhesion, and actin filament bundles. Additional 

pathways of note included histone deacetylase binding, the Wnt receptor signaling pathway, 

SMAD binding, the MAPK cascade, and the transmembrane receptor protein serine/

threonine kinase signaling pathway. Full enrichment analysis results including the top genes 

for each DEPICT gene set are shown in Supplementary Table 8.

Identification of drug targets

GWAS is also useful for identifying drug targets either at the individual gene18,44,45 or 

genome-wide level46,47. Of 482 candidate target genes, 60 genes could be targeted by at 

least one approved or in-development drug48, totaling 428 drugs with 144 different modes of 

action (Supplementary Table 9). Druggable targets at novel loci for COPD and lung function 

included ABHD6, CDKL2, GSTO2, KCNC4, PDHB, SLK, and TRPM7. We also identified 

drugs for repurposing in COPD using transcriptome-wide associations and drug-induced 

gene expression signatures49 (Supplementary Note).

Phenotypic effects of COPD-associated variants

To characterize the phenotypic effects of 82 genome-wide significant loci, we performed a 

phenome-wide association analysis within the deeply phenotyped COPDGene study 

(Methods). We assessed for common patterns of phenotype associations for the 82 loci by 

using hierarchical clustering across scaled Z scores of phenotype-variant associations. We 

identified two clusters of variants differentially associated with two sets of phenotypes 

(Supplementary Figure 4). As these two variant-phenotype clusters appeared to be driven by 

computed tomography (CT) imaging features, we repeated variant clustering limited to 

quantitative computed tomography imaging features. We again found two clusters of 

variants, differentiated by association with quantitative emphysema, emphysema 

distribution, gas trapping, and airway phenotypes (Figure 4a). Additionally, we evaluated the 

association of the 82 genome-wide significant variants in a prior GWAS of emphysema and 

airway quantitative computed tomography features50 (Supplementary Table 10).

We also examined all genome-wide significant loci in the NHGRI-EBI GWAS Catalog51 

(Supplementary Figure 5, Supplementary Table 11) and looked for trait-associated variants 
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in linkage disequilibrium (r2 > 0.2) with our lead COPD-associated variants. Many variants 

were associated with anthropometric measures including height and body mass index (BMI), 

measurements on blood cells (red and white cells), and cancers. COPD is well known to 

have many common comorbidities, such as coronary artery disease (CAD), type 2 diabetes 

mellitus (T2D), osteoporosis, and lung cancer. Of these diseases and 13 additional traits, we 

confirmed previously reported overall genetic correlation (using linkage disequilibrium 

score regression52) of COPD with lung function, asthma, and height, and found evidence of 

modest correlation between COPD and lung cancer (Supplementary Note). However, at 

individual loci, and using more stringent linkage disequilibrium (r2 > 0.6), we found 

evidence of shared risk factors for these comorbid diseases and COPD including a genome-

wide significant variant near PABPC4 associated with T2D, four variants with CAD (near 

CFDP1, DMWD, STN1, and TNS1), and a variant near SPPL2C with bone density (Figure 

4b).

Overlapping loci with asthma and pulmonary fibrosis

Based on our previous identification of genetic overlap of COPD with asthma, and COPD 

with pulmonary fibrosis, we examined loci for specific overlap with these two diseases. In 

asthma, we noted an r2 > 0.2 with one of our variants and previously reported variants at 

ID2, ZBTB38, C5orf56, MICA, AGER, HLA-DQB1, ITGB8, CLEC16A, and THRA. In 

pulmonary fibrosis, in addition to our previously described overlap at FAM13A, DSP, and 

17q21, we noted overlapping associations at ZKSCAN1 and STN1 (Supplementary Table 

12). To more closely examine overlap, we applied a Bayesian method (gwas-pw53) of COPD 

associations from our current GWAS with previous GWASs of asthma (limited to those of 

European ancestry) and pulmonary fibrosis54,55. To mitigate the results of including asthma 

among our COPD cases, we performed analysis for overlap with asthma removing self-

reported asthmatics from UK Biobank for this analysis (Methods). We identified 14 shared 

genome segments (posterior probability > 70%), 9 with asthma and 5 with pulmonary 

fibrosis (Figure 4c, Supplementary Table 13). In addition to the three segments shared with 

pulmonary fibrosis identified in the previous study5 (FAM13A, DSP, and the 17q21 locus – 

here nearest CRHR1), we identified two new segments including loci near ZKSCAN1 and 

STN1 (formerly known as OBFC1). Shared variants between COPD and pulmonary fibrosis 

all had an opposite effect (i.e., increasing risk for COPD but protective for pulmonary 

fibrosis). In asthma, we identified five shared segments in the 6p21–22 regions, as well as 

ADAM19, ARMC2, ELAVL2, and STAT6. With the exception of STAT6, overlapping 

variants showed the same direction of effect.

