
Minireview

The microbiome and ophthalmic disease

Adam D Baim , Asadolah Movahedan, Asim V Farooq and Dimitra Skondra

Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA

Corresponding author: Dimitra Skondra. Email: dskondra@bsd.uchicago.edu

Abstract
Progress in microbiome research has accelerated in recent years. Through the use of

16S rRNA assays and other genomic sequencing techniques, researchers have pro-

vided new insights about the communities of microorganisms that inhabit human and

animal hosts. There is mounting evidence about the importance of these ‘microbiotas’

in a wide variety of disease states, suggesting potential targets for preventative and

therapeutic interventions. Until recently, however, the microbiome received relatively

little attention in ophthalmology. This review explores emerging research on the

roles that ocular and extraocular microbiotas may play in the pathogenesis and treat-

ment of ophthalmic diseases. These include diseases of the ocular surface as well as

autoimmune uveitis, age-related macular degeneration, and primary open angle

glaucoma. Many questions remain about the potential impacts of microbiome research

on the diagnosis, treatment, and prevention of ophthalmic disease. In light of current
findings, we suggest directions for future study as this exciting area of research continues to expand.
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Introduction

The past decade has seen a surge of interest in the microbes
that colonize the human body, as new research elucidates
how these organisms – which form communities termed
‘microbiotas’ – influence states of health and disease. Key
to this research has been the development of high-
throughput sequencing techniques that enable large-scale
cataloging of microbiota reference genomes.1 The term
‘microbiome’ denotes these genomic catalogs, although
it has since become a popular label for microbiotas
themselves.2

The Human Microbiome Project, an initiative launched
in 2007 and funded largely by the National Institutes of
Health, sought to improve these reference genomes and
describe the microbiota of healthy human hosts.3,4

Subsequent advances in assays and bioinformatics have
yielded increasingly detailed pictures of the microbiotas
found in humans and laboratory animals, as well as those
residing in human-built and natural environments.1,5,6

In particular, 16S rRNA sequencing has become a powerful
tool for determining the composition of a microbiota; these
assays take advantage of the fact that 16S rRNA genes are
highly conserved with variable regions that distinguish
bacterial genera from each other.1 Experimental repertoires
have expanded to track shifts in microbiota constituents
through time and now include functional measures of
their transcriptional activity, protein expression, or meta-
bolic by-products.7

Impact of microbiotas on
non-ophthalmic disease

The bulk of microbiome research has focused on the gas-
trointestinal tract, with disturbances of the gut microbiota
now implicated in a wide range of disease states including
irritable bowel syndrome,8 inflammatory bowel disease,9

carcinogenesis,10 obesity and cardiometabolic diseases,11

multiple sclerosis,12 rheumatoid arthritis,13 graft-versus-
host disease,14 mood disorders,15 and neurodegenerative

Impact statement
This review describes a growing body of

research on relationships between the

microbiome and eye disease. Several groups

have investigated themicrobiota of the ocular

surface; dysregulation of this delicate eco-

system has been associated with a variety of

pro-inflammatory states. Other research has

explored the effects of the gastrointestinal

microbiota on ophthalmic diseases.

Characterizing the ways these microbiotas

influence ophthalmic homeostasis and path-

ogenesis may lead to research on new

techniques for managing ophthal-

mic disease.

ISSN 1535-3702 Experimental Biology and Medicine 2019; 244: 419–429

Copyright ! 2018 by the Society for Experimental Biology and Medicine

http://orcid.org/0000-0002-8436-1545
mailto:dskondra@bsd.uchicago.edu


diseases.16 Several groups have demonstrated that gut
commensals and dysbiosis may be involved in the patho-
genesis of type 1 and type 2 diabetes, both of which are
associated with serious ophthalmic sequelae.17–20 The gut
microbiota has been shown to modulate adaptive immune
responses, notably through induction of IgA class switch-
ing, promotion of TH17 cell differentiation, and stimulation
of regulatory T-cell populations.21 There is evidence that
the gut microbiota influences innate immune responses at
the gastrointestinal mucosa as well.22 The gut microbiota
has provided investigators with mechanistic links that
explain how environmental factors potentiate certain dis-
ease states. For example, antibiotics are known to set the
stage for Clostridium difficile-associated diarrhea by disturb-
ing the balance of gastrointestinal commensals in exposed
individuals.23 Another interesting area of research explores
how the gut microbiota may mediate well-established asso-
ciations between high-fat diet and metabolic or immune
disorders. For instance, high-fat diets have been shown to
increase circulating levels of lipopolysaccharide and other
pro-inflammatory bacterial by-products.11,24,25These find-
ings suggest that disturbances in microbiotas contribute
to pathogenesis in their own right and are not simply epi-
phenomena of disease. Germ-free and gnotobiotic animal
models have become especially powerful tools for demon-
strating causality, although further work is needed to apply
animal studies to humans.1

