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Abstract
BACKGROUND
Progressive familial intrahepatic cholestasis (PFIC) refers to a disparate group of
autosomal recessive disorders that are linked by the inability to appropriately
form and excrete bile from hepatocytes, resulting in a hepatocellular form of
cholestasis. While the diagnosis of such disorders had historically been based on
pattern recognition of unremitting cholestasis without other identified molecular
or anatomic cause, recent scientific advancements have uