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Abstract
Advances in high-throughput sequencing have ushered in a new era of research into the gut

microbiome and its role in human health and disease. However, due to the unique charac-

teristics of microbiome survey data, their use for the detection of ecological interaction

networks remains a considerable challenge, and a field of active methodological develop-

ment. In this review, we discuss the landscape of existing statistical and experimental

methods for detecting and characterizing microbial interactions, as well as the role that

host and environmental metabolic signals play in mediating the behavior of these networks.

Numerous statistical tools for microbiome network inference have been developed. Yet due

to tool-specific biases, the networks identified by these methods are often discordant,

motivating a need for the development of more general tools, the use of ensemble

approaches, and the incorporation of prior knowledge into prediction. By elucidating the

complex dynamics of the microbial interactome, we will enhance our understanding of the

microbiome’s role in disease, more precisely predict the microbiome’s response to pertur-

bation, and inform the development of future therapeutic strategies for microbiome-

related disease.
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Introduction

By the time the initial phase of the Human Microbiome
Project (HMP) drew to a close in 2014, it had become
widely accepted that the human gut microbiome plays a
dramatically underappreciated role in human health and
disease. Similar international projects by the Beijing
Genomics Institute, the American gut project, and the EU-
fundedMetaHIT have also punctuated growingworldwide
interest in the human microbiome. The insights gained
from these projects, along with advances in immunology,
high-throughput metagenomic sequencing, and the

development of statistical and computational tools for
processing these data, have made large-scale analysis of
microbial communities possible in a way they have never
been before, spawning considerable excitement in the
microbiome among scientists and nonscientists alike.
Sometimes referred to as the “last organ”1 or the “forgotten
organ,”2 the humanmicrobiome could be considered one of
the last active frontiers of human physiology.3

Recent work has drawn fascinating connections between
changes in human microflora and a breadth of human dis-
eases and conditions. Microbiota have been shown to play
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an important role in gastrointestinal and related diseases
such as obesity,4,5 diarrhea,6 diabetes,7 irritable bowel syn-
drome (IBS),8 inflammatory bowel disease (IBD),9,10 and
colorectal cancer.11 Even more surprising, researchers are
beginning to identify unexpected associations between the
gut microbiome and neurological disorders such as
autism,12,13 schizophrenia,14 Parkinson’s disease,15 as well
as depression.16 While in many cases, the mechanisms of
such associations remain murky, there are indications that
therapeutic interventions such as fecal transplants and pro-
biotics may be effective in reducing the symptoms of many
of these disorders.17–19 Yet in clinical trials, many probiotics
have failed to produce positive results, for conditions
including eczema,20 diarrhea,21 and gastroenteritis.22,23

Critically absent from the design of these clinical trials is
an adequate understanding of how probiotic therapies
affect the microbiome on a systems-level, which would
ostensibly guide species selection, dosing regimens, and
even the engineering of healthier gut microbiomes.

Put another way, our current knowledge of both com-
mensal and pathogenic microbes remains primarily
restricted to pairwise interactions. While the behaviors
and mechanisms of specific organisms have become well
documented, a thorough characterization of the multispe-
cies interaction network and its dynamics remains elusive.
In addition to providing valuable insight into the biological
function and significance of specific species, a more com-
prehensive and quantitative map of microbiome interac-
tions will lead to a more detailed and systemic
understanding of the ways that shifts in the composition
of the microbiome can shape human health. Such knowl-
edge will facilitate the identification of novel therapeutic
interventions and inform the rational design of treatment
regimens. Ultimately, a complete and quantitative under-
standing of the gut microbiome’s interaction dynamics will
allowmore precise manipulations, with the ultimate goal of
engineering healthcare solutions to microbiome-associated
diseases. It is therefore important to define the behavior
and function of the human microbiome using a systems-
biology approach, by refocusing experimental and analyt-
ical strategies on multivariate interactions between species.