Despite the focus of microbiome research on the gut
microbiota, the composition and pathogenic significance
of microbiotas outside the gut have also been explored.
For instance, analysis of the oral microbiome has generated
new perspectives on the pathogenesis of tooth decay and
oral cancer.26 The skin microbiota is thought to be a signif-
icant modulator of cutaneous immune responses, with
animal and human studies demonstrating involvement of
Staphylococcus aureus in the pathogenesis of atopic
dermatitis.27,28

There is some evidence to suggest that targeted manip-
ulation of microbiotas may help prevent or treat disease.
Oral probiotics containing Bifidobacterium spp. and
Lactobacillus spp. have been widely studied, but these
formulations are difficult to investigate and implement in
clinical practice due to variations in the strains they con-
tain.29 Although controversy persists about the efficacy of
probiotics, there is evidence to suggest their utility in some
applications; these include the prevention of necrotizing
enterocolitis in preterm infants,30 prevention of antibiotic-
associated diarrhea,31 and treatment of irritable bowel syn-
drome.32 Some groups suggest administering oral probiot-
ics before hematopoietic stem cell transplantation to reduce
the risk of graft-versus-host disease, but current evidence is
mixed.33,34 Fecal microbiota transplantation has shown
promise in treating recurrent C. difficile infection; when
normal gut commensals are reestablished, these microor-
ganisms have been shown to compete with pathogenic bac-
teria and modulate host immune responses to counteract
infection.35 Efforts to engineer modified strains of commen-
sals have also been underway, with one group recently
reporting the use of inducible promoters in Bacteroides
spp. to regulate gene expression.36 Techniques for

modifying and controlling microbiotas may one day
prove useful in clinical applications.

In the following section, we review research that has
sought to characterize the ocular surface microbiota as
well as its possible effects on local immune responses and
pathogenesis. We then explore recent insights about the
roles of extraocular microbiotas in a variety of ophthalmic
diseases, with emphasis on autoimmune uveitis, age-
related macular degeneration (AMD), and primary open
angle glaucoma (POAG). Finally, we conclude by consider-
ing the implications of these findings and suggest future
directions for microbiome research in ophthalmology.

Ocular surface microbiota

Composition

Despite constant exposure to the environment, the conjunc-
tiva, lid margins, and tears of healthy individuals feature a
unique population of microorganisms compared to those of
the facial skin and oral mucosa.37,38 Before the widespread
use of genetic assays, researchers attempting to characterize
the ocular surface microbiota noted that swabs of healthy
conjunctiva yielded sparse growth when cultured; the most
frequently cultivated organisms were coagulase-negative
staphylococci, Propionibacterium spp., and
Corynebacterium spp.38

One advantage of 16S rRNA assays and other
microbiome-based techniques is that they permit efficient
identification of microbiota constituents that are otherwise
difficult to cultivate, due to their low abundance or
poor response to culture media. A 2016 study by Doan
et al.37 found that Corynebacterium spp. followed by
Propionibacterium spp. and then coagulase-negative staph-
ylococci were most abundant in conjunctival samples; these
are the same organisms that predominate in conventional
cultures, albeit with a different order of frequency. This
study also confirmed that the ocular surface harbors a dis-
tinct bacterial community compared to facial skin and oral
mucosa with 150- to 200-fold fewer bacteria than these sites,
possibly due to antimicrobial compounds in the tear film.39

Another recent study found that bacteria in conjunctival
samples display more phylogenetic diversity than those
isolated from the skin under the eye.40 These findings sug-
gest that ocular surface assays are not simply detecting
microorganisms from adjacent sites, although the risk of
contamination is indeed high and samples must be collect-
ed with care.41

Aside from contamination, other aspects of the collec-
tion process can affect microbiota surveys. One study
found that ‘deep’ conjunctival swabs taken with firm pres-
sure yielded a different profile of microorganisms than
swabs taken with light pressure, perhaps indicating that
bacteria are vertically stratified on the ocular surface.42

Another study found that use of topical proparacaine
before conjunctival swabbing decreased the range of
organisms detected, possibly by diluting or rinsing
away bacteria.40

Given that 16S rRNA exists only in prokaryotes, there
has been interest in next-generation sequencing assays that
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can also identify viruses, fungi, and parasites. Doan et al.37

have developed one such assay and found that torque teno
virus may be a constituent of the normal ocular surface
microbiota. Another study found that torque teno virus
was uniformly present in aqueous or vitreous samples
taken from patients with culture-negative endophthalmitis,
while vitreous samples taken from controls had no evi-
dence of the virus.43 It is still unclear whether torque teno
virus may be involved in the pathogenesis of endophthal-
mitis or whether the virus is a non-specific marker of intra-
ocular inflammation.

