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Acute lipolysis of visceral fat or circulating triglycerides may worsen acute pancreatitis (AP)eassociated
local and systemic injury. The pancreas expresses pancreatic triacylglycerol lipase (PNLIP), pancreatic
lipase-related protein 2 (PNLIPRP2), and carboxyl ester lipase (CEL), which may leak into the visceral fat
or systemic circulation during pancreatitis. We, thus, aimed to determine the pancreatic lipase(s)
regulating lipotoxicity during AP. For this AP, associated fat necrosis was analyzed using Western blot
analysis. Bile acid (using liquid chromatographyetandem mass spectrometry) and fatty acid (using gas
chromatography) concentrations were measured in human fat necrosis. The fat necrosis milieu was
simulated in vitro using glyceryl trilinoleate because linoleic acid is increased in fat necrosis. Bile acid
requirements to effectively hydrolyze glyceryl trilinoleate were studied using exogenous or overex-
pressed lipases. The renal cell line (HEK 293) was used to study lipotoxic injury. Because dual pancreatic
lipase knockouts are lethal, exocrine parotid acini lacking lipases were used to verify the results. PNLIP,
PNLIPRP2, and CEL were increased in fat necrosis. Although PNLIP and PNLIPRP2 were equipotent in
inducing lipolysis and lipotoxic injury, CEL required bile acid concentrations higher than in human fat
necrosis. The high bile acid requirements for effective lipolysis make CEL an unlikely mediator of
lipotoxic injury in AP. It remains to be explored whether PNLIP or PNLIPRP2 worsens AP severity in vivo.
(Am J Pathol 2019, 189: 1226e1240; https://doi.org/10.1016/j.ajpath.2019.02.015)
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Lipolysis of visceral fat,1e4 circulating triglycerides,5 and
s.c. fat6 may contribute to the manifestations of acute
pancreatitis (AP) and systemic injury, including acute kid-
ney injury,1e4 during severe AP (SAP). Elevated long-chain
nonesterified fatty acids (NEFAs) have been noted in both
the serum7,8 and necrotic collections1,3,9 during clinical
SAP. The severity of AP in clinical scenarios is determined
by systemic injury, which may be independent of pancreatic
parenchymal necrosis.10e12 Because SAP may occur more
often in obese patients in association with fat necrosis or in
those with hypertriglyceridemia,13e16 and lipase inhibition
has been shown to improve outcomes in experimental
SAP,1e4 we thought it would be helpful to identify the li-
pases that mediate the cascade of unregulated lipolysis of
visceral or circulating triglyceride that result in SAP.

Fat necrosis is themain part of pancreatic and peripancreatic
necrosis in humans,17,18 and it is included in criteria grading
AP severity.12,19,20 Fat necrosis has previously been shown to
stigative Pathology. Published by Elsevier Inc
be a part of necrotizing pancreatitis noted at the time of au-
topsy,21,22 at the time of surgery,23 and radiologically.20 The
lipolysis of visceral fat in SAP-associated fat necrosis was
proposed in the late 19th century,24,25 and its deleterious role is
supported by recent mechanistic studies.26 Clues to the path-
ophysiology of fat necrosis in human SAP include the
following: i) fat necrosis in humans composed of free or
saponified NEFAs,27 which are unsaturated2,3,9; ii) histology
showing fatty acid leakage from fat necrosis, causing sur-
rounding parenchymal necrosis1,2; and iii) immunohisto-
chemistry of AP showing pancreatic lipase, colipase, and
carboxyl ester lipase (CEL)28e30 in fat necrosis.
. All rights reserved.
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Lipases Mediating Acute Lipotoxicity
On the basis of these observations, it is plausible that the
lipolytic generation of unsaturated NEFAs during fat ne-
crosis may mediate the worse outcomes noted in SAP.
Previous mechanistic studies show that the unsaturated
NEFA linoleic acid (LA) or oleic acid can increase cytosolic
calcium from an intracellular pool, inhibit mitochondrial
complexes I and V,1 cause mitochondrial depolarization,31

cause cytochrome c release,31 and reduce ATP levels,1

eventually increasing annexin V staining (a marker of
apoptosis), propidium iodide (PI) uptake,3,4 and lactate de-
hydrogenase (LDH) leakage,1,3,31 which are consistent with
necrosis. Although the exact intermediary steps remain to be
figured out, on the basis of published literature, the com-
bination of these upstream steps and end points is consistent
with either advanced apoptosis32 or programmed necrosis.33

Clues to the systemic involvement of lipotoxicity in AP
include kidney failure5 in hypertriglyceridemic AP, elevated
circulating NEFAs in both patients7,8 and rodents1e4 with
SAP, and the pancreatitis-panniculitis-polyarthritis syn-
drome, in which distant fat necrosis is noted during AP.
Analysis of the composition of s.c. panniculitis during
pancreatitis-panniculitis-polyarthritis6 showed the presence
of pancreatic triacylglycerol lipase (PNLIP; chromosome
10q24-q26; Enzyme Commission number 3.1.1.3) but not
CEL (chromosome 9q34.3; Enzyme Commission number
3.1.1.13). The panniculitis also had extremely high pancreatic
lipase activity, free fatty acids >10 mmol/L, and no pancre-
atic amylase activity. A chronic form of ectopic expression of
PNLIP, pancreatic lipase-related protein 2 (PNLIPRP2) is
noted during adipose tissue remodeling and after perturbing
the peroxisome proliferator-activated receptor-gefibroblast
growth factor-1 axis.34 Although lipolysis in adipose tissue is
normally regulated by adipocyte lipases, PNLIP and
PNLIPRP2 (or the PNLIPRP2 gene; Enzyme Commission
number 3.1.1.26) have been noted in fat necrosis.4

We, thus, aimed at determining the pancreatic lipase(s)
contributing to the lipotoxicity in SAP. Their amounts and
activity were measured in the visceral fat of ob/ob mice,
which develop lethal SAP.1,4 The dependence of CEL on
bile acids was compared with bile acid concentrations pre-
sent in human pancreatic necrosis collections. NEFA anal-
ysis in these collections also served to guide the substrate
used for studying the activity of pancreatic lipases after
confirming that these fatty acids caused renal injury.

On the basis of the above, the ability of lipases to mediate
lipotoxic injury was studied by adding them exogenously or
overexpressing them in cells and studying the effects of the
lipase secreted into the medium. These models were used to
understand kidney tubular injury in SAP using the widely
used cell line HEK 293.35,36 The models also simulated how
lipases leaked into visceral fat during pancreatitis may further
worsen injury to the adjacent tissue via lipolysis of the fat.

Deletion of a single lipase gene leaves the other two intact,
which may prevent identification of an individual lipase that
mediates fat necrosis. PNLIPRP2 and PNLIP consecutively
span 104.1 Kb on chromosome 19; therefore dual knockouts
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of these factors cannot be generated by mating mice that are
knockouts for an individual gene. In addition, dual knockouts
of PNLIPRP2 and CEL are lethal in utero or shortly after
birth.37 We, thus, complimented the studies in HEK 293 cells
using parotid acinar cells, which, like pancreatic acinar cells,
are polarized exocrine cells present in clusters and contain
secretory granules that are released in response to extracel-
lular stimuli.38,39 Both cell types release calcium from an
intracellular pool,40 a phenomenon also noted in response to
LA.1 However, because parotid cells lack lipases,41 they are a
more suitable cell type to study the effects of recombinant
lipases in mediating lipotoxic injury that may result in acinar
necrosis. Herein, we present the design and findings
regarding the lipase(s) that may contribute to SAP.