The mapping of many canonical human gene pathways
was established through careful experimentation over sev-
eral decades, and these have been validated through com-
putational modeling, network inference, and other tools
from systems biology. Such networks have been con-
structed effectively using a variety of established statistical
approaches, such as Bayesian networks, neural networks,
and graphical Gaussian models.24,25 Yet due to inherent
differences in the way that microbial survey data are col-
lected and reported, many of these strategies have proven
inadequate or inapplicable in the context of microbial net-
work inference. This is due in part to the fact that the
number of reads identified by 16S or shotgun metagenomic
sequencing varies independently of overall microbial abun-
dance. As a result, microbiome data for a particular sample
are typically presented as relative abundances, or
“compositions” which sum to one.26,27 Additionally,
because microbial content varies between samples and
the abundance of some microorganisms is often below the

limit of detection, microbiome sample data contain a large
portion of zeros, and are therefore highly sparse. These
characteristics of microbiome survey data mean that stan-
dard methods of analyzing multivariate data are likely to
be ineffectual and statistically untenable.28–30

Although the microbiome field has seen experimental
methods, computational tools, and available data prolifer-
ate enormously over the last decade, statistical and exper-
imental methods for microbial network inference remain
under active development. As these networks are devel-
oped, a more comprehensive understanding of the gut
microbial ecosystems will emerge, providing new opportu-
nities for precisely and predictably altering the human
microbiome. In this mini-review, we will summarize vari-
ous statistical and experimental approaches to mapping
and analyzing microbial interaction networks. In doing
so, we will discuss some of the prominent challenges and
directions for improvement that must be considered as the
field of systems microbiology develops.

Ecology meets network theory

Ecological relationships in the microbial interactome can be
generalized using network theory, a set of mathematical
concepts describing relationships between discrete entities.
A network essentially consists of a set of “nodes,” which
are interconnected by “edges.” Applied to microbial ecolo-
gy, the nodes of a microbial interaction network represent
species or operational taxonomic units (OTUs), while the
edges denote functional interactions between them.
Although the mechanisms of these microbial interactions
can be extraordinarily complex, they can still be character-
ized using familiar ecological terminology.

The nature of an ecological relationship between
microbes is typified by the harmful or beneficial growth-
rate effect that each microbe has on its interaction partner.
Microbes can have a net negative or positive impact on one
another by producing or consuming resources, but also by
manipulating their environment, such as through modula-
tions in pH.31 Microbes competing for metabolites and
macromolecules have a mutually negative effect on one
another (competition), while interaction partners produc-
ing mutually beneficial metabolites or environmental con-
ditions both benefit (mutualism). They can also exhibit
opposite effects on one another, such as in predator–prey
relationships, in which one interactor benefits, while the
other suffers (parasitism). Lastly, interactions can occur in
which one microbe is unaffected, while the other is exclu-
sively helped (commensalism) or harmed (amensalism).
Networks are useful ways to model these forms of ecolog-
ical relationships between microorganisms.

Typically, the ecological effect of one microorganism on
another can be described by the sign of the interaction (e.g.
positive, negative, or neutral) and the magnitude of the
interaction (e.g. strong, weak). The bidirectional ecological
relationship between microbes can thus be described using
a coordinate pair (x, y) on a Cartesian grid (Figure 1), where
x represents the net effect of microorganism A on microor-
ganism B, and y represents the net effect of microorganism
A on microorganism B. As reviewed by Faust et al.,32 this
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mathematical framework thus analogizes the five familiar
ecological interaction mechanisms, wherein microbes exert
mutual effects on one another: competition (–,–), mutual-
ism (þ,þ), parasitism (þ,–), commensalism (þ,0), and
amensalism (0,–). Each of these network formalisms have
interpretable graphical representations, which are shown in
Figure 1.

These bidirectional ecological interactions fit nicely into
mathematical framework of networks, allowing further
characterization of network models of ecological interac-
tions. In graph and network theory, networks are typified
by the edges they contain. A network is called “weighted,”
if we can quantify the strength or magnitude of a given
interaction (Figure 2(a)), and “signed” if the weights can
take on both positive and negative values (Figure 2(b)). A
weighted, signed network is classified as “directed” if the
relationships can be described in terms of source and target
(or cause and effect) using the aforementioned coordinate
pair (x, y). Directed edges are typically represented by
arrows that designate the source and target of an interac-
tion (Figure 2(c)). Undirected networks, however, merely
describe mutually positive or negative ecological relation-
ships such as mutualism or competition, but do not delin-
eate the direction of causality for either interactor,
rendering commensalism indistinguishable from mutual-
ism, amensalism indistinguishable from competition, and
the presence of parasitism largely ambiguous. Only direct-
ed networks that are weighted and signed are capable of
describing all five forms of ecological interactions men-
tioned above.