In addition to only detecting bacteria, a further limi-
tation of 16S rRNA assays is their inability to evaluate
the functional status of microbiotas. This is a major
shortcoming when studying the ocular surface, where
antimicrobial stresses such as tear lysozyme may dra-
matically curtail the lifespan of microorganisms detected
in these assays. Questions remain about whether these
microorganisms thrive at the ocular surface as a durable
population or whether they are transiently introduced
and inactivated after a short time. After correcting for
potential contaminants, Ozkan et al.44 found that healthy
individuals maintained a relatively stable microbiota
on repeat 16S rRNA assays during a three-month period.
The most frequently isolated genus in these assays was
Corynebacterium, although inconsistencies across individu-
als led the authors to question whether the ocular surface is
home to a ‘core’ microbiota akin to the gut and other muco-
sal sites. Transcriptional assays may help answer these
questions by measuring the activity of whole microbiotas
instead of merely detecting the presence or absence of
particular microbes.41,45 The use of new assays that
identify organisms by species or strain will also provide
valuable information, as the taxonomic resolution of con-
ventional 16S rRNA techniques typically stops at the level
of genus.45

Responses to host and environmental factors

Studies of healthy individuals provide us with crucial back-
ground information, but it is important to remember that
microbiotas are not static communities. Rather, the ocular
surface is a dynamic ecosystem where microbes must
respond to a range of environmental influences. For
instance, the use of contact lenses has been associated
with an altered ocular surface microbiota.46,47 One study
found that the conjunctival microbiota of contact lens wear-
ers was enriched with skin-associated bacterial genera such
as Pseudomonas, Acinetobacter, and Methylobacterium when
compared to the microbiota of non-wearers; in turn, contact
lens wearers had reduced levels of genera that are typical of
the healthy ocular surface, such as Staphylococcus and
Corynebacterium. It is unclear if these differences are
caused by inoculation of the ocular surface during lens
insertion, or if the presence of contact lenses creates a selec-
tive pressure that favors skin commensals.40 Another recent
study found that contact lens wear did not affect the overall
diversity of the ocular microbiota, although modest differ-
ences were observed in the abundance of particular bacte-
rial genera.48

In eyes implanted with the Boston type 1 keratoprosthe-
sis, Jassim et al.49 identified wider microbial diversity com-
pared to contralateral healthy eyes. Owji and Khalili50

found that among patients with nasolacrimal duct obstruc-
tion, conjunctival cultures of affected eyes displayed higher
colony counts than fellow eyes but featured significantly
less growth of Staphylococcus epidermidis. This study found
that when continuity between the conjunctiva and naso-
pharyngeal space was restored with dacryocystorhinos-
tomy, colony counts normalized in the affected eyes
within eight weeks of surgery. These findings raise new
questions about how ocular microbes respond to therapies
that limit tear drainage through the nasolacrimal duct, such
as punctal plugs used in the treatment of dry eye.
The effects of topical antibiotics on the ocular surface
microbiota have been explored as well, providing informa-
tion not only about patterns of antimicrobial resistance, but
also about the influence these agents have on commensal
organisms.51–54

There is evidence that other topical agents may affect the
profile of microorganisms at the ocular surface. In a small
prospective study, Ohtani et al.55 found that use of topical
latanoprost in glaucoma patients was associated with great-
er frequency of methicillin-resistant S. epidermidis in con-
junctival cultures compared to patients using another
prostaglandin analog (travoprost) and healthy controls;
however, there were no significant differences in the bacte-
rial species isolated from these groups. The authors attrib-
ute variations in methicillin resistance to a difference in the
preservatives used within the two drug formulations, with
latanoprost containing benzalkonium chloride and travo-
prost containing an ionic buffer. The study suggests that
preservatives may influence the ocular surface microbiota
and illustrates the need for future research to distinguish
the effects of preservatives from those of medica-
tions themselves.