Discussion

Genetic factors play an important role in COPD susceptibility. We examined genetic risk of 

COPD in a genome-wide association study of 35,735 cases and 222,076 controls. We 

identified 82 genome-wide significant loci for COPD, of which 47 were previously 

identified in genome-wide association studies of COPD or population-based lung function. 

Of 35 loci not previously described at the time of analysis, 13 replicated in an independent 

study of population-based lung function. We used several data sources to attempt to assign 

causal genes at each locus, identifying 156 genes at 82 loci that were supported by either 
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gene expression or a combination of at least 2 other data sources. Our results identify 

specific genes, cell types, and biologic pathways for targeted study and also suggest a 

genetic basis for the clinical heterogeneity seen in COPD.

Our study supports the role of early life events in the risk of COPD. Gene set enrichment 

analysis identified developmental pathways both specific to the lung (e.g., lung 

morphogenesis and lung alveolar development) and related to the lung (e.g., the canonical 

Wnt receptor56,57, the MAPK/ERK, and the nerve growth factor receptor signaling 

pathways). We also confirmed enrichment of heritability in epigenomic marks of fetal lung. 

Our findings are consistent with epidemiologic studies demonstrating that a substantial 

portion of the risk of COPD may develop in early life: genetic variants may set initial lung 

function58 and patterns of growth58–60. While further work will be needed to confirm the 

causal variants and genes affected by our variants, testing the role of these genes in lung 

development-relevant murine or ex-vivo models – for example, determining whether the 

perturbation of these genes changes proliferation and differentiation of lung epithelial 

progenitors in induced pluripotent cell-derived lung alveolar type 2 cells44 – could provide 

experimental evidence of the role of these genes in early life susceptibility. Ultimately, the 

goal of this work would be to identify targets for or subsets of high risk individuals early in 

the disease course, or molecular candidates that may affect lung repair and regeneration61.

Apart from genes related to lung development, our analyses highlighted several genes and 

pathways already of interest in COPD therapy (e.g. CHRM3 / acetylcholine receptor 

inhibitors, the MAPK pathway) – supporting the role of genetic analyses in finding 

therapeutic targets18,62 – and newer genes that could inform future functional studies. We 

identified interleukin 17 receptor D (IL17RD), as a potential effector gene at the 3p14 locus. 

Numerous studies have examined the role of IL-17A in COPD63, and IL17RD can 

differentially regulate pathways employed by IL-17A64. Chitinase acidic (CHIA) at 1p13.3, 

which encodes a protein that degrades chitin65, exhibits lung-specific expression66,67. CHIA 
variants have been associated with FEV1

68, asthma69–72, and acid mammalian chitinase 

activity71,73. We identified several potential effector genes related to extracellular matrix, 

cell adhesion, cell-cell interactions, and elastin-associated microfibrils74–76, some of which 

have been previously identified in studies of lung function15. These include integrin family 

members that mediate cell-matrix communication (e.g., ITGA1, ITGA2, ITGA877–79), an 

integrin ligand encoding gene (NPNT80), and genes encoding matrix proteins (e.g., MFAP2 
and ADAMTSL3). ADAMTSL3 plays a role in cell-matrix interactions related to the 

assembly of fibrillin and microfibril biogenesis81–83 and of our candidate effector genes was 

supported by the greatest number of bioinformatic analyses. Recombinant forms of other 

ADAMTS-like proteins demonstrate experimental evidence of promoting and enhancing 

fibrillin and microfibril deposition and assembly84,85. ADAMTSL3 may play a role in 

preventing emphysematous destruction of lung tissue by ADAMTS in COPD.