While the concepts of ecological interactions are
straightforward in principle, their precise detection of

ecological interactions in experimental data remains a sig-
nificant challenge in the field of microbial network infer-
ence.32 When network inference is the goal of microbial
data acquisition, the experimental design depends largely
onwhether one’s objective is to construct a directed or undi-
rected network. Approaches for identifying interactions in
gut microbial ecosystems can thus be broadly classified by
their underlying experimental design. Cross-sectional
microbiome data, which consists of static snapshots of mul-
tiple individuals, can be used to detect or predict interac-
tions, while longitudinal data, which involves repeated
time-series measurements of one or more individuals, can
be used to clarify the ecological mechanisms of such inter-
actions. Broadly speaking, undirected, signed, and weight-
ed microbial interaction networks can be inferred
from cross-sectional sampling of metagenomic data, while
directed network inference requires the collection of time-
series, or longitudinal data.33,34

Cross-sectional methods for detecting
microbial interactions

Undirected, weighted interaction networks, which may
indicate positive or negative associations but not causal
relationships, can be constructed using a variety of meth-
ods. Broadly speaking, these statistical methods are classi-
fied as parametric if they assume adherence to a particular
statistical model, or non-parametric if they do not. The sim-
plest and most familiar way to quantify the strength of
interactions is using their correlation, and in most data
analysis pipelines, the standard parametric statistic for cal-
culating correlation is covariance.While the computation of

Figure 1. The Cartesian plane of pairwise ecological interactions. Ecological interactions between pairs of microorganisms can be characterized by an (x, y) coor-

dinate pair on a Cartesian plane, where x denotes the effect of microbe A on microbe B, and y characterize the effect of microbe B on microbe A. The sign of x and y

denotes whether the effect of the interaction is positive or negative, while the magnitude denotes the strength of the effect. Classically defined ecological relationships

of mutualism (þ,þ), competition (–,–), and parasitism (þ,–) fall into the four quadrants, while amensalism (–,0) and commensalism (þ,–), in which one organism is

unaffected, lie along the axes. Weighted, undirected ecological networks only capture mutually positive or negative relationships such as competition and mutualism,

and are therefore constrained along the diagonal, such that x¼ y.
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covariance itself is straightforward under normal condi-
tions, doing so for microbiome data remains a substantial
challenge. Being compositional, data describing the propor-
tions of species in microbial surveys are normalized such
that the total abundance of a sample sums to a constant
value. The result of this normalization is that an increase
in the proportion of Firmicutes, all else held equal, is inher-
ently coupled with an apparent decrease in the proportion
of all other phyla, resulting in spurious negative correla-
tions by many common statistical methods.35 Biases stem-
ming from compositional effects and sparsity plague
standard covariance metrics in these cases, motivating the
development of alternative statistical methods for estimat-
ing covariance in compositional microbiome data.28,29 Since
the overall microbial load of these populations cannot be
measured directly, special statistical methods for estimating
the covariance matrix must be used instead of calculating
it directly.

A handful of parametric statistical methods for inferring
the true covariance matrix in compositional microbiome
data have been implemented as software programs, many
of which are summarized in Table 1. One of the earliest
such methods, SparCC,30 estimates the covariance using
an iterative bootstrap selection procedure. Although
designed to assume high data sparsity, it underperforms

when sample diversity is high, and is prone to false nega-
tives when the true number of true microbial interactions is
large. Another approach, SPIEC-EASI,36 uses Aitchison’s
centered log-ratio (CLR), a common compositional data
transform, and performs well on datasets with high diver-
sity. SPIEC-EASI has been expanded to allow for cross-
domain associations, such as between bacteria and
fungi.37 Other parametric methods use a regression
method known as LASSO, a statistical technique that in
this context, penalizes excessively complex microbial inter-
action networks. In particular, CCLasso38 and REBACCA39

show improved covariance estimation performance using
this technique. Another LASSO-based method, BAnOCC,40

uses a Bayesian approach to estimate covariance, and thus
has the benefit of providing uncertainty quantification for
network predictions. Finally, MPLasso41 attempts to incor-
porate biological prior knowledge into its LASSO
approach, by performing automated text-mining of
PubMed abstracts to improve performance. Approaches
that leverage the existing literature of microbe-microbe
interactions are likely to be decisive in the construction
and validation of microbial interaction networks.