Materials and Methods

Reagents

Orlistat was purchased from Cayman Chemical (Ann Arbor,
MI). Specific reagents for cell culture, cloning, transfection,
and viability assays are described under the specific
methods. Glyceryl trilinoleate (GTL), LA, PI, sodium
taurocholate (STC), Triton X-100, and Tween 20 were
purchased from Sigma-Aldrich (St. Louis, MO), as were the
rest of the reagents. Just before use, GTL was sonicated into
the media in a two-step manner to ensure that the triglyc-
eride stays in solution.

Preparation of GTL

Pure GTL was first directly sonicated into the medium
(concentration, 3 mmol/L) using three 10-second pulses.
This sonicate was promptly diluted in fresh media to a 0.6 or
a 1.2 mmol/L concentration (which is 2� the final con-
centration of GTL) and resonicated again for two 10-second
pulses. A final concentration of 0.3 or 0.6 mmol/L GTL was
achieved by directly adding the sonicated 2� GTL solution
to an equal volume of medium with the cells being studied.
This remained stable in solution, with no evidence of sep-
aration of the lipid phase from the aqueous phase over the
duration of the studies. Wherever relevant, orlistat was
dissolved in dimethyl sulfoxide (50 mmol/L), sonicated
briefly for 8 to 10 seconds, and immediately added in the
culture media to a final concentration of 50 mmol/L just after
the GTL. The 0.1% dimethyl sulfoxide resulting from this
does not affect any of the experimental end points in our
system, as shown previously.1,3

Mouse Husbandry

The 8- to 10-weekeold male ob/ob (B6.V-lepob/J) mice
(Jackson Laboratories, Bar Harbor, ME) or Institute for
Cancer Research mice (Charles River Labs, Wilmington,
MA) were acclimatized for at least 2 days before use. All
animals were housed with a 12-hour light/dark cycle at
1227
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room temperature, fed normal laboratory chow, and allowed
to drink ad libitum. All experiments were approved by the
Institutional Animal Care and Use Committee of the Uni-
versity of Pittsburgh (Pittsburgh, PA) and the Mayo Clinic
(Scottsdale, AZ).

In Vivo Animal Studies

Acute pancreatitis was induced in obese (ob/ob) mice by
hourly i.p. injections of cerulein (50 mg/kg) � 12 doses on
day 1 and six injections on day 2 in this study. Mice were
sacrificed electively after the 18th injection. With a 12-
injection regimen for 2 consecutive days, 90% to 100% of
obese mice get moribund before 72 hours and have to be
electively sacrificed, as described previously.4 Visceral
epididymal adipose tissue was harvested, pancreatic lipase
activity was measured in the homogenate, as described
below, and the adipose tissue lysate was blotted against anti-
PNLIPRP2, anti-PNLIP, anti-CEL, and antieNa-K-ATPase
antibody, as described below.

SDS-PAGE and Western Blot Analysis

Cell lysates were boiled in 1� Laemmle sample buffer, and
at least 10 ìg protein was loaded onto 10% to 12% dena-
turing polyacrylamide gels for protein resolution. Proteins
were transferred onto Immobilon polyvinylidene difluoride
membranes (EMD Millipore, Burlington, MA) and blocked
in Tris-buffered saline (pH 8.0) with 0.1% Tween 20 con-
taining 5% blocking grade blocker (Sigma, St. Louis, MO).
Membranes were incubated with primary antibodies [anti-
PNLIP and PNLIPRP2, dilution 1:20,00042; anti-
PNLIPRP2, dilution 1:1000 for overexpression studies,
sc74853 (Santa Cruz Biotechnology, Dallas, TX); anti-CEL,
dilution 1:1000, sc34883 (Santa Cruz Biotechnology);
antieadipocyte triglyceride lipase (ATGL), dilution 1:1000,
PA5-17436 (Thermo Fisher Scientific, Waltham, MA); and
anti-NaþKþ ATPase, dilution 1:4000, a5 (Developmental
Studies Hybridoma Bank, University of Iowa, Iowa City,
IA)], and appropriate horseradish peroxidaseelabeled
Table 1 Sequences of Primers Used for Cloning of Mouse Pancreatic L

Primer name

PNLIP-F with HindIII and Kozak sequence
PNLIP-R with NotI site
PNLIPRP2-F with HindIII and Kozak sequence
PNLIPRP2-R with XbaI site
CEL-F with HindIII and Kozak sequence
CEL-R with XbaI site
PNLIP-F (S169G)
PNLIP-R (S169G)
PNLIPRP2-F (S184G)
PNLIPRP2-R (S184G)

The sites mutated in the serine to glycine mutants of PNLIP and PNLIPRP2 are
-F, forward; -R, reverse; CEL, carboxyl ester lipase; PNLIP, pancreatic triacylgly
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secondary antibodies, at a concentration of 1:10,000, were
used to detect the signal using ECL2 Western Blotting
substrate (Thermo Fisher Scientific).

Pancreatic Lysate Preparation

For exogenous addition of pancreatic lysate studies, freshly
harvested pancreatic tissue was homogenized in a 100�
volume of phosphate-buffered saline. The lipase activity
was measured and adjusted to 35,000 to 40,000 U/L. This
solution (12 mL) was then added to cells for a final volume
of 1 mL after the GTL or orlistat, wherever relevant.

Human Pancreatic Fluid Samples

All studies were approved by the institutional review boards
of the University of Pittsburgh (Pittsburgh, PA) and the
Mayo Clinic Foundation. Clinical residual samples were
collected and processed, as described in earlier studies.2,3

The samples used for the current studies were residual
necrotic material from pancreatic necrosis, as per the revised
Atlanta criteria.12 These were collected at the time of sur-
gical, endoscopic, or percutaneous debridement. The
debridement procedures were clinically indicated, as per the
International Association of Pancreatology/American
Pancreatic Association’s evidence-based guidelines.43 The
material did not contain solid tissue. This material was
immediately transported to the laboratory, as per regulations
approved by the institutional review board. These samples
were frozen at e80�C and processed for fatty acid or bile
acid analyses, as described below. These samples were
characterized as biliary AP (n Z 19) versus nonbiliary AP
(n Z 15) collections, as detailed previously.3

Cloning of Mouse Pancreatic PNLIP, PNLIPRP2, and CEL
into pCR 2.1eTOPO and pcDNA 3.1

Using the primer pairs (Table 1), the cDNA sequences
corresponding to mouse Pnlip (http://www.ncbi.nlm.nih.
gov/nuccore; GenBank accession number NM_026925.4),
ipase in pCR 2.1eTOPO and pcDNA 3.1(þ) Vectors