Several other host factors have been found to influence
the composition andmetabolic activity of the ocular surface
microbiota. Aging may be one such factor, with Wen et al.56

reporting that the microbiota of older adults exhibits sig-
nificant alterations in carbohydrate and lipidmetabolism as
well as enrichment of antibiotic resistance genes. Multiple
studies have also attempted to characterize the ocular
microbial populations associated with systemic diseases,
such as diabetes mellitus57–59 and HIV.60 For instance,
Suto et al.57 found greater frequency of methicillin-
resistant coagulase-negative staphylococci in diabetic
patients compared to controls, along with increased rates
of resistance to levofloxacin and tobramycin. Determining
the organisms that predominate in specific patient sub-
groups could provide valuable guidance for antibiotic
selection, especially when perioperative prophylaxis
is indicated.

Roles in pathogenesis

Aside from guiding antibiotic selection, defining the
profiles and responses of the ocular surface microbiota
is essential for understanding how it might influence the
pathogenesis of ophthalmic diseases. Like the gut
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mucosa, the ocular surface maintains its integrity and
homeostasis through the careful regulation of immune
responses. Pathways for antigen surveillance, response,
and tolerance have been described at the ocular surface;
microbiotas have been shown to influence these mecha-
nisms at other mucosal sites, and there is some evidence
that the ocular surface microbiota may serve a similar
function.61–63 A recent study by St Leger et al.64 demon-
strated that Corynebacterium mastitidis stably colonizes
the ocular surface and also described a cellular mecha-
nism by which this organism evokes an interleukin-17
response from cd T-cells in the ocular mucosa; this, in
turn, promoted neutrophil recruitment and the release of
tear antimicrobials that protected against Candida albicans
or Pseudomonas aeruginosa infection. Another study by
Kugadas et al.65 found that depletion of ocular surface
commensals increased susceptibility to P. aeruginosa ker-
atitis in mice, and also found that these microorganisms
– especially coagulase-negative staphylococci – regulate
the recruitment of neutrophils to ocular tissues. The use
of topical probiotics to modulate immune responses at
the ocular surface has been proposed, but scant research
exists on this topic. In a small pilot study, patients with
vernal keratoconjunctivitis receiving a topical
Lactobacillus acidophilus formulation showed clinical
improvement after four weeks of use.66 Research on top-
ical probiotics faces obstacles comparable to studies of
other probiotic applications, including the challenge of
standardizing probiotic therapies across multiple
research groups; without standardization of the strains
used in these therapies, it is more difficult to build con-
sensus about their efficacy as new evidence
becomes available.

Other groups have explored the role of the ocular sur-
face microbiota in dry eye and related diseases. Although
many studies have found that patients with dry eye exhibit
higher bacterial loads than healthy subjects, evidence
is mixed as to whether their microbiotas are comprised of
significantly different bacterial taxa.67–71 One study
employing 16S rRNA assays found that tear samples
from blepharitis patients contained decreased levels of
Propionibacterium spp., leading the authors to speculate
whether members of this genus might be protective against
blepharitis. The authors identified Propionibacterium,
Staphylococcus, Streptophyta, Corynebacterium, and
Enhydrobacter as the most common genera at the ocular
surface in both healthy individuals and patients with ble-
pharitis, although the tears of blepharitis patients demon-
strated higher levels of Staphylococcus, Streptophyta,
Corynebacterium, and Enhydrobacter compared to healthy
subjects.72 These findings suggest a possible role for dys-
biosis in the pathogenesis of blepharitis. While a later study
found no significant differences in bacteria cultured from
patients with blepharitis when compared to healthy con-
trols, the poor cultivability of microbes at the ocular surface
suggests 16S rRNA assays should be favored over culture-
based techniques.73 Where changes have been observed in
the ocular surface microbiota of dry eye patients, it remains
unclear whether these shifts contribute to pathogenesis or
are consequences of an altered mucosal ecosystem.68

Extraocular microbiotas and
ophthalmic disease

As evidence accumulates about the ways microbiotas reg-
ulate immune and metabolic homeostasis across multiple
organ systems, several groups have identified links
between ophthalmic diseases and microbiotas in the gut
or oral cavity. Most of this research has concentrated on
autoimmune uveitis, AMD, and POAG. We explore current
evidence regarding these three conditions in greater detail,
followed by a brief discussion about other ophthalmic dis-
eases that have been associated with extraocular
microbiotas.