Although these parametric methods for estimating
covariance benefit from interpretability and utility for
downstream data analysis, they, like direct covariance

Figure 2. Network abstractions of the microbial interactome. (a) Weighted networks characterize the strength of an interaction, but do not indicate whether the

interaction is mutually positive or negative. Interactions characterized by non-linear relationships take this form. (b) Signed microbial interaction networks denote both

the strength and direction of correlations betweenmicrobes, but do not indicate a causal relationship. Such networks are typically produced from cross-sectional data.

(c) Directed microbial networks characterize source and target of an interaction, indicating a causal relationship. Such networks can be described using the ecological

terms in Figure 1, and are typically produced from longitudinal (time-series) data. (d) Interactions between microorganisms are largely mediated by metabolites and

macromolecules, which may be consumed or produced as a food source or waste. (e) Host cells play an important role in the microbial ecosystem. Host cells may

affect the growth of microbes by secreting metabolites or antibiotics. Microbes break down and produce metabolites and macromolecules like short-chain fatty acids,

which act as an energy source, and promote the differentiation of host cells in turn. (f) Environment-mediated microbial interaction networks contain context-

dependent edges. These variables may conditionally alter the topology and dynamics of the microbial interaction networks.
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calculation methods, are only reliable for detecting linear
dependencies between microbes.38 Other non-parametric
strategies of identifying non-linear interactions between
microbes have been proposed. For example, mutual infor-
mation measures such as MIC42 rely on a measure of asso-
ciation borrowed from information theory to predict
functional relationships between variables. A major advan-
tage of MIC has over parametric methods is its ability to
capture a broad range of non-linear microbial relationships.
It does so by measuring the degree of noise present in
potential interactions, rather than the shape of the interac-
tion function itself. This approach revealed that co-
exclusionary relationships represent a highly common
association type between microbiota, as well as that many
of the strongest non-linear relationships were dependent
on external factors such as diet, sex, and collection
method. Another non-parametric approach, LSA,43 was
developed for identifying interactions among marine bac-
terioplankton, and is also capable of detecting non-linear
dependencies between microbes. Although LSA was
designed with a focus on time-series data, this method
can generate undirected networks from static data if the
time-delay parameter is set to zero. An expansion of this
method, eLSA,44 was developed for time-series with repli-
cates, as well as for approximating the statistical signifi-
cance of its inferred relationships.45 Another non-
parametric tool, MENA,46 was developed for characteriz-
ing microbial interactions in soil, and is highly robust to
noise.34 MENA is based on methods from random matrix
theory, a set of statistical tools borrowed from physics.
Although non-parametric methods are capable of captur-
ing noisy and highly non-linear microbial interactions, they
do not necessarily indicate whether microorganisms are
positively or negatively associated, and therefore may
only capture the magnitude of an interaction. This means
that while non-parametric methods may predict a broader
range of microbial interactions, the nature of these interac-
tions may be ambiguous or difficult to model.

While both parametric and non-parametric methods are
capable of capturing broad ranges of ecological relation-
ships, it is unlikely that any one method is general
enough to detect them all, or even detect them with similar
efficiency.42 Researchers must decide on which tool is right
for their application, or otherwise rely on a combination of
methods. A comprehensive meta-analysis of microbiome
correlation metrics by Weiss et al.34 showed that precision
of network inference could be dramatically improved by
the use of ensembles. Because different statistical tools
make different mistakes, relying on consensus across
tools may be a powerful way to improve the accuracy of
microbiome interaction networks. For example, CoNet47

combines multiple parametric and non-parametric similar-
ity measures with generalized boosted linear models to
predict microbial network interactions. As a result, it has
a significantly lower false positive rate than other cross-
sectional methods.34 CoNet has been used to identify inter-
actions between species in the skin microbiome,48 as well as
among pathobionts associatedwith cancer cachexia.49 Since
it is integrated with the network visualization software

Cytoscape, users quickly and easily construct and analyze
microbial interaction networks