Primer sequence

50-GTAAAGCTTGCCATGCTAATGCTGTGGACATTTG-30

50-CATGCGGCCGCCTAACATGGAGACAGTGTGAG-30

50-TATAAGCTTGCCATGCCTATGGATGTCCGTGG-30

50-CGTAATTCTAGATTAACAAGGGTACAGAGACTG-30

50-AATAAGCTTGCCATGGGGCGCCTGGAGGTTC-30

50-AATTCTAGATTAGAAGCCAATGGTGGCAGG-30

50-GTCCACCTGATTGGCCACGGCCTGGGTTCCCACATTG-30

50-CAATGTGGGAACCCAGGCCGTGGCCAATCAGGTGGAC-30

50-CGTGCACCTCATCGGCCACGGCTTGGGCTCACATGTGG-30

50-CCACATGTGAGCCCAAGCCGTGGCCGATGAGGTGCACG-30

underlined.
cerol lipase; PNLIPRP2, pancreatic lipase-related protein 2.
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Lipases Mediating Acute Lipotoxicity
mouse PNLIPRP2 (GenBank accession number NM_
011128.2), and mouse CEL (GenBank accession number
U37386.1) were amplified by PCR and cloned into pCR
2.1eTOPO (3.9 kb; Life Technologies, Carlsbad, CA).
The presence of insert in correct orientation was
confirmed by digestion with corresponding restriction
enzymes, as well by sequencing (Genewiz, Inc., South
Plainfield, NJ) of the plasmid DNA. Mouse Pnlip, mouse
PNLIPRP2, and mouse CEL were gel purified after
digestion with corresponding restriction enzymes from
pCR 2.1eTOPO/PNLIP, pCR 2.1eTOPO/PNLIPRP2, or
pCR 2.1eTOPO/CEL. Purified inserts were ligated into
mammalian expression vector pcDNA 3.1 (5.4 kb; Life
Technologies) using T4 DNA ligase, as per
manufacturer’s instruction (Life Technologies), to generate
pcDNA 3.1/PNLIP, pcDNA 3.1/PNLIPRP2, and pcDNA
3.1/CEL. The correct orientation of insert in each plasmid
was confirmed by digestion with restriction enzymes and
further confirmed by sequencing (Genewiz, Inc.) of the
insert in plasmid DNA.

Mutation in Mouse Pancreatic PNLIP and PNLIPRP2 in
pcDNA 3.1

Single point mutations in pcDNA 3.1/PNLIP and pcDNA
3.1/PNLIPRP2 were made using plaque-forming unit DNA
polymerase (Strategene, La Jolla, CA). Primer pairs
(Table 1) were designed to mutate serine to glycine at amino
acid residue 169 in pcDNA 3.1/PNLIP and at amino acid
residue 184 in pcDNA 3.1/PNLIPRP2 to generate dead
mutant of pcDNA 3.1/PNLIP (p.S169G) and pcDNA 3.1/
PNLIPRP2 (p.S184G). A mutated base site (Table 1) in the
plasmid was verified by sequencing of the plasmid DNA at
a molecular biology core laboratory facility (Mayo Clinic,
Rochester, MN).

Culture of HEK 293 Cells and Overexpression of Wild-
Type and Mutant Mouse Lipases

HEK 293 cells were maintained in a 75-cm2 tissue culture
flask in a humidified incubator at 37�C with 5% CO2 in
Eagle’s minimum essential medium (ATCC, Manassas, VA)
supplemented with 10% fetal bovine serum (ATCC) and 1%
penicillin-streptomycin (Life Technologies). To test the ef-
fect of acute lipotoxicity from exogenous addition of
pancreatic cell lysates to HEK 293 cells, the lysates were
added to cells in HEPES buffer (pH 7.4) with 0.1% albu-
min,1,44e46 in the presence or absence of 600 mmol/L GTL
for 2 hours. Overexpression of wild-type and mutant mouse
lipase in HEK cells was performed in a 6-well plate using
Lipofectamine LTX and Plus Reagent (Life Technologies),
per the manufacturer’s instructions. Briefly, 2.0 mg plasmid
DNA [pcDNA 3.1/PNLIP, pcDNA 3.1/PNLIPRP2, pcDNA
3.1/CEL, pcDNA 3.1/PNLIP (p.S169G), or pcDNA 3.1/
PNLIPRP2 (p.S184G)], 4.0 mL Plus Reagent, and 6.0 mL
Lipofectamine LTX were mixed in serum-free media and
The American Journal of Pathology - ajp.amjpathol.org
incubated at room temperature for 30 minutes; DNA-reagent
complex was used to transfect HEK cells. Control cells were
treated with lipofectamine alone. The medium was replaced
with fresh serum-free medium 24 hours after transfection.
Serum starvation is a well-known method for synchroniza-
tion of the mammalian cell cycle.47 To determine the effect
of overexpressing wild-type and mutant pancreatic lipases
on GTL-induced lipotoxicity in transfected HEK cells 48
hours after transfection, overexpression of wild-type or
mutant lipase was determined by measuring lipase activity
in the media and in the cell lysate by Western blot analysis
using anti-PNLIP, anti-PNLIPRP2, and anti-CEL anti-
bodies, as described below; or cells were treated with or
without 600 mmol/L GTL for up to 5 hours, and markers of
cell injury were measured.

In Vitro Acinar Studies

Freshly prepared mouse parotid acinar cells were prepared
by adding 1.25 mg/mL of hyaluronidase from bovine testes
(Sigma) to a well-established previously described colla-
genase digestion recipe1,44e46 in HEPES buffer (20 mmol/L
HEPES at pH 7.4, 120 mmol/L NaCl, 5 mmol/L KCl, 1
mmol/L MgCl2, 1 mmol/L CaCl2, 10 mmol/L glucose, 10
mmol/L sodium pyruvate, and 0.1% bovine serum albumin).
After harvesting, the acini were incubated with this buffer
minus the collagenase or hyaluronidase, as has been previ-
ously described for acinar studies in vitro, including those
on lipotoxicity.1,31,48,49 Viability was defined as >95% on
Trypan blue exclusion. The pooled acinar cell pellets from
parotids of two mice ranged from 100 to 200 mL. The cells
were resuspended in 5 mL, and 200 mL acinar suspension
was used per milliliter of assay. To ensure homogeneity in
dispensing, these cells were constantly shaken manually
while being aliquoted. Parotid acini were assayed in 24-well
tissue culture plates and shaken at 90 RPM at 37�C in
ambient air at a final assay volume of 1 mL/assay per well.
Each individual experiment was performed in duplicate.
GTL was used as a substrate for pancreatic lipases at a final
concentration of 600 mmol/L. Recombinant lipases were
added at a final concentration of 1 mg/mL, unless otherwise
specified.