Autoimmune uveitis

Evidence from animal studies has suggested that gut com-
mensals are involved in the pathogenesis of autoimmune
uveitis. In one of the earliest studies on the topic, Lin et al.74

compared the cecal microbiota of rats transgenic for
HLA-B27 and human b2-microglobulin to the microbiota
of wild-type controls using a technique known as ‘biome
representational in situ karyotyping’ in conjunction with
16S rRNA gene sequencing. The authors found increased
abundance of Paraprevotella spp. and Bacteroides vulgatus
in these transgenic rats compared to controls, as well as
decreased abundance of the family Rikenellaceae.
Although these findings suggested that the gut microbiota
may be involved in the development of autoimmune uve-
itis, the mechanisms underlying this potential involvement
remained unclear. Early hypotheses proposed that inflam-
mation at the intestinal mucosa may increase gut perme-
ability and facilitate the translocation of microbes (or
microbial by-products) that incite ocular inflammation,
either through direct effects on the eyes or indirectly via
molecular mimicry and immune sensitization.75

Subsequent research has provided intriguing clues
about the immunomodulatory effects of the gut microbiota
and their relationship to autoimmune uveitis. Employing a
transgenic mouse model for autoimmune uveitis where
T-cells are sensitized to a known uveitogenic ocular anti-
gen, Horai et al.76 found that germ-free transgenic mice and
transgenic mice treated with a broad-spectrum oral
antibiotic cocktail had delayed onset of disease; however,
introduction of germ-free animals to a conventional envi-
ronment was observed to cause uveitis.77 Injection of T-cells
cultured from these transgenic mice into wild-type mice
caused uveitis, but this effect was only observed if the
T-cells were cultured in the presence of intestinal extracts.
Although the study did not implicate specific microbes or
microbial by-products in the activation of cross-reactive
T-cells, a later report by the same group suggests that
multiple populations of microbes may be providing these
pro-inflammatory signals, as partial ablation of the gut
microbiota with single antibiotic agents yielded smaller
reductions in disease severity compared to mice treated
with the broader-spectrum cocktail.78

Reports from other research groups have complemented
these findings. For instance, Heissigerova et al.79 found that
germ-free mice were protected from experimentally
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induced autoimmune uveitis, as were mice treated with
oral antibiotics one week before induction of uveitis was
attempted. Similarly, Nakamura et al.80 found that mice
with induced autoimmune uveitis had different profiles
of gut commensals compared to controls, with differences
becoming more prominent as the uveitis continued; they
also found that oral antibiotics reduced the severity of uve-
itis by increasing regulatory T-cell presence in the retina
and decreasing levels of both effector T-cells and cytokines
in peripheral lymphoid tissue. In a later report, the same
group employed transgenic mice carrying a fluorescent
protein marker to demonstrate for the first time that lym-
phocytes migrate between the gut and eye in uveitis.81

Interestingly, the authors also report that supplementation
with exogenously produced short chain fatty acids – which
are known metabolites of gut bacteria – reduced disease
severity in mice with uveitis, potentially through the induc-
tion of regulatory T-cells in the gut and the suppression of
effector T-cells.81 This finding suggests that loss of certain
commensal organisms from the intestinal microbiota may
promote uveitis, as they are no longer secreting anti-
inflammatory metabolites.

Work is currently underway to expand upon findings
from animal models and explore whether the gut micro-
biota influences the development of autoimmune uveitis
in humans. Reporting preliminary data from an ongoing
study, one group found that the overall diversity of intes-
tinal microbes was not significantly different between
human patients with uveitis (predominantly posterior uve-
itis) and healthy controls; patients did show increased frac-
tions of Fusobacterium spp. and members of the family
Enterobacteriaceae compared to controls, while one genus
detectable in over half of the control subjects, Prevotella, was
undetectable in the rectal fluids of patients.82,83 These find-
ings diverge from earlier reports that rats transgenic for
HLA-B27 had increased levels of Paraprevotella, a genus
related to Prevotella.74 Another recent study by Huang
et al.84 found a similar composition of gut microbiota in
human patients with acute anterior uveitis and healthy
controls, although differences in the microbial metabolites
isolated from fecal samples suggest a possible association
between uveitis and the metabolic phenotype of the micro-
biota. Specifically, the authors note increased levels of lin-
oleic acid and azelaic acid in rectal samples taken from
uveitis patients; in contrast to animal data reported by
Nakamura et al.,81 no association was identified between
uveitis and short chain fatty acids. With these human stud-
ies, it is important to bear in mind that patients are often on
immunosuppressive regimens and that differences in
microbiota may represent the effects of treatment.83

These findings suggest that strong associations exist
between the gut microbiota and autoimmune uveitis,
although much work remains to characterize the precise
mechanisms responsible for those associations. As with
other disease states that have been linked to the gut micro-
biota, future research may lead to therapeutic approaches
that act directly on commensal microorganisms such as
antibiotics, probiotics, dietary modifications, or perhaps
even microbiota transplantation.82,85,86