Despite the number of correlation methods available for
inferring microbial interaction networks, there remains
considerable room for improvement. The meta-analysis of
eight such methods byWeiss et al.34 revealed an astonishing
degree of variation in the sensitivity and precision of these
tools. On average, methods shared less than a third of pre-
dicted interactions. Furthermore, they showed that preci-
sion depended greatly on the sequencing technology used,
and that normalization choices have a significant impact on
edge detection. Next, Weiss simulated several linear eco-
logical relationships to compare tool detection perfor-
mance. While nearly all methods surveyed were able to
detect mutualism and commensalism, amensalism and par-
asitism were nearly undetectable by the majority of tools.
Most concerning, however, was that precision was near
zero for datasets with more than 50% sparsity. This sug-
gests that abundance filtering is an important first step
for detecting correlations between microbes, and that net-
work inference for low-abundance OTUs remains an
important area for improvement. Overall, they found that
LSA, MIC, and SparCCwere the most robust to distribution
shape. SparCC performed best in cases where composition-
ality was high, while LSA did well at capturing both linear
and non-linear ecological relationships, even under sparse
conditions. LASSO-based methods were not tested, indicat-
ing that further work must be done to understand how the
LASSO technique performs relative to previously described
methods. However, the analysis did demonstrate that
ensemble methods show promise in improving precision,
particularly for highly sparse datasets. Until sufficiently
general methods can be developed, combining methods
with complementary strengths appears to be the best way
to improve edge detection for microbial network inference.

Longitudinal methods for detecting microbial
interactions

Fundamentally, all inference procedures for directed net-
works are concerned with determining causal relationships
between discrete entities. Directed networks typically
require longitudinal measurements to infer the source
and target of a pairwise microbial relationship. Such meth-
ods are expected to be highly important for advancing
dynamic models of microbial interactions,50 and may lead
to highly precise manipulations of microbial ecosystems.
Generally speaking, longitudinal data provide significantly
more information on the dynamics of microbial interaction
networks than cross-sectional methods. This is because
even if the same number of replicates for a cross-sectional
study is taken as timepoints for a longitudinal one, the abil-
ity to chronologically arrange discrete snapshots of micro-
bial data allows the relational ordering of ecological events.
Temporal tracking of blooms and busts in microbial popu-
lations thus facilitates the inference of directed microbial
interaction networks, as time-delays can be used to indicate
causal relationships. A summary of statistical tools for lon-
gitudinal network inference can be found in Table 2.
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While true causality can only be determined using con-
trolled experimentation,56 mathematical definitions of cau-
sality have been applied for predicting causal relationships
from time-series data by comparing the histories of related
entities.57,58 One statistical tool for causal inference is
Granger causality,59 which was originally developed for
economics but now been used extensively in neurosci-
ence.56 For a pair of time series, X and Y, we say that X
“Granger causes” Y if the histories X and Y together predict
the current value of Y better than the history of Y alone.
Popular in part due to its computational simplicity,60 this
definition of causality has also proven helpful for inference
of causal relationships in microbiome studies. TIME55 is a
toolkit that provides a suite of analysis and visualization
tools for microbial ecology analysis, and relies on a
Granger-LASSO model to identify causal relationships.

Another way to construct directed microbial interaction
networks from longitudinal data is to use goodness of fit to
a defined model as evidence of causality. Perhaps the most
straightforward model for time-dependent ecological
modeling of microbiomes relies on generalized Lotka–
Volterra (gLV) equations, which are commonly used to
describe predator–prey interactions in ecology. This
simple mathematical system was first developed by
Lotka61 to describe autocatalytic chemical reactions, but
was also derived independently by Volterra62 in early
mathematical biology. Fundamentally, gLV defines the
growth rate of a given organism as function of the abun-
dances of all other organisms in a given ecosystem, produc-
ing a set of ordinary differential equations. Although these
equations are best known for modeling macro-ecological
systems, evidence suggests this framework may be appli-
cable to microbiology as well. Here the network inference
procedure involves deterministically estimating the inter-
action terms that determine the dynamics of pairwise eco-
logical relationships, if any. One of the earliest gLV
approaches to network inference of microbial time-series
data came from a group using multilinear regression to
identify interactions in cheese-making microbial communi-
ties.63 This inspired similar work to predict the gLV inter-
action terms of Clostridium difficile infection using
regularized regression.64 Since then, a variety of gLV-
based software tools have been developed for general
applications to microbial network inference. For example,
LIMITS51 uses sparse linear regression to determine the
interaction coefficients for a gLV model of microbial inter-
action dynamics. To overcome the compositional effects
associated with relative abundances, LIMITS uses a step-
wise approach, iteratively adding edges that produce the
lowest error. Another software platform, MetaMIS,52 relies
on the use of a partial least square regression to identify the
interaction terms, and is implemented as a graphical user
interface with tools for network visualization. To maximize
the identification of conserved interaction networks,
MetaMIS uses an abundance-ranking strategy that priori-
tizes the identification of interactions between highly abun-
dant microbes, although this strategy may overlook some
novel interactions as a result. While gLVmethods represent
a powerful and ecologically relevant model, there are draw-
backs to their use in microbiome network inference.