Recombinant Lipase Use

To test the effect of exogenous addition of pancreatic li-
pases, recombinant human PNLIP, PNLIPRP2 (1 mg/mL),
or CEL (4 mg/mL) was produced, as described pre-
viously,50e53 and added at the indicated concentrations to
parotid acinar cells in HEPES buffer with 0.1% albumin,
containing 0.5 mg/mL human colipase (Sino Biological,
Wayne, PA) and 300 mmol/L GTL, with STC at the indi-
cated concentrations. In each case, medium was collected
for measuring glycerol concentration and LDH content after
4 hours of incubation. The cell pellet was processed for PI
uptake, as described below.
1229
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Commercial Pancreatic Lipase Assay

A kinetic colorimetric assay kit (Pointe Scientific Inc.,
Canton, MI; catalog number L-7503) was used to measure
pancreatic lipase activity in the media or cell lysate,
following the manufacturer’s instructions. This kit contains
1,2 diglyceride as a substrate, 5 mmol/L cholic acid as an
activator, and 40,000 U/L colipase, a cofactor for pancreatic
lipases, but does not contain cofactors for the adipocyte
lipase ATGL [eg, comparative gene identification-58 (CGI-
58)54]. Glycerol generation is measured by this assay, which
ATGL, being a triglyceride lipase, cannot generate.

Glycerol Measurement

Glycerol generation was used as a measure of complete
GTL hydrolysis by the pancreatic lipases. This was
measured using the free glycerol reagent and the glycerol
standard solution (Sigma-Aldrich).

Cell Injury Markers

Caspase-3 Activity and PI Uptake
Caspase-3 activity (NucView 488 Caspase-3 Assay Kit;
Biotium, Hayward, CA) and PI uptake (Sigma-Aldrich) were
measured in HEK cells in a 6-well tissue culture plate. HEK
cells were transfected with 2.0 mg mouse lipase in pcDNA
3.1, as discussed above. GTL (600 mmol/L) was then added
for 1.5, 3.0, or 5.0 hours, as discussed above. At the end of
treatment, cells were stained with 4 mmol/L NucView 488
caspase substrate, 2 mL/mL PI, and 1 mg/mL Hoechst 33342
(ImmunoChemistry Technologies, LLC, Bloomington, MN)
and incubated in the dark for 15 minutes at room temperature.
Cell pellet was disrupted in phosphate-buffered saline by
sonication, and bright green (NucView 488 Caspase-3
substrate; excitation/emission, 485/515 nm), red (PI; excita-
tion/emission, 535/617 nm), and blue (Hoechst 33342;
excitation/emission, 345/460 nm) fluorescence values were
measured using the VersaFluor Fluorometer (Bio-Rad, Her-
cules, CA). Results were expressed as fluorescence unit for
caspase-3 activity or PI uptake and normalized, with the
fluorescence of Hoechst 33342 as control. Measurement of
caspase-3 activity and PI uptake in HEK cells (without
overexpression of mouse lipase) after 100 mmol/L LA treat-
ment was done, similar to GTL exposure, as detailed above.

LDH Assay and PI Uptake
Cell death was quantified using a colorimetric cytotoxicity
assay for LDH release in the media. Briefly, absorbance at 490
nm and background absorbance at 620 nm were measured in
the media using the LDH assay kit (Roche Applied Sciences,
Indianapolis, IN) after 4 hours of treatment. Results were
expressed as a percentage of total LDH leakage, normalized to
that measured in cells lysed with 1% Triton X-100. PI uptake
by cells, as a measure of dead necrotic cells, was quantified as
previously described1,55 using a flourimetric method.
1230
ATP Level Determination

An ATP bioluminescent assay kit was used to measure ATP
levels (Sigma) following manufacturer’s instructions.
Briefly, cell pellets were disrupted in trichloroacetic acid
and EDTA-containing buffer, followed by appropriate
dilution in Tris-EDTA buffer to extract the ATP, as
described previously,1 which was followed by the lumi-
nescent substrate. Luminescence was measured on a
Promega Glomax 20/20 Luminometer (Promega Corpora-
tion, Madison, WI), normalized per microgram of protein,
and expressed as pmol/mg.

Nonesterified Fatty Acid Analysis

Immediately before analysis, the samples were thawed, spun
at 300 � g for 5 minutes, and kept on ice. Long-chain fatty
acids were analyzed in the supernatants, as previously
described.1,55 Briefly, lipid was extracted using iso-
propanoleheptaneehydrochloric acid (1 mol/L; 40:10:1, v/
v/v). After mixing and centrifugation, the upper heptane
phase was removed, dried, derivatized using the Deoxo-
Fluor reagent (Sigma),56 and analyzed by gas chromatog-
raphy and flame ionization detection using heptadecanoic
acid as an internal standard, as described by Kangani et al.56

Bile Acid Levels

Immediately before analysis, the samples were thawed, spun
at 300 � g for 5 minutes, and stored on ice. Bile acids were
quantified by liquid chromatographyetandem mass spec-
trometry stable isotope dilution analysis at the Mayo Clinic
laboratories (Rochester, MN), as described previously.57

After mixing the sample with isotopically labeled bile acid
internal standards, liquid chromatography was performed
using mobile phase A (95% water/5% methanol/10 mmol/L
ammonium acetate) and mobile phase B (methanol/10 mmol/
L ammonium acetate). A reverse-phase C18 columnwas used
to separate free bile acids (lithocholic acid, chenodeoxycholic
acid, deoxycholic acid, ursodeoxycholic acid, hyodeox-
ycholic acid, and cholic acid) and their associated tauro- and
glyco- conjugates, along with the internal standards from the
bulk of the specimen matrix. The analysis was performed on
the ABSciex API 3200 liquid chromatographyetandemmass
spectrometry instrument with TurboIonSpray source (Sciex,
Framingham, MA). The mass spectrometer was operated in
the negative ion mode using multiple reaction monitoring.
This was used to follow the precursor to product transitions
for the bile acids and their corresponding internal standards.
Chromatography was optimized to separate isobaric analytes
to reduce interference. The ratios of the extracted peak areas
of bile acids/their corresponding internal standards were
determined to calculate their respective concentration in the
sample. The sum of the individual bile acids (in micrometers)
someasured in the sample was used to determine the total bile
acids.
ajp.amjpathol.org - The American Journal of Pathology
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Immunohistochemistry and TUNEL Staining

Human pancreatic necrosis samples removed at the time of
autopsy (n Z 3) were immunostained for pancreatic lipase
(antiehuman pancreatic triglyceride lipase,42 dilution
1:1000) using the horseradish peroxidase immunohisto-
chemical technique, as described previously.4 Briefly,
formalin-fixed, paraffin-embedded pancreatic sections or
colon sections from patients with acute diverticulitis (used
as a negative control) were retrieved. Deparaffinization and
antigen epitope retrieval were performed. Tissues were
incubated with the respective antibodies in 5% normal goat
serum in Dulbecco’s phosphate-buffered saline. These were
washed three times and incubated with horseradish
peroxidaseeconjugated secondary antibody (dilution 1:200;
Millipore Corp, Billerica, MA; or Thermo Pierce Scientific,
Rockford, IL). Chromogen incubation with an AEC Sub-
strate Kit for Peroxidase and Hematoxylin QS Nuclear
Counterstain (Vector Laboratories, Burlingame, CA) was
used to complete staining. The slides were examined by a
trained morphologist (K.P.). No blinding was done. Ter-
minal deoxynucleotidyl transferase-mediated dUTP nick-
end labeling (TUNEL) staining was performed on paraffin
sections of the kidneys, as described previously.1e4

Statistical Analysis

Data depicted are from a minimum of three independent
experiments showing means � SEM for each parameter.
Pairwise comparisons were performed using the t-test or a
U-test when the distribution was not normal, whereas
analysis of variance (Dunnett’s method) was performed to
make comparison between continuous data from multiple
groups. P < 0.05 was considered to be statistically
significant.