AMD

The influence of extraocular microbiotas on AMD patho-
genesis is another promising area of research that has
grown in recent years, although early reports lack consen-
sus as to specific microbes (or patterns of microbial activity)
that may be implicated in this disease. One study by
Zinkernagel et al.87 found that patients with neovascular
AMD had gut microbiotas that were enriched with
Anaerotruncus spp., Oscillibacter spp., Ruminococcus torques,
and Eubacterium ventriosum, while the microbiotas of
healthy controls were enriched with Bacteroides eggerthii,
which may be protective against immune-mediated dis-
ease.88 This study also found differences in bacterial
genes related to a variety of metabolic pathways, including
a decreased proportion of genes involved in fatty acid elon-
gation and enrichment of genes related to L-alanine fer-
mentation, glutamate degradation, and arginine
biosynthesis. The authors acknowledge that functional
assays of microbial transcription or metabolism are
needed to confirm these findings and explore their impli-
cations for AMD.

Reporting preliminary data from another case–control
study, Lin’s group found increased abundance of
Prevotella spp. and decreased abundance of the family
Rikenellaceae in the gut microbiota of AMD patients com-
pared to controls; in contrast to Zinkernagel et al.,87 the
authors also report that the family Ruminococcaceae had
decreased abundance in AMD patients.82 These findings
mirror the group’s earlier report of increased
Paraprevotella and Rikenellaceae in rats with experimen-
tally induced uveitis.74 Lin’s82 group also identified several
alterations of microbial metabolic pathways that may be
involved in AMD pathogenesis, and they report shifts in
bacterial abundance following administration of a vitamin
cocktail that is widely used for the management of AMD.89–
91 Further research is needed to determine the significance
of these metabolic pathways in AMD and evaluate whether
manipulation of the gut microbiota could be a useful addi-
tion to established therapies.

Beyond the use of vitamins in treating AMD, there has
been broader interest in the role of nutrition in the devel-
opment and control of this disease.92–94 The possibility that
gut commensals may mediate some of these associations
was suggested by early research with germ-free mice,
which showed altered retinal lipid metabolism compared
to conventional controls.95 To date, two studies have inves-
tigated how connections between diet and AMD may be
mediated by the gut microbiota. One study by Andriessen
et al.96 found that mice with choroidal neovascularization
(CNV) exhibited greater disease severity when fed a high-
fat diet; however, oral treatment with a broad-spectrum,
non-gut permeable antibiotic reduced the rate of CNV to
the level seen in regular diet controls. Transplant of the gut
microbiota from regular diet mice into high-fat diet mice
also reduced the rate of CNV. These findings are consistent
with research by Skondra et al.97 demonstrating that high-
fat diet worsens the severity of CNVand dry AMD features
in mice, especially in the presence of genetic predisposition.
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Another study by Rowan et al.98 observed that mice fed a
high-glycemic-index diet were more prone to develop his-
tologic features of dry AMD than those fed a low-glycemic-
index diet and found that both the composition and meta-
bolic activity of the gut microbiota were significantly dif-
ferent between these two groups. The authors report that
serotonin, a known microbial metabolite, was negatively
associated with retinal damage scores; several other micro-
bial metabolites were elevated in low-glycemic-index mice
and showed negative associations with AMD features,
lending support to the possibility of a ‘gut–retina axis’
that underlies relationships between diet and AMD.99

Interestingly, crossover of mice from a high- to low-
glycemic-index diet reduced the prevalence of AMD fea-
tures and restored the gut microbiota to the population
observed in low-glycemic-index mice, suggesting this die-
tary intervention ought to receive further study in human
patients. Continued investigation of the gut microbiome
could reveal unknown aspects of AMD pathogenesis and
potentially yield new therapeutic targets and strategies.
As a prelude to human studies, gnotobiotic animal
models would be especially valuable for researchers
attempting to identify whether certain profiles of micro-
biota promote or protect against AMD.

Although most research on the role of microbes in AMD
pathogenesis has focused on the intestinal microbiota,
some groups have turned their attention to other anatom-
ical sites. A recent case–control study by Ho et al.100 sug-
gests that oropharyngeal microbes may be involved in this
disease, with genomic assays of throat swabs taken from
patients with advanced AMD showing enrichment of
Streptococcus spp. and Gemella spp. when compared to
healthy controls; the genus Prevotella exhibited decreased
abundance in patients with advanced AMD, contrasting
against reports that this genus is enriched in the gut micro-
biota of AMD patients.82 The relative abundances of bacte-
rial taxa in early AMD patients were more similar to
controls, leading the authors to propose that the extent of
oropharyngeal dysbiosis may correlate with disease pro-
gression. As with studies of the intestinal microbiota, a
need exists for prospective, longitudinal studies that can
test these preliminary findings.