The microbiome is subject to immigration of new species,
spatial variability, and heterogeneity, characteristics that
are not necessarily well modeled by gLV dynamics.65

Additionally, microbiota are understood to interact through
a set of complex mechanisms, such as metabolic exchange,
that may not be well modeled under this paradigm.66 And
given that gLV models are occasionally unable to detect
even pairwise interactions,67 the use of this framework
may be questionable. Therefore, while the gLV equations
are among the most well-characterized mathematical
frameworks for modeling ecological interactions, network
inference techniques based on this framework may not be
able to fully capture the intricacies of gut microbiome
dynamics. Indeed, there is a demonstrable need for net-
work inference techniques that are able to reliably capture
ecological relationships with more complex interac-
tion mechanisms.

One promising area of development for network infer-
ence on time-series microbiome data involves the use of
probabilistic time-series models. Like gLV, these tools are
aimed at generating forecasting future behavior using a
defined model but are typically better able to handle uncer-
tainty. Such methods have been used extensively in geno-
mics modeling,68–70 and have recently been expanded and
adapted for the purpose of network inference on micro-
biome data. One such method is MC-TIMME,53 which
uses a continuous-time dynamical model and a non-
parametric Bayesian technique to identify interaction
network. This tool performs OTU-level binning based on
similarities in their temporal profiles, which allows
improved estimations of the parameters regulating the
dynamics of microbial interaction networks. Another prob-
abilistic method, MDSINE,54 constitutes a comprehensive
toolkit for dynamical systems inference, as multiple options
for inference techniques provided. However, since
MDSINE was designed for concentrations rather than rel-
ative abundances, it may give erroneous results in situa-
tions where overall microbial biomass does not remain
constant, or cannot be otherwise measured. Many other
approaches to probabilistic time-series modeling of micro-
bial interactions use Dirichlet multinomial mixtures,71,72

which is a popular distribution for microbiome statistical
analysis because it assumes that variables sum to certain
value, and is therefore a natural way to model the compo-
sitional, relative abundances of microbes. Dynamic linear
models, commonly used in commercial forecasting and
control engineering,73 may also be useful for modeling
microbiome dynamics. While both probabilistic time-
series models and dynamic linear models are widely used
techniques in other fields, they have only recently been
applied to models of microbial dynamics. Hence, little
information exists about the relative strengths of these
approaches in the context of microbial modeling, demon-
strating a need for analyses benchmarking the comparative
performance of these tools against both synthetic and val-
idated microbiome survey data. Additionally, the benefits
of ensembles of time-series inference techniques should be
evaluated, in light of the improvement Weiss et al.34

achieved by combining correlation measures with comple-
mentary strengths. As there is significant variation in the

452 Experimental Biology and Medicine Volume 244 April 2019
...............................................................................................................................................................



statistical approaches used to model longitudinal data, it is
likely that ensemble approaches will similarly boost perfor-
mance in the context of longitudinal models as well.