Results

Pancreatic Lipases Are Present in Fat Necrosis during
Severe Acute Pancreatitis

Because SAP commonly occurs in obese patients,58e65 who
develop visceral fat necrosis, which is a cardinal part of
SAP,12,20,22,23 the lipases present in autopsy samples of
patients with pancreatic necrosis were studied. Previous
studies have shown pancreatic enzymes, including CEL,
colipase, and chymotrypsin, to be present in human fat
necrosis.28e30 Immunohistochemistry for PNLIP was per-
formed on autopsy samples of patients with pancreatic ne-
crosis. The antibody used binds both PNLIP and
PNLIPRP2, as previously shown.42,66 Positive staining was
noted in acinar cells (Figure 1A) and also in the adjacent
peripancreatic fat necrosis, surrounded by inflammatory
cells, but not in normal fat without inflammation. To study
the relevance to severe experimental pancreatitis, a Western
blot analysis was performed for pancreatic lipases, which
The American Journal of Pathology - ajp.amjpathol.org
are not normally present in the fat pads (Figure 1, B and C)
of control ob/ob mice and ob/ob mice with severe cerulein
pancreatitis; these mice have severe fat necrosis and develop
multisystem organ failure requiring euthanasia, as shown
previously.4 Although control mice had no detectable
pancreatic lipase in their fat pads, on the basis of Western
blot analysis, all three pancreatic lipases (ie, PNLIP,
PNLIPRP2, and CEL) (Figure 1D and Supplemental
Figure S1) were increased in the fat pads of mice with
pancreatitis, consistent with the fat necrosis observed in
their adipose tissue. This was associated with an increase in
pancreatic lipase activity over controls in the fat pads with
fat necrosis (Figure 1E). The lipase assay measures
pancreatic lipase activity and contains colipase and bile
acids, but it cannot measure ATGL activity because it
contains a diglyceride, which ATGL cannot hydrolyze, and
also does not have ATGL’s cofactor CGI-58.54 The increase
in lipase activity noted in the fat necrosis (Figure 1E) is,
therefore, consistent with the Western blot data showing
increased pancreatic lipase amounts in the necrosed fat pads.
Moreover, there was no detectable increase in the amounts
of ATGL or hormone-sensitive lipase on Western blot
analysis of the necrosed fat pads from mice with pancreatitis
(Figure 1D). Severe cerulein pancreatitis was also associated
with renal tubular injury, seen as an increase in TUNEL-
positive nuclei (Figure 1G) compared with the control
mice (Figure 1F), and renal failure, noted as an elevation in
blood urea nitrogen level (Figure 1H). This renal failure is
attributable to lipolytic generation of fatty acids because it
was prevented by the lipase inhibitor orlistat.1,2,4 The lipase
activities of the pancreatic lipases were then compared in a
milieu relevant to fat necrosis.
Although PNLIP and PNLIPRP2 Efficiently Hydrolyze
Triglyceride, CEL Requires Bile Acid Concentrations
Higher than Those Present in the Milieu of Pancreatic
Necrosis

Because the acyl chain length of a lipase substrate67,68 and
the concentrations of bile acids67,68 in the milieu can affect
pancreatic lipase activity, these were first compared in
pancreatic fluid collections drained from patients with
biliary pancreatitis with those in patients with pancreatitis
from nonbiliary causes. Previous studies have shown long-
chain NEFAs to be the principal fatty acids generated in
fat necrosis.1,3,9 Although bile acids tended to be higher
(41 � 17 versus 11 � 4 mmol/L; P Z 0.2) (Figure 2A) in
collections from biliary pancreatitis, long-chain NEFAs,
including LA (which comprised approximately 20% of the
NEFAs in these collections), were similar among the two
groups (Figure 2, B and C). Because triglyceride is the
major form of lipid in adipocytes, comprising 80% to 90%
of their mass,69e71 the triglyceride of LA (ie, GTL; 300
mmol/L) was chosen to compare the lipolytic activity of
pancreatic lipases (1 mg/mL), along with its cofactor
1231
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Figure 1 Detection and activity of pancreatic lipases in fat necrosis. A: Immunohistochemistry for pancreatic triacylglycerol lipase (PNLIP) in human
pancreatitis, showing positive staining in acinar cells (yellow arrows, inset) and peripancreatic fat necrosis. The inset shows the boxed area in higher
magnification. Normal fat (black arrowheads) and lymph node do not stain positive. B and C: Gross images of fat pads from control (CON) ob/ob mice (note
smooth glistening appearance; B) and those dying from acute pancreatitis (AP; note fat necrosis seen as numerous chalky white deposits in the fat pads; C). D:
Western blot analysis of the fat pads in CON mice and in those with AP. All three pancreatic lipases are increased in AP-associated fat necrosis compared with
controls. E: Bar graphs depicting pancreatic lipase activity measured in the fat pads of control mice with cerulein (CER) pancreatitis. F and G: TUNEL staining of
mouse kidney in CON (F) mice and in those with AP (G). H: Blood urea nitrogen (BUN) in control mice and in those with AP. Data are expressed as means� SEM
(E and H). nZ 6 to 8 mice per group (FeH). **P < 0.01, ***P < 0.001 versus control. Scale bars: 200 mm (A); 100 mm (F and G). ATGL, adipocyte triglyceride
lipase; CEL, carboxyl ester lipase; HSL, hormone-sensitive lipase; PNLIPRP2, pancreatic lipase-related protein 2.
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colipase (0.5 mg/mL). The sodium salt of taurocholate, STC,
was used as a cofactor for CEL, as shown in previous
studies68 and its abundance in human bile.72

Unlike CEL, both PNLIP and PNLIPRP2 hydrolyzed
GTL in the absence of STC (Figure 2, D and E). CEL,
however, required concentrations >200 mmol/L to cause a
significant increase in lipolysis over controls (Figure 2, F
and G). This strong dependence of CEL on STC concen-
trations is consistent with previous studies showing CEL has
little or no detectable activity on long-chain glycerides67 or
substrates with �16 carbons.68 Although CEL has 10% to
15% of maximal activity at �50 mm STC73 on substrates
with short six-carbon acyl chains,73 this is not relevant to
human fat necrosis during pancreatitis because the fatty
acids in this almost exclusively have �12 carbons.3,9 The
most rapid increase in GTL lipolysis occurred during the
first 10 to 30 minutes. Interestingly, we found that all of the
three pancreatic lipases (including murine, data not shown)
1232
could release all three acyl chains from GTL and produce
fatty acids and glycerol. Although this was delayed for
PNLIP (Figure 2H), it was parallel in case of both
PNLIPRP2 and CEL (Figure 2, I and J). Overall, on the
basis of optimal CEL activity requiring bile acid concen-
trations much above those present in necrotic collections, it
seems that PNLIP and PNLIPRP2 are more likely to
contribute to the lipotoxic generation of fatty acids during
the progression of pancreatic fat necrosis. The pancreatic
lipases were then compared in inducing lipotoxic cell injury
in a manner relevant to SAP.