POAG

A few groups have explored the possible influence of the
oral microbiota on POAG. One study found that patients
with glaucoma had higher levels of bacterial 16S rRNA in
oral samples; the authors also found that peripheral injec-
tion of bacterial lipopolysaccharide increased axonal
degeneration and neuronal loss in two separate animal
models of glaucoma, likely through upregulation of TLR4
and complement signaling that in turn induce microglial
activation in the retina and optic nerve head.101 A prospec-
tive cohort study found that tooth loss within the preceding
two years, particularly in the setting of severe periodontal
disease, was associated with a transiently increased risk of
POAG.102 A subsequent case–control study found an
inverse association between POAG and the number of nat-
ural teeth, and noted that Streptococci 16S rRNA levels were

higher in the saliva of POAG patients compared to controls
– although these levels were not significantly correlated
with visual field damage.103 Taken together, these studies
suggest that the oral microbiota may be involved in glau-
coma pathogenesis. Additional research is needed to
understand the clinical implications and exact mechanisms
of this relationship.

Although much of the research on POAG and other glau-
coma variants has focused on the oral cavity, microorgan-
isms found throughout the gastrointestinal tract have been
proposed as potential modulators of these complex disease
states. Gupta,104 for instance, has conjectured whether the
gut microbiota could affect the production of neuroprotec-
tive factors that in turn promote the survival of retinal gan-
glion cells. Research from several groups also suggests a
possible relationship between glaucoma and Helicobacter
pylori, a non-commensal colonizer of the gastrointestinal
tract.105,106 An early study by Kountouras et al.107 found
that successful H. pylori eradication improved intraocular
pressure and visual field measurements in patients with
chronic open-angle glaucoma. A more recent meta-analysis
by Zeng et al.108 identified that H. pylori carriage was asso-
ciated with increased risk of open-angle glaucoma and
normal tension glaucoma, but was not associated with glau-
coma secondary to pseudoexfoliation syndrome. Several
mechanisms for these associations have been proposed,
including remote effects of reactive oxygen species and
inflammatory cytokines that may travel from the gastric
mucosa to the optic disc or trabecular meshwork,105,109 pos-
sible cross-reactivity of H. pylori IgG antibodies with ocular
tissues,110 and even intraocularH. pylori colonization as sug-
gested by the intriguing presence of this microbe on histol-
ogy of trabeculectomy specimens.111 Nevertheless, the
involvement of H. pylori in glaucoma pathogenesis remains
controversial with wide variability of diagnostic criteria
among existing studies as well as other groups reporting
no significant association with either pathogenic or non-
pathogenic strains of this organism.112

Other conditions

Several other ophthalmic disease states have been linked to
the extraocular microbiota. Some of this research has
focused on diseases of the ocular surface. Using a mouse
model for Sj€ogren’s syndrome, one study found an inverse
association between disease severity and the diversity of
the fecal microbiota.70 Kugadas et al.65 found that depletion
of gut commensals (without alteration of the ocular surface
microbiota) was associated with decreased neutrophil
response to P. aeruginosa as well as increased susceptibility
to P. aeruginosa keratitis. Other research has explored pos-
sible associations between H. pylori and a range of ophthal-
mic diseases beyond glaucoma.105 A study by Sacca et al.113