Indeed, dynamical systems and probabilistic models
provide a powerful framework for inference of directed
microbial interaction networks from longitudinal data.74–
76 When applied correctly, such methods have significant
advantages over cross-sectional or correlation-based
approaches.30 By precisely defining the rules and parame-
ters governing microbial interactions, inferred dynamical
models are able to characterize the stability of an ecosystem
in response to perturbation, and predict future behavior by
simulating hypothetical ecosystems.58,77,78 Yet design of
longitudinal microbiome studies is not without pitfalls:
researchers must strike balance between the cost of data
collection and the duration and frequency of sampling.
This requires insight into the time scales in which microbial
ecosystems fluctuate.78 Relative to macro-ecological sys-
tems, the time scale of microbial interactions is expected
to be small,79 making acquisition of usable time-series
data challenging or uninformative.80 Typically, longitudi-
nal ex vivo studies sample participants on the order of
days, while both in vivo and in vitro studies demonstrate
that microbial dynamics likely operate on the scale of
hours.81–83 Furthermore, given that metagenomic measure-
ments are discrete and likely to capture steady-state behav-
ior only,84 it may not be possible to capture microbiomes
during state-transition, complicating network inference
procedures on longitudinal data. While more development
of statistical methods for time-series microbiome data is
needed, optimization of the frequency and duration of sam-
pling for longitudinal microbiome studies may be equal-
ly important.

The expanded universe of microbial
interactions

While the inference of microbe-microbe interaction net-
works is a crucial step towards understanding the dynam-
ics of the human microbiome, it somewhat abstracts the
true mechanisms by which these interactions occur. Like
macro-ecological systems, relationships between microbial
species are largely dictated by their food source. While
some bacteria, such as ciliates, consume other bacteria,
most microbes consume metabolic byproducts excreted
by their neighbors, giving rise to some of the ecological
dynamics described in Figure 1. Mutualistic relationships
such cross-feeding, or competition for metabolic resources
are largely driven by the import and export of these com-
pounds.85 Microbial interactions are mediated by metabo-
lites and macromolecules that are broadly derived from
three sources: (1) other endogenous microbiota, (2) endog-
enous host cells, and (3) exogenous environmental expo-
sures, including dietary intake86,87 and chemical
exposure.88 Graphical network representations of
metabolite-mediated, host-mediated, and environment-
mediated interactions are illustrated in Figure 2(d) to (f)).

The best approach to simultaneous measurement of the
gut microbiome and the gut metabolic state is not obvious.
The metabolic activity of microbiota can be assessed

indirectly using shotgun metagenomic sequencing, by
identifying marker genes associated with metabolic func-
tions.89 A variety of software tools have been developed
towards this end. For example, MicrobiomeAnalyst90

allows metabolic network visualization from metagenomic
sequencing. Another network-based tool, PMRT,91 was
developed to predict community metabolic functions
from metagenomic data, and HUMAnN92 can also be
used to infer the functional and metabolic potential of
microbial metagenomes. If only 16S data are available,
tools such as PICRUST,93 Tax4Fun,94 and PiPhillin95 can
be used in combination with KEGG metabolic gene anno-
tations to infer the metabolic state of a community. These
approaches are limited, however, as meta-omics analyses
have shown that marker genes for metabolism identified in
metagenomic data may not be expressed,96,97 and genes
inferred from 16S sequencing may not be present at all.
Of course, the metabolic state of the gut can be measured
directly, using methods such as nuclear magnetic resonance
(NMR) spectroscopy and mass spectrometry (MS), which
can then be integrated with microbiome survey data. Such
multi-omics approaches, such as the one employed by
Perez-Cobas et al.98 have potential to dramatically improve
our understanding of metabolite-mediated microbial inter-
actions. Methods for integrating such datasets, however,
remain in their infancy. The aforementioned PRMT was
extended to include integrated analysis of metagenomic
and metabolomic data, using a tool called MIMOSA.99

Otherwise, multivariate correlation methods such as two-
way orthogonal partial least squares (O2-PLS),100 canonical
correlation analysis (CCA),101 and co-inertia analysis
(CIA),102 may be applied to identify interactions between
and within omics datasets.102,103 Identification of
microbiome-metabolite interactions may also be guided
by the literature. For example, NJS16,104 perhaps one of
the most comprehensive maps of microbial-metabolite-
host interaction networks, was constructed using an
exhaustive review of experimental data and existing bio-
logical knowledge from the literature. As meta-omics
experimental approaches improve, statistical tools for infer-
ring microbiome-metabolite interaction networks must also
be developed, integrated with prior knowledge, and tai-
lored to the unique statistical properties of micro-
biome data.