In addition to identifying the effector gene, knowing the effector cell type is critical for 

functional studies. We identified an overall enrichment of epigenomic marks in lung tissue 

and smooth muscle (also identified in studies of lung function16). This latter association was 

found in gastrointestinal tissue cell types; respiratory smooth muscle is absent in the 

analyzed datasets. We also performed analyses of single-cell data in an attempt to identify 
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the specific lung cell types in which our top variants are potentially functioning. We found 

evidence for enrichment of several cell types, including but not limited to endothelial cells, 

alveolar type 2 cells, and basal-like cells. Each of these cell types has been postulated to 

have a role in the development of COPD86–88, and our data are consistent with the likely 

heterogeneity of lung cell types contributing to COPD susceptibility. The lung comprises at 

least 40 different resident cell types89, most of which are not distinctly represented in these 

datasets. Thus, while our findings support the investigation of specific cell types for further 

functional studies, they also highlight the need for profiling of lung-relevant cell types and 

loci-specific analyses.

Characterization of functional variant effects could lead to better disease subtyping and more 

targeted therapy for COPD. Cluster analysis on hundreds of COPD-associated features in the 

more extensively phenotyped COPDGene cohort showed heterogeneous effects of genetic 

variants on COPD-related phenotypes, including computed tomography (CT) measurements 

of airway abnormalities and emphysema – well-described sources of heterogeneity in 

COPD90–92. Analyzing hundreds of diseases/traits in GWAS Catalog, we identified 

overlapping associations with various diseases/traits in multiple organ systems, 

comorbidities such as coronary artery disease, bone mineral density, and type 2 diabetes 

mellitus (T2D). The COPD-associated PABPC4 locus was associated with T2D93 and C-

reactive protein (CRP) level94. Although a causal gene in this locus and its contribution to 

COPD is unknown, its association with T2D may suggest a shared disease pathway and drug 

targets. Together, the identification of variable COPD risk loci associations with sub-

phenotypes and other diseases95,96 may have potential for more nuanced approaches to 

therapy for COPD. Overall, our phenotype, gene, and pathway analyses illustrate the utility 

of both searching for enrichment of genetic signals overall, and performing a more detailed 

identification of the effects of individual variants or groups of variants.

We performed additional specific analysis in two diseases that overlap with COPD, asthma 

and pulmonary fibrosis. While a genome-wide genetic correlation of COPD and asthma has 

been previously described5, our analysis is the first to identify specific shared genetic 

segments between asthma and COPD. While the effects at most of these shared segments 

were concordant in direction, one of the segments of particular interest was near STAT6, 

which had opposite directions of effect in the two diseases. STAT6 plays a role in T helper 

(Th) type 2-dependent inflammation, and is activated by interleukin-4 and interleukin-13 

(IL-4 and IL-13)97. IL-13, in turn, has been found to be increased in asthmatic airways98 but 

decreased in severe emphysema99. In pulmonary fibrosis, variants at all overlapping loci 

have an opposite direction of effect compared to COPD5. These effects raise the possibility 

that specific therapies for one disease could increase the risk of the other disease, which may 

be worth evaluating in treatment trials. The reasons why genetic effects are divergent 

between COPD and fibrosis are unclear, but these identified opposite effects could point to 

molecular switches that influence why some smokers develop emphysema while others 

develop pulmonary fibrosis. While pulmonary fibrosis is an uncommon disease and 

specifically excluded in several of our COPD case-control cohorts, interstitial lung 

abnormalities are increasingly being recognized as a potential precursor to fibrosis, and an 

inverse relationship between these abnormalities and emphysema has been previously 

identified100. Mechanistically, some have hypothesized that the divergent derangement of 
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Wnt and Notch signaling pathways101 and mesenchymal cell fate102 may be responsible for 

the distinct development of these two diseases. We also describe an overlapping region at the 

STN1 (previously known as OBFC1) locus. STN1 plays a role in telomere maintenance103; 

shortened telomeres have been observed in both COPD and idiopathic pulmonary fibrosis 

(IPF)104,105, and rare genetic variants in the telomerase pathway have been implicated in 

both pulmonary fibrosis and emphysema – albeit with concordant effects on either 

disease106.