PNLIP and PNLIPRP2 Cause More Lipotoxic Cell Injury
than CEL under Conditions Simulating Severe AP

It was first determined whether the renal failure noted in ob/
ob mice with extensive fat necrosis (Figure 1) could occur
because of the fatty acids generated. LA was administered
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Comparison of the lipolysis by pancreatic lipases using conditions relevant to human pancreatitis. AeC: Parameters [bile acid (A), nonesterified
fatty acids (NEFAs; B), and linoleic acid (C)] measured in human pancreatic fluid collections of biliary and nonbiliary origin. D and E: Comparison of the ability
of 1 mg/mL of human (D) and murine (E) pancreatic lipases to hydrolyze 600 mmol/L glyceryl trilinoleate (GTL) at pH 7.4 in the absence of bile acids. F and G:
Effect of different concentrations of sodium taurocholate on human (F) and mouse (G) carboxyl ester lipase (CEL), as measured by the free fatty acid (FFA)
generated by GTL (600 mmol/L) lipolysis over 1 hour. HeJ: Comparison of the rate of FFA production with glycerol generation by GTL (600 mmol/L) lipolysis
among the three pancreatic lipases. Although there is an initial delay in generating glycerol by pancreatic triacylglycerol lipase (PNLIP), by 4 hours, both
glycerol and FFA are equivalent. Data are expressed as means � SEM. CON, control; PNLIPRP2, pancreatic lipase-related protein 2.

Lipases Mediating Acute Lipotoxicity
at 0.2% body weight to lean (CD-1) mice, and renal injury
was studied (Figure 3, AeD). This amount is based on LA
comprising approximately 20% of fatty acids of visceral fat
necrosis in humans1,3 (Figure 2C), and visceral adipose
(composed predominantly of triglyceride69e71) forms
approximately 3% of the body weight of an adult human.74

Thus, assuming that severe fat necrosis in pancreatitis can
hydrolyze a third or more of visceral fat, the LA dose (0.2%
body weight) is relevant to the pathophysiology being
studied. LA caused renal tubular injury, evidenced by an
increase in TUNEL-positive renal tubular cells (Figure 3, B
and C), whereas glomeruli were not injured. This was
associated with an increase in serum blood urea nitrogen
(Figure 3D). In addition, LA (100 mmol/L) directly caused
injury to the renal cell line (HEK 293), as evidenced by a
time-dependent increase in caspase-3 activity and PI uptake
(Supplemental Figure S2). This parallel increase is
consistent with the multiple cell injury pathways,1

including cytochrome c release (which would trigger
effector caspases), along with a decrease in ATP levels31

(which would result in necrosis), associated with
increased annexin V staining and PI uptake,3 which are
The American Journal of Pathology - ajp.amjpathol.org
caused by long-chain unsaturated fatty acids, including LA.
Therefore, noting that lipotoxicity during AP can cause
renal injury as well as injury to HEK 293 cells, this cell line
was used to identify the lipase that may mediate the renal
component of systemic injury.

Mouse pancreatic lysate, prepared in HEPES buffer (pH
7.4), was added to HEK 293 cells, alone or along with GTL
(600 mmol/L) or lipase inhibitor, orlistat (50 mmol/L)
(Figure 3, EeG). As can be seen, there was an appropriate
increase in lipase activity in the medium, which was
measured at the end of the 2-hour incubation period. This
was prevented by orlistat (Figure 3E). Over the incubation
period, hydrolysis of GTL by the lysate increased glycerol
in the medium (Figure 3F). The lipolysis of GTL resulted in
necrosis LDH leakage (Figure 3G), along with an increase
in PI fluorescence and a large decrease in cellular ATP
levels (Supplemental Figure S3). Orlistat, which inhibited
pancreatic lipases, reduced glycerol generation by 70% and
significantly reduced the ensuing cell injury (Figure 3,
EeG, and Supplemental Figure S3). The partial reduction in
glycerol generation is likely because of the early rapid
lipolysis (within 10 to 30 minutes) (Figure 2, DeJ), whereas
1233
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Figure 3 Renal injury induced by the lipolytic product of glyceryl trilinoleate [GTL; ie, linoleic acid (LA)]. AeD: In vivo renal injury induced by linoleic acid.
A and B: TUNEL staining in renal tubules of control (CON) mice (A) and those given LA (B). Glomeruli (dashed ovals) were not TUNEL positive. C and D:
Quantification of TUNEL-positive cells (C) and serum blood urea nitrogen (BUN) at the time of necropsy (D). EeG: Effect of lipolysis of GTL (600 mmol/L) by
pancreatic lysate on injury to the HEK 293 renal cell line. Lipase activity (E), glycerol (F), and lactate dehydrogenase (LDH) leakage (G), measured after the
addition of pancreatic lysates (lysate) alone or in the presence of the triglyceride GTL (600 mmol/L). When used, the lipase inhibitor orlistat (ORLI; 50 mmol/L)
was added immediately before addition of GTL. All these phenomena, induced in the presence of lysates and GTL, are significantly reduced by orlistat. Lipolysis
of GTL is essential to induce injury. Data are expressed as means � SEM (CeG). n Z 6 to 8 mice per group (AeD). *P < 0.05, ***P < 0.001 versus control;
yP < 0.05 versus without orlistat. Scale bars: 100 mm (A and B).
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orlistat competes with GTL for the active site of the lipases.
This, however, was insufficient to cause cell injury, which
previously has been shown to be dependent1 on the con-
centration of fatty acids in this medium.

To compare the ability of individual lipases in medi-
ating lipotoxic renal injury, the lipases were overex-
pressed in HEK 293 cells and the same end points were
measured (Figure 4). Lipase expression resulted in 300 to
400 U/L of measurable activity to be present in the me-
dium the next morning. In the absence of bile acids, CEL
had only 10% to 15% of the activity of PNLIP (data not
shown). Addition of GTL to the medium in the PNLIP
and PNLIPRP2 transfected wells resulted in an increase in
glycerol generation (29 � 6 mm in PNLIP versus 51 � 14
mm in PNLIPRP2; P Z 0.14), LDH leakage, and a large
decrease in ATP levels (Figure 4, AeC), which were
similar to what was noted after the addition of pancreatic
lysate and previously in pancreatic acinar cells exposed to
GTL.3 This was not observed with CEL. Hydrolysis of
triglyceride (as may occur with hypertriglyceridemic
pancreatitis) was essential to the injury induced by both
PNLIP and PNLIPRP2 because the injury increased in a
time-dependent manner after addition of GTL (Figure 4,
DeF) and did not occur in the absence of GTL. Moreover,
overexpression of the inactive mutants of PNLIP
(p.S196G) and PNLIPRP2 (p.S184G) did not result in
injury to HEK 293 cells (Supplemental Figure S4).
Therefore, although the transfection of lipases or their
expression alone did not result in cell injury, lipolysis of
the surrounding triglyceride with consequent generation
1234
of long-chain unsaturated fatty acids can result in injury to
the same cells that produce these lipases. Therefore, in
addition to identifying the lipases responsible for renal
cell injury, these studies also simulate lipotoxic injury to
acinar cells adjacent to ones that leak lipases into fat
necrosis, such as the previously shown perifat acinar ne-
crosis during pancreatitis.1,55