found that individuals with blepharitis were more likely to
carry H. pylori than healthy controls; blepharitis also
improved in about half of patients undergoing H. pylori
eradication, although the authors caution that the antibiot-
ics themselves may have mitigated blepharitis via their
intrinsic anti-inflammatory properties or effects on the
ocular surface microbiota.
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Despite abundant evidence that the gastrointestinal
microbiota is involved in diabetes pathogenesis at a sys-
temic level, a longstanding gap existed in research on rela-
tionships between gut commensals and diabetic
retinopathy.114 A recent study by Beli et al.115 marks a break-
through in the field with the first report of a concrete asso-
ciation between the gut microbiota and this disease. Using a
mouse model for type 2 diabetes, the authors compared
retinal histology of mice placed on an intermittent fasting
diet to those fed ad libitum; mice on the ad libitum diet devel-
oped classic features of diabetic retinopathy, such as acel-
lular capillaries and infiltration of inflammatory cells, while
intermittent fasting mice did not experience these changes
and exhibited retinal histology similar to non-diabetic con-
trols. These effects were observed even though intermittent
fasting mice had glycated hemoglobin levels identical to
those fed an ad libitum diet. Intermittent fasting mice also
displayed restructured gut microbiota composition, with
an increased ratio of Firmicutes to Bacteroidetes on 16S
rRNA assays. Furthermore, intermittent fasting mice
showed alterations in bacterial metabolites including a sig-
nificant increase in levels of taurochenodeoxycholate
(TUDCA), a bile acid metabolite with known anti-
inflammatory effects.116 TUDCA is an activator of TGR5,
a widely expressed G protein-coupled receptor that the
authors found to be expressed in the retinal ganglion cell
layer. Although neither diabetes nor diet was associated
with changed TGR5 expression, intermittent fasting mice
did exhibit decreased levels of TNF-a (a downstream target
of TGR5) and were protected from diabetic retinopathy
when TGR5 was pharmacologically activated. These
experiments provide strong evidence that intermittent fast-
ing prevented diabetic retinopathy through alteration of the
gastrointestinal microbiota and bacterial metabolism.
Further research is needed to distinguish these effects
from other ways that intermittent fasting may protect
against diabetic retinopathy, such as the reduction of oxi-
dative stress.117

Summary and future directions

We are presently at an important juncture in microbiome
research, both within ophthalmology and beyond. Building
on refinements in experimental technique over the past
decade, researchers have been able to characterize the com-
position and function of microbiotas with increasingly fine
detail. New assays and bioinformatics methods allow
researchers to analyze host–microbiota interactions at
deeper levels, and large-scale longitudinal studies enable
more robust claims about the influence of microbiotas on
pathogenesis. Clinical trials have been crucial as research-
ers explore microbiotas as potential biomarkers and test
hypotheses about manipulating microbiotas to prevent or
treat disease.118

As we review here, many provisional findings have been
made about the roles that microbiotas may play in ophthal-
mic disease. Nevertheless, relative to other fields, investi-
gators in ophthalmology have just begun to study the
microbiome. Echoing prior reviews on this topic, we

believe much work remains to develop these early insights
into clinically relevant interventions.41,45,119

A key challenge for investigators in ophthalmology will
be to harness methods from the wider field of microbiome
research. For instance, what can we learn by profiling the
transcriptional activity, protein expression, and metabolic
by-products of microbiotas? Functional measures are espe-
cially important for studying the ocular surface: given the
antimicrobial stresses that exist at this site, these techniques
may help establish whether organisms are transiently pre-
sent and quickly inactivated or whether they persist and
form stable, active communities. In studying any site –
ocular or extraocular – functional measures can help clarify
how microbial metabolites and other by-products contrib-
ute to host biology. Gnotobiotic animal models have also
been important tools in microbiome research,1 yet they are
currently underutilized by ophthalmology investigators;
incorporating these models into future studies would be
valuable as researchers build upon recent findings. By
exploring new experimental techniques, investigators in
ophthalmology will continue to build a foundation of
basic science and observational research that could support
the design of larger scale clinical trials.

In addition to the conditions that have been investigated
thus far, it is possible that many other ophthalmic diseases
may be associated with changes in ocular and extraocular
microbiotas. There are also many ophthalmic interventions
that may have the potential to affect the ocular surface
microbiota, but that have not received study. For example,
what effects might intravitreal medications such as anti-
vascular endothelial growth factor agents have on microbes
at the ocular surface? How do these organisms respond to
topical immunomodulating agents such as cyclosporine
and to systemic immunomodulation? The responses of
the ocular surface microbiota to these and other common
ophthalmic therapies will be important for future investi-
gators to characterize. Finally, unconfirmed reports that
intraocular bacteria have been detected in patients with
glaucoma111 and AMD120 bear further scrutiny. While it is
premature to infer the existence of a distinct intraocular
microbiota from such reports, their substantiation would
raise further questions about the mechanisms of entry
and pathogenic significance of these organisms.

This is a moment of great opportunity and excitement
for microbiome research in ophthalmology. The work we
review here provides compelling arguments that ocular
and extraocular microbiotas contribute to common oph-
thalmic pathologies; although the mechanisms of these
associations are just now coming into focus, the ground-
work has been laid for future exploration into the diag-
nostic, therapeutic, and preventative significance of these
microbial communities. Continued progress in this field
may lead to a new era in ophthalmology by providing
us with novel ways of understanding and managing
ophthalmic disease.
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