While our study a large genome-wide association study of COPD, individuals meeting our 

criteria for COPD in the UK Biobank may be different from other studies, especially for 

smoking history. We used the same definition of COPD as in our prior analysis5, which 

included non-smokers. Our use of pre-bronchodilator spirometry to define COPD (allowing 

us to maximize sample size) as well as population-based lung function for replication could 

bias our findings against variants that are only associated with more severe forms of COPD. 

We did not exclude other causes of airway obstruction such as asthma, noting that asthma 

frequently overlaps with, and is misdiagnosed in COPD107. We performed several additional 

analyses to determine whether our results were driven by, or markedly different, by smoking 

status, asthma, or use of pre- instead of post-bronchodilator spirometry to define COPD. The 

results of these additional analyses did not indicate a substantial impact of these factors on 

our overall findings, and together with prior analyses5,16, suggest that bias due to these 

factors is likely small. However, our study was not designed to identify differences between 

subgroups, and we cannot rule out a role for studying more severe disease or disease 

subtypes. We note that the alpha-1 antitrypsin locus (SERPINA1) was identified as genome-

wide significant in smaller studies of emphysema and in smokers with severe COPD108. In 

the current study, the association of the PiZ allele (NC_000014.8:g.94844947C>T, 

rs28929470) had P = 2.2 × 10−5 using moderate-to-severe cases (FEV1 < 80% predicted), 

and a smaller P-value (1.4 × 10−6) in severe cases (FEV1 < 50% predicted) despite a smaller 

sample size, a phenomenon we have previously described11. Thus, despite the strong overlap 

of COPD with quantitative spirometry, new loci may be identified through studies of 

sufficiently large subsets of COPD patients and with more specific and homogeneous COPD 

phenotypes. Given suggestive evidence for replication using a related (but not identical) 

phenotype for additional novel loci beyond the 13 meeting a Bonferroni-corrected threshold 

for significance, we chose to include all loci significant in discovery in subsequent analyses, 

recognizing that we likely included some false positive associations. Our study focused on 

relatively common variants, predominantly in individuals of European ancestry; more 

detailed studies of rare variants, the human leukocyte antigen (HLA) regions, and other 

ethnicities are warranted, but broader multi-ethnic analyses are limited by the number of 

cases in currently available cohorts. Although COPD sex differences have been reported109, 

we did not identify significant sex-specific differences in effect sizes of the 82 top variants. 

Future studies including more subjects and methodological advances may be needed to 

elucidate this effect.

The global burden of COPD is increasing. Our work finds a substantial number of new loci 

for COPD and uses multiple lines of supportive evidence to identify potential genes and 

pathways for both existing and novel loci. Further investigation of the genetic overlap of 

COPD with other respiratory diseases and the phenotypic effects of top loci finds new 
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shared loci for asthma and idiopathic pulmonary fibrosis and suggests heterogeneity across 

COPD-associated loci. Together, these insights provide multiple new avenues for 

investigation of the underlying biology and the potential therapeutics in this deadly disease.

Methods

Study populations

The UK Biobank is a population-based cohort consisting of 502,682 individuals8. To 

determine lung function, we used measures of forced expiratory volume in 1 second (FEV1) 

and forced vital capacity (FVC) derived from the spirometry blow volume-time series data, 

subjected to additional quality control based on ATS/ERS criteria110 (Supplementary Note). 

As in our previous study5, we defined COPD using pre-bronchodilator spirometry according 

to modified Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria for 

moderate to very severe airflow limitation9: FEV1 less than 80% of predicted value (using 

reference equations from Hankinson et al.111), and the ratio between FEV1 and FVC less 

than 0.7. Consistent with our previous analyses and enrollment criteria for COPD case-

control datasets112, we did not exclude individuals based on self-reported asthma. 

Genotyping was performed using Axiom UK BiLEVE array and Axiom Biobank array 

(Affymetrix, Santa Clara, California, USA) and imputed to the Haplotype Reference 

Consortium (HRC) version 1.1 panel113.

We invited participants in the prior International COPD Genetics Consortium (ICGC) COPD 

genome-wide association study to provide case-control association results (with the 

exception of the 1958 British Birth Cohort, to avoid overlapping samples with the replication 

sample). ICGC cohorts performed case-control association analysis based on pre-

bronchodilator measurements of FEV1 and FEV1/FVC, and cases were identified using 

modified GOLD criteria, as above. Studies were imputed to 1000 Genomes reference panels. 