The relevance of these findings was further confirmed
by adding recombinant human CEL, PNLIP, or
PNLIPRP2 to parotid acini, which model an exocrine cell
system lacking lipases (Supplemental Figure S5), and also
to HEK 293 cells (data not shown). Parotid acini are
morphologically similar to pancreatic acini because the
cells are polarized and are normally present in clusters. In
addition, these cells exhibited lipotoxic injury similar to
pancreatic acini (Supplemental Figure S5, AeD). Because
these cells lack enzymes with the activity of pancreatic
lipases, and are therefore unlike pancreatic acini and are
resistant to lipotoxic injury from the hydrolysis of tri-
glycerides (Supplemental Figure S5, EeG), they can
serve as a model to identify lipases that cause exocrine
acinar injury.
In both parotid acini (Figure 5) and HEK 293 cells, the

hydrolysis of GTL was essential for cell injury (ie, LDH
leakage and PI uptake) and the mere presence of the re-
combinant lipase caused no injury in either of these models.
Although both PNLIP and PNLIPRP2 increased lipolysis of
GTL and consequent cell injury without STC, exogenous
addition of CEL alone was ineffective in hydrolyzing GTL
at bile acid concentrations relevant to necrosis collections
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Comparison of pancreatic lipase overexpression in mediating injury in the kidney cell line HEK 293. A: Mouse lipases were overexpressed in HEK
293 cells and underwent Western blot analysis (bands at top of panel) using actin as a loading control. AeC: The ability to induce triglyceride hydrolysis was
measured as glycerol generation (A) from the lipolysis of exogenously added glyceryl trilinoleate (GTL; 600 mmol/L) over 5 hours, and the resulting cell injury
was measured as lactate dehydrogenase (LDH) leakage (B) into the medium or ATP decrease in the cell pellet (C). Note the lack of effect of carboxyl ester lipase
(CEL). DeF: Effect of adding GTL on the increase in active caspase-3 staining (D), propidium iodide (PI) uptake (E), and LDH leakage (F), induced by mouse
pancreatic triacylglycerol lipase (PNLIP) and pancreatic lipase-related protein 2 (PNLIPRP2) versus control (CON), as a function of time. Data are expressed as
means � SEM. *P < 0.05 versus control.

Lipases Mediating Acute Lipotoxicity
(Figure 2A and Figure 5, AeF). CEL could induce a sig-
nificant increase in lipolysis and cell injury only when �100
mmol/L STC was present (Figure 5, GeI). These findings
again confirmed that CEL, unlike PNLIP or PNLIPRP2,
requires bile acid concentrations above those prevalent in
local pancreatic necrosis or in the systemic in vivo
environment.
Discussion

Results show that, although PNLIP and PNLIPRP2 are
equipotent in mediating lipotoxicity via triglyceride hydro-
lysis, CEL is unlikely to have a major role in this phenom-
enon. This may be relevant to how obesity may worsen local
necrosis and AP outcomes58e65 and also to how hyper-
triglyceridemia associated with AP75,76 may worsen systemic
injury, resulting in SAP. The role of lipolysis is supported by
previous studies showing that lean rodents with AP do not
develop fat necrosis and have a mild self-limited course of
AP.3,31 This is unlike rodents that are obese or have increased
visceral triglyceride; the adverse outcomes in these rodents
are averted by inhibition of visceral fat lipolysis. Several
studies show that features of SAP, including renal failure, can
be worse in hypertriglyceridemic AP,5,14e16,77,78 in which the
increased circulating triglyceride may undergo unregulated
lipolysis.5

The in vitro modeling uses a triglyceride substrate, a cell
type commonly injured in SAP (ie, acinar cells or renal
tubular cells) and a source of pancreatic lipase (ie,
The American Journal of Pathology - ajp.amjpathol.org
overexpression or exogenous addition of lipase). This pro-
vides a reductionist model of local pancreatic and renal injury
noted in vivo. The data in HEK 293 cells are relevant to local
and kidney injury, which commonly occurs in severe
AP,12,16,79e81 whereas the data of parotid acini are relevant to
identifying individual lipases mediating exocrine acinar
injury because dual pancreatic lipase knockouts are lethal.37

Moreover, because acinar cells for single (eg, PNLIP)
lipase knockouts would still contain the other two lipases (ie,
PNLIPRP2 and CEL) and would not allow for the identifi-
cation of individual lipases, a cell type that lacks lipases (ie,
parotid acinar cells) was used. Parotid acinar cells replicate
the relevant phenotype of pancreatic acinar cells in being
susceptible to LA lipotoxicity (Supplemental Figure S5).
Because the location of the substrate in vivo can be in the
circulation (eg, elevated triglyceride) or in the immediate
vicinity (eg, adipocyte triglyceride in or around the pancreas)
(Figure 1A), GTLwas added to the medium in which the cells
were suspended. Although similar modeling has been previ-
ously done using adipocytes and acinar cells,1,55 the use of a
pure triglyceride, like GTL, avoids the confounding effects of
the type of fatty acid or its location on the glycerol backbone
on the degree of lipolysis achieved.

It was first noted that fat necrosis, compared with normal
fat tissue, has higher pancreatic lipase amounts on Western
blot analysis and activity using a pancreatic lipase activity
assay that contains colipase and bile acids, but lacks the
ATGL cofactor CGI-58. Conversely, there was a decrease in
the amount of hormone-sensitive lipase or ATGL
(Figure 1D) in the necrosed fat on the basis of Western blot
1235
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Figure 5 Bar graphs comparing human pancreatic triacylglycerol lipase (hPNLIP; 1 mg/mL), human pancreatic lipase-related protein 2 (hPNLIPRP2; 1
mg/mL), and human carboxyl ester lipase (hCEL; 4 mg/mL) on lipotoxic parotid acinar necrosis. Parotid acini were exposed to exogenous glyceryl trilinoleate
(GTL; 300 mmol/L) in the presence of recombinant lipases. In case of hPNLIP and hPNLIPRP2, no bile acids were present in the medium. The concentration of
sodium taurocholate (STC) used for CEL is shown under the corresponding bars. The experiments were performed for 4 hours. Lipolysis was measured by
glycerol release (A, D, and G), and cell injury in terms of lactate dehydrogenase (LDH) leakage (B, E, and H) and propidium iodide (PI) uptake (C, F, and I)
were measured with or without the lipase inhibitor orlistat (50 mmol/L). Note CEL required �100 mmol/L STC to induce cell injury. Data are expressed as
means � SEM. n Z at least 3 independent experiments. *P < 0.05 versus control (CON); yP < 0.05 versus without orlistat. dsDNA, double-stranded DNA.
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analysis, perhaps because of proteolysis by pancreatic pro-
teases, the amounts of which also increased in the fat ne-
crosis (data not shown).