Incorporation of host-microbiome dynamics into micro-
bial interaction networks represents an even greater chal-
lenge. However, this will be an important step for the
development of a comprehensive model of gut ecosystem
dynamics. Microbes ferment short chain fatty acids, such as
butyrate, which play important roles in host cell function,
both as an energy source, and by regulating host gene
expression and inflammatory response.105,106 Gut micro-
biota may also produce toxic metabolic byproducts, such
as reactive oxygen species, that impair host cell function
and promote disease.107 Conversely, host cells affect the
metabolism of resident microorganisms. For example,
goblet cells secrete mucin, while hepatocytes mediate gly-
cine- and taurine-conjugated bile acid export.104 Microbe-
interacting host cells are therefore influential components
of the gut ecosystem, and models of microbial interaction
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networks will become more comprehensive with their
inclusion. Although the metabolic dynamics of host cells
has been reconstructed extensively108,109 in a number of
model organisms,110 simultaneous measurement of micro-
bial composition and host gene expression or host metab-
olism in humans is a challenge to perform non-invasively.
One potential approach employed by Knight et al.111

involved extraction of RNA from infant stool samples con-
taining both microbial populations and exfoliated epithelial
cells. An in vitro approach using “artificial gut”
microfluidics-based human-microbial co-culture systems
such as HuMiX112 may also be a promising avenue for
exploring host-microbiome interactions.113 Alternatively,
model organisms may be used. In a review of this topic,
Kostic et al.113 suggest the use of bobtail squid, Drosophila,
zebrafish, and mice as alternatives to humanmodels for the
interrogation of host-microbiome dynamics. However, the
clinical relevance of host-microbiome interaction networks
developed using non-human experimental models remains
circumspect. Even as technology for simultaneous mea-
surement of human and microbial cellular populations
improves, statistical approaches must continue to be devel-
oped for integrating omics datasets.

Lastly, it is well known than environmental factors
shape microbial communities. Microbiome composition
varies significantly according to age,114 geography,114,115

ethnicity,115 diet,116 social networks,117 and chemical expo-
sure.88 Consequently, inferred microbial interaction net-
works are likely be significantly influenced by their
environmental contexts. Diet in particular is an important
environmental variable, as it strongly influences the meta-
bolic environment of the gut microbiome.118 Identifying
interactions between environmental characteristics and
microbiome composition can be done using aforemen-
tioned multivariate approaches like CCA, O2-PLS, and
CIA.119 Understanding how and when environmental fac-
tors will conditionally influence the topology of microbial
interaction networks will be necessary not only to control
for these factors, but also to understand the degree to which
microbiome dynamics are context-dependent.

Discussion

Significant challenges remain in efforts to catalogue micro-
bial interaction networks. The gut microbiome is composed
of up to a thousand unique species, among which there is
significant variation in metabolite consumption and pro-
duction, in growth rate and conditions, and in their effects
on and in response to host. The human microbiome forms a
dense web of complex interactions, many of which are
likely to be context-dependent. While a number of tools
exist for inferring both undirected and directed interaction
networks from cross-sectional and longitudinal studies, the
predictions they generate are concerningly inconsistent.
More work must be done to understand how and why
these inconsistencies occur, as well as the design principles
that drive them. There remains demand for sufficiently
general tools that are designed with the unique statistical
characteristics of microbiome data in mind. Furthermore,
existing tools must be made sufficiently accessible to the

research community, particularly those without a substan-
tial background in systems biology or statistics.

Despite the apparent inconsistencies between networks
drawn by the available inference tools, ensemble
approaches show encouraging results for increasing the
accuracy of predicted microbial interactions. Because dif-
ferent methods for inferring microbial interaction networks
make different mistakes, precision may be improved great-
ly by the combined use of these tools. Additionally, it is
likely that inference of the microbial interactome will be
substantially improved by integrating existing statistical
techniques with existing biological knowledge from the lit-
erature. As the field of microbiome research progresses, the
manual curation of interaction networks, similar to KEGG
for gene networks, will be highly beneficial. Finally, as we
approach a more detailed understanding of microbial inter-
action dynamics, including the ways in which host-related,
environmental, and metabolic factors influence these
dynamics, it will become possible to make confident pre-
dictions about the effects of compositional changes to the
microbial ecosystem, paving the way for novel and highly
precise interventions for engineering healthier
microbiomes.
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