Detailed cohort descriptions and cohort-specific methods have been previously published5 

(Supplementary Note). All studies comply to all relevant ethical regulations. Ethical/

regulatory boards approved the study protocol for each study (Supplementary Note). We 

obtained informed consent from all participating individuals.

Based on the strong genetic overlap of lung function and COPD5, we performed lookups of 

select significant variants for FEV1 and FEV1/FVC in the SpiroMeta consortium meta-

analysis21. Briefly, SpiroMeta comprised a total of 79,055 individuals from 22 studies 

imputed to either the 1000 Genomes Project Phase 1 reference panel (13 studies) or the HRC 

(9 studies). Each study performed linear regression adjusting for age, age2, sex, and height, 

using rank-based inverse normal transforms, adjusting for population substructure using 

principal components or linear mixed models, and performing separate analyses for ever- 

and never- smokers or using a covariate for smoking (for studies of related subjects). 

Genomic control was applied to individual studies, and results were combined using a fixed-

effects meta-analysis21.
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Genome-wide association analysis

In UK Biobank, we performed logistic regression of COPD, adjusting for age, sex, 

genotyping array, smoking pack-years, ever smoking status, and principal components of 

genetic ancestry. Association analysis was done using PLINK 2.0 alpha114 (downloaded on 

December 11, 2017) with Firth-fallback settings, using Firth regression when quasi-

complete separation or regular-logistic-regression convergence failure occurred. We 

performed a fixed-effects meta-analysis of all ICGC cohorts and UK Biobank using METAL 

(version 2010–08-01)115. We assessed population substructure and cryptic relatedness by 

linkage disequilibrium (LD) score regression intercept10. We defined a genetic locus using a 

2-Mb window (+/−1 Mb) around a lead variant, with conditional analyses as described 

below.

To maximize our power to identify existing and discover new loci, we examined all loci at 

the genome-wide significance value of P < 5 × 10−8. We first characterized loci as being 

previously described (evidence of prior association with lung function12–20,116,117 or 

COPD5,11,118) or novel. We defined previously reported signals if they were in the same LD 

block in Europeans119 and in at least moderate LD (r2 >= 0.2). For novel loci we attempted 

replication through association of each lead variant with either FEV1 or FEV1/FVC ratio in 

SpiroMeta, using one-sided P-values with Bonferroni correction for the number of novel loci 

examined. Novel loci failing to meet a Bonferroni-corrected P-value were assessed for 

nominal significance (one-sided P < 0.05) or directional consistence with FEV1 and 

FEV1/FVC ratio in SpiroMeta.

Cigarette smoking is the major environmental risk factor for COPD and genetic loci 

associated with cigarette smoking have been reported5,120. While we adjusted for cigarette 

smoking in our analysis, we further examined these effects by additionally testing for 

association of each locus with cigarette smoking and by looking at two separate analyses of 

ever- and never- smokers in UK Biobank. We tested for sex-specific genetic effects of 

genome-wide significant variants via a stratified analysis and interaction testing, using a 5% 

Bonferroni-corrected threshold to determine significance (Supplementary Note).

Identification of independent associations at genome-wide significant loci

We identified specific independent associations at genome-wide significant loci using 

GCTA-COJO22. This method utilizes an approximate conditional and joint analysis 

approach requiring summary statistics and representative LD information. As the UK 

Biobank provided the predominant sample, we used 10,000 randomly drawn unrelated 

individuals from this discovery dataset as a LD reference sample. We scaled genome-wide 

significance to a 2-Mb region, resulting in a locus-wide significant threshold of 8 × 10−5, or 

2 × 10−6 for variants in the major histocompatibility complex (MHC) region 

(chr6:28477797–33448354 in hg19). We created regional association plots via LocusZoom 

using 1000 Genomes EUR reference data121 (Nov2014 release).
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Identification and prioritization of tissues and cell types, candidate variants, genes, and 
pathways

Identification of enriched tissues and specific cell types—We used LD Score 

Regression (LDSC) to estimate the enrichment of functional annotations26 and specifically 

expressed gene regions31 on disease heritability. We utilized LDSC baseline models (e.g., 

conserved region, promoter flanking region), tissue-specific annotations from the Roadmap 