To understand the milieu in which individual pancreatic
lipases mediate fat necrosis, human pancreatic necrosis
collection was analyzed and biliary AP-associated col-
lections were found to have 41 � 17 mmol/L bile acids and
approximately 2 mmol/L fatty acids (Figure 2, AeC).
Under these conditions, pancreatic lysate (Figure 3, EeG),
PNLIP and PNLIPRP2, can hydrolyze a triglyceride
relevant to human pancreatic necrosis (GTL) satisfactorily
(Figure 2, DeG) and trigger lipotoxicity (Figures 4 and 5,
AeF). However, CEL required bile acid concentrations
much higher than those prevalent in the necrotic collec-
tions. This is consistent with previous studies showing
CEL being less efficacious in hydrolyzing substrates with
>16 carbon acyl chains effectively,67,68 such as would be
the precursors of NEFA in human fat necrosis.1,3 Inter-
estingly, all three pancreatic lipases can hydrolyze all
three fatty acids off the glycerol backbone of GTL
(Figure 2, HeJ).
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The presence of GTL was essential for lipotoxicity, which
was prevented by orlistat and the inactive lipases, and
neither the lysate (despite the presence of other active en-
zymes) nor the lipases could induce injury on their own.
Thus, lipolysis of visceral triglyceride is essential to the
lipotoxic manifestations of SAP. The lipolytic product of
GTL (ie, LA) can directly cause renal injury (Figure 3,
AeC) and has previously been shown to cause pancreatic
acinar injury.1,31 LA has previously shown to be increased
in human pancreatic necrotic collections3 in the sera of se-
vere AP8 and hypertriglyceridemic patients,75,76,82,83 who
often develop SAP,16,81 and is therefore a likely mediator of
the effects resulting from unregulated lipolysis by pancreatic
lipases. Renal tubular injury has previously been noted in
autopsies of patients dying with SAP,1 and this damage is
routinely seen in the kidneys of rodents with SAP.1e4 This
rationale underlies our choice of GTL in these studies.
Lipotoxicity was observed from the lipolytically generated
LA at 30 to 50 mmol/L glycerol in serum-free media
(Figure 4 and Supplemental Figure S2) and at >100 mmol/L
glycerol for those done in the HEPES medium containing
ajp.amjpathol.org - The American Journal of Pathology
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0.1% albumin (Figure 3, EeG, and Figure 5). This is
consistent with previous studies on LA toxicity in similar
media1,3,31 and the ability of albumin to noncovalently
interact with multiple molecules of unsaturated fatty
acids,84,85 function as their carrier, and thereby reduce their
lipotoxicity.

Although CEL,86 like amylase,87 was reported to be
elevated in the sera of patients with SAP more than two
decades ago, these findings have not been reproduced.
Moreover, the study did not compare PNLIP and
PNLIPRP2 levels to those of CEL.86 In addition, elevation
of serum markers does not reflect their direct role in medi-
ating fat necrosis in the abdominal cavity. Interestingly,
CEL has been shown to play a crucial role in dietary fat
absorption in neonatal mice37 and to mediate the formation
of fatty acid ethyl esters,88 but it is absent in the panniculitis
associated with pancreatitis-panniculitis-polyarthritis syn-
drome.6 Our findings of low (41 � 17 mmol/L) bile acid
concentrations in necrotic collections suggest that these bile
acids do not contribute to the lipotoxicity of AP. These
findings also resonate well with the fact that the risk of
severe AP is similar in biliary AP and other etiologies, such
as alcoholic AP,89e91 and the clinical observation that
procedures to relieve biliary obstruction during AP do not
improve outcomes unless there is associated cholangitis.92,93

Therefore, these low concentrations of bile acids in necrotic
collections may be insufficient to contribute to clinical
outcomes. In addition, previous studies, showing that
millimolar concentrations of bile acids reduce the lipase
activity of PNLIP and PNLIPRP2,94,95 further bring into
question the role of bile acids in causing the lipotoxicity
found in AP.

The findings that both PNLIP and PNLIPRP2 are present
in fat necrosis (Figure 1C) and that their exogenous addition
or overexpression can mediate lipotoxic injury in cells
support a potentially redundant role of these lipases in acute
lipotoxicity if they were present in an equimolar amount.
However, because the pancreas makes larger amounts of
PNLIP compared with PNLIPRP2, PNLIP likely plays the
larger role in fat necrosis.95,96

There are limitations posed by our lack of knowledge
about the mechanisms that may protect against lipotoxicity
and how these differ in pancreatic versus parotid acinar
cells. For example, pancreatic acinar cells have antiprotease
mechanisms, including the pancreatic secreted protease in-
hibitor and serine protease inhibitor Kazal types 1 and 3,
whose mutations increase the risk of hereditary pancrea-
titis.97,98 However, because the mechanisms to reduce lip-
otoxicity or neutralize lipases remain unknown, we cannot
comment on their effect on the parotid cell system. How-
ever, because the end point of LA-induced cell death is the
same in both cell types (Supplemental Figure S5, C and D),
this is likely to affect our interpretation only minimally. In
addition, although CEL does not increase glycerol, cause
LDH leakage, or decrease ATP levels in HEK 293 cells, it
remains unknown whether upstream cell death pathways
The American Journal of Pathology - ajp.amjpathol.org
may have been initiated by CEL in these cells. Last, the
triglyceride of only a single fatty acid (ie, LA) was used and
only a single bile acid (ie, STC) was used, on the basis of
their being abundant in fat necrosis and human bile,72

respectively. Whether the triglycerides of other fatty acids
or other bile acids would behave differently was not tested.
Previous studies showing that CEL poorly hydrolyzes the
esters of fatty acids with chains of �16 carbons67,68 suggest
that our findings, showing CEL did not significantly in-
crease GTL hydrolysis under conditions relevant to fat ne-
crosis, may also be relevant to other triglycerides whose
lipolytic products are enriched in fat necrosis.1,3 Last, STC
(the sodium salt of taurine-conjugated cholic acid) was used
because cholic acid forms most of the human bile acid
pool.72 Although deoxy cholic acid comprises 30% to 40%
of human bile, its sodium salt has been previously shown to
be a less efficacious cofactor of CEL73 than STC. Therefore,
choosing different bile acids is unlikely to affect the
conclusion that CEL plays an unlikely role in human fat
necrosis.

In summary, our studies are consistent with a role for
PNLIP and PNLIPRP2 in contributing to the lipotoxicity
present in SAP. In contrast, CEL likely makes a smaller
contribution to lipotoxicity, in part because peripancreatic
bile acid concentrations are too low to stimulate maximal
activity. The relative contributions of PNLIP and
PNLIPRP2 to lipotoxicity remain unclear, although the
larger amounts of PNLIP produced in the pancreas support a
major role for PNLIP. Additional studies are required to
determine whether the genetic deletion or pharmacologic
inhibition of PNLIP, alone or in combination with
PNLIPR2, will be a viable therapy to treat or prevent SAP.
Supplemental Data

Supplemental material for this article can be found at
http://doi.org/10.1016/j.ajpath.2019.02.015.
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