Skip to main content
. 2019 May 20;18(1):720–732. doi: 10.3892/ol.2019.10378

Table III.

Univariate logistic regression analysis of the clinical and texture features to predict the microvascular invasion status in the training cohort.

OR

95% CI

Feature Value Lower Upper P-value
AP texture features
  Uniformity 1.209×104 6.602 4.605×107 0.019
  Energy 3.110×10121 4.556×1019 1.820×10229 0.022
  Entropy 1.123×10−1 1.991×10−2 5.647×10−1 0.010
  UPP 3.110×10121 4.556×1019 1.820×10229 0.022
  ClusterShade 1.000 1.000 1.000 0.046
  ClusterProminence 1.000 1.000 1.000 0.005
  GreyLevelNonuniformity 1.003 1.001 1.007 0.023
  LowGreyLevelRunEmphasis 0.000 0.000 3.320 ×10−192 0.034
  ShortRunLowGreyLevelEmphasis 0.000 0.000 2.140×10−255 0.035
  LongRunLowGreyLevelEmphasis 0.000 0.000 2.060 ×10−79 0.036
PP texture features
  MinIntensity 9.973×10−1 9.947×10−1 9.995×10−1 0.025
  VolumeCount 1.000 1.000 1.000 0.027
  Uniformity 1.087×10−3 9.070×10−7 6.241×10−1 0.044
  FrequencySize 1.000 1.000 1.000 0.027
  GlcmTotalFrequency 1.000 1.000 1.000 0.026
  GlcmEntropy 6.627×10−1 4.454×10−1 9.462×10−1 0.030
  HaraEntroy 3.266×105 2.273×101 1.286×1010 0.013
  AngularSecondMoment 0.000 0.000 4.329×10−94 0.026
  sumAverage 1.301×10−2 2.238×10−4 5.748×10−1 0.029
  sumEntropy 1.896×104 4.127 1.996×108 0.028
  GreyLevelNonuniformity 1.003 1.001 1.006 0.024
  RunLengthNonuniformity 1.000 1.000 1.000 0.025

OR, odds ratio; CI, confidence interval; UPP, uniformity of distribution of positive gray-level pixel values; AP, arterial phase; PP, portal venous phase.