Epigenomics Program31, integrated tissue annotations from GenoSkyline25, and cell type-

specific chromatin accessibility data27 (ATAC-Seq). We used four single-cell gene 

expression (RNA-Seq) datasets to identify specific cell types (Supplementary Note), 

including 1) lung epithelial cells from normal and pulmonary fibrosis human lung28 (Gene 

Expression Omnibus [GEO] accession GSE86618), 2) human induced pluripotent stem cells 

(iPSCs)-derived putative alveolar type 2 cells29 (GSE96642), 3) mouse lungs at embryonic 

day 18.5 (E18.5) and 4) postnatal day 1 (P1) by Whitsett et al. (unpublished, available at 

LungMAP30). We also used SNPsea32 to identify enriched cell types in genome-wide 

significant loci (Supplementary Note). We reported only estimates of coefficients and P-

values for the Roadmap annotations and gene expression datasets, as theses analyses used –

h2-cts, which does not report fold enrichment.

Fine-mapping of independent association signals at genome-wide significant 
loci—We used Bayesian fine-mapping at each locus to identify the credible set: the set of 

variants with a 99% probability of containing a causal variant. Briefly, for each genome-

wide significant loci we calculated approximate Bayes factors33 of association. We then 

selected variants in each locus, so that their cumulative posterior probability was equal or 

greater than 0.99 using an unscaled variance. At loci with multiple independent associations, 

we used statistics from approximate conditional analysis with GCTA software on each index 

variant adjusting for other independent variants in the loci. Otherwise, we used 

unconditioned statistics from our meta-analysis. Details on characterization of variant effects 

are summarized in the Supplementary Note.

Identification of target genes—We used several computational approaches with 

corresponding available datasets to identify target genes in genome-wide significant loci. We 

used two methods that utilized gene expression data: 1) S-PrediXcan and 2) DEPICT. We 

used S-PrediXcan37 to identify genes with genetically regulated expression associated with 

COPD. We used data from the Lung-eQTL consortium38 (1,038 lung tissue samples) as an 

expression quantitative trait loci (eQTL) and gene expression reference database. S-

PrediXcan tests for association between a trait and imputed gene expression using summary 

statistics. Here, we performed S-PrediXcan using models for protein-coding genes +/− 1 Mb 

from top-associated variants at genome-wide significant loci. We used DEPICT (Data-driven 

Expression Prioritized Integration for Complex Traits)42 to prioritize genes from 

‘reconstituted’ gene sets.

We also used additional information on gene regulation, including epigenetic data: 1) 

regulatory fine mapping, 2) methylation quantitative trait loci (mQTL), and 3) chromosome 

conformation capture. We used regulatory fine mapping (regfm41) to overlap 99% credible 

interval (CI) variants at each GWAS locus with open chromatin regions based on DNAse 
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hypersensitivity sites (DHS). DHS cluster accessibility state was then associated with gene 

expression levels (for 13,771 genes) from 22 tissues in the Roadmap Epigenomics Project41. 

Using both the 99% CI and DHS overlap, as well as the DHS state and transcript level 

association, regfm calculates a posterior probability of association of each gene +/− 1 Mb of 

the lead SNP at each GWAS locus. We also searched for overlapping mQTL data from lung 

tissue, as recently described39. To determine whether these signals co-localized (rather than 

being related due to linkage disequilibrium), we performed colocalization analysis between 

our GWAS and mQTL in genome-wide significant loci using eCAVIAR122 (eQTL and 

GWAS CAusal Variants Identification in Associated Regions, Supplementary Note). We also 

sought information from publicly available chromosome conformation capture data40. We 

queried association statistics of chromatin contact (i.e., long range chromatin interactions) 

between top associated variants and gene promoters nearby in a lung (fetal lung fibroblast 

cell line (IMR90) and human lung tissue40) using HUGIn123 (Hi-C Unifying Genomic 

Interrogator). We retained only the strongest associations (i.e., smallest P-value) for each 

cell line/primary cell in the analysis.

Finally, we searched for signals from deleterious variants by querying consequences of 

variants within 99% credible sets containing fewer than 50 variants (Supplementary Note). 

We also searched for rare coding variants, based on exome sequencing results in the 

COPDGene, Boston Early-Onset COPD (BEOCOPD), and International COPD Genetics 

Network (ICGN) studies, as previously described43. In brief, we performed exome 

sequencing on 485 severe COPD cases and 504 smoking resistant controls from the 

COPDGene study and 1,554 subjects ascertained through 631 probands with severe COPD 

from the BEOCOPD and the ICGN study. Details on statistical tests for single-variant and 

gene-based analyses are summarized in the Supplementary Note.

For each dataset described above, we used Bonferroni-corrected P-values, or a fixed 

posterior probability threshold to determine target genes at each locus. We reported protein-

coding genes +/−1 Mb from a top associated variant. We restricted our search to genes from 

the GRCh37 server in biomaRt124 with updated HUGO Gene Nomenclature Committee 

(HGNC) names (downloaded from HGNC database of human gene names on June 7, 2018). 

For each locus, we used a 5% Bonferroni-corrected threshold (i.e., P < 0.05 divided by 

number of genes at that locus) to determine significance for 4 data types: gene expression 

data, chromatin conformation capture data, co-regulation of gene expression, and exome 

sequencing results. For two remaining datasets, we used a fixed posterior probability (of 

gene association with a GWAS locus) threshold of 0.1 for regfm and eCAVIAR. We 

considered genes that were implicated by gene expression or >= 2 combination of other 

datasets (e.g., methylation and chromatin conformation capture data) as target genes.

Identification of pathways—To identify enriched pathways in COPD-associated loci, we 

performed gene-set enrichment analysis using the “reconstituted” genes sets from DEPICT, 

as described above42. We defined significant gene sets using false discovery rate (FDR) < 

5%.
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Effects on COPD-related and other phenotypes

COPD is a complex and heterogeneous disorder, comprised of different biologic processes 

and specific phenotypic effects. In addition, many loci discovered by GWAS have 

pleiotropic effects. To identify these effects, we performed analyses of a) identification of 

overlapping genetic loci between related disorders (asthma and pulmonary fibrosis) b) 

genetic association studies of our genome-wide significant findings using COPD-related 

phenotypes, including a cluster analysis to identify groups of variants that may be acting via 

similar mechanisms; c) look up of top variants in prior COPD-related quantitative computed 

tomography (CT) imaging feature GWAS, d) look up of associations with other diseases/

traits using GWAS Catalog, and e) estimate the genetic correlation between COPD and other 

diseases/traits.

To identify overlapping loci between COPD and other respiratory disorders, we used gwas-

pw53 to perform pairwise analysis of GWAS. This method searches for shared genomic 

segments119 using adaptive significance threshold, allowing detection of sub genome-wide 

significant loci. We identified shared segments or variants using posterior probability of 

colocalization greater than 0.753. We obtained GWAS summary statistics from previous 

studies of pulmonary fibrosis55 and asthma in Europeans54. For the overlap analysis of 

COPD with asthma, we examined the influence of the inclusion of individuals with self-

reported asthma on both the overlap of discrete GWAS loci (using gwas-pw) and genome-

wide genetic correlation (using LD score regression) by performing these analyses in the 

meta-analysis of ICGC studies and the UK Biobank (with individuals with asthma removed 

from cases in the latter). To assess heterogeneous effects of COPD susceptibility loci on 

COPD-related features (phenotypes), we evaluated associations of our genome-wide 

significant SNPs with 121 detailed phenotypes (e.g., lung function, computed tomography-

derived metrics, biomarkers, and comorbidities) available in 6,760 COPDGene non-Hispanic 

whites. We calculated Z-scores for each SNP-phenotype combination relative to the COPD 

risk allele to create a SNP by phenotype Z-score matrix. We tested each COPD-related 

phenotype with at least one nominally significant association with one of our genome-wide 

significant COPD SNPs, leaving us with 107 phenotypes. We then oriented all Z-scores to 

be positive (based on sign of median Z score) in association with each phenotype to avoid 

clustering based on direction of association. To avoid clustering phenotypes only by strength 

of association with SNPs, we scaled Z-scores within each phenotype by subtracting mean Z-

scores and dividing by the standard deviation of Z-scores within each phenotype. We then 

scaled Z-scores across SNPs to circumvent clustering of SNPs according only to relative 

strength of association with phenotypes. We then performed hierarchical clustering of the 

scaled Z-scores of associations between SNPs and phenotypes to identify clusters of SNPs 

and phenotypes for all 107 phenotypes as well as in the subset of 26 quantitative imaging 

phenotypes. We performed the clustering of variants both in the set of all genome-wide 

significant variants in discovery as well as in the subset of known variants plus novel 

variants meeting a strict Bonferroni threshold in SpiroMeta replication (Supplementary 

Note). We further examined top variant associations with COPD-related traits through a 

look-up of top variants in a prior GWAS of 12,031 subjects with quantitative emphysema 

and airway CT features50. To examine overlap of our COPD results with other traits, we 

downloaded genome-wide significant associations from the GWAS Catalog51 (P < 5 × 10−8; 
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downloaded on April 10, 2018). Between a pair of COPD- and trait- associated variants 

within the same LD block in Europeans119, we computed the LD using the European 

ancestry panel125 and considered the overlap if variants were in at least in moderate LD (r2 

>= 0.2). We estimated genetic correlation between COPD and other diseases/traits using a 

web engine for LDSC, LD Hub52. We assessed the results using a 5% Bonferroni-corrected 

significance level.

Identification of drug targets

We queried our target genes using the Drug Repurposing Hub48. This resource contains 

comprehensive annotations of launched drugs, drugs in phases 1–3 of clinical development, 

previously approved and preclinical or tool compounds, curated using publicly available 

sources (e.g., ChEMBL and Drugbank) and proprietary sources. We performed drug-gene 

expression similarity analysis49 (the Query) using a ranked gene set from a gene-based 

association test37 (Supplementary Note).

Reporting Summary

We provide further information on research design in the Life Sciences Reporting 
Summary linked to this article.

Data availability statement

The genome-wide association summary statistics are available at the database of Genotypes 

and Phenotypes (dbGaP) under accession phs000179.v5.p2 and via the UK Biobank. 

Derived phenotypic data for COPD case control status is also available in the UK Biobank.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design
COPD, chronic obstructive pulmonary disease; FEV1, force expiratory volume in one 

second; FVC, forced vital capacity. ARIC, Atherosclerosis Risk in Communities.
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Figure 2. Manhattan plot
P-values are two-sided based on Wald statistics (35,735 cases and 222,076 controls) without 

multiple comparison adjustment. Loci are labeled with the closest gene to the lead variant.

Sakornsakolpat et al. Page 27

Nat Genet. Author manuscript; available in PMC 2019 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Identification of target genes
(a) Overview of datasets used to identify target genes at genome-wide significant loci (b) 

Regional association plots at ADAMTSL3 locus showing GWAS (top), chromatin 

interaction in lung tissue (middle) and expression quantitative trait loci (bottom). GWAS P-

values are two-sided based on Wald statistics (35,735 cases and 222,076 controls). 

Expression quantitative trait loci (eQTL) P-values are two-sided based on t statistics (1,038 

samples). P-values for Hi-C data were calculated using binomial distribution from spline-

fitted and outlier-filtered distribution of contacts. All P-values were not adjusted for multiple 

comparison. GREx, gene-based association using gene expression; mQTL, colocalization 

with methylation quantitative trait loci; Cod., significant single variant or gene-based 

association tests for deleterious coding variants from exome data; Hi-C, significant 

chromatin interaction identified in human lung or the IMR90 cell line; DHS, overlap with 

DNase hypersensitivity sites; GSet, prioritized genes from DEPICT.
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Figure 4. Effects on COPD-related and other phenotypes
(a) Heatmap of scaled computed tomography (CT) quantitative imaging associations with 

the 34 genome-wide significant variants (known and replicated novel associations) with at 

least nominal (P < 0.05) association with any CT imaging feature in COPDGene non-

Hispanic white participants. Cluster 1 variants are more associated with airway imaging 

features and Cluster 2 variants are more associated with emphysema imaging features. 

Variants are referred to by the closest gene. (b) Overlap of genome-wide significant loci of 

COPD and select traits from GWAS Catalog (c) Genome-wide overlapping results between 
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COPD with pulmonary fibrosis (left) and asthma (right). PRM emphysema, emphysema 

quantified by parametric response mapping; UL, upper lobe of the lung; LL, lower lobe of 

the lung; Pi10, airway wall thickness calculated from regressing the square root of the 

airway wall area with the airway internal perimeter. CAD, coronary artery disease; BMD, 

bone mineral density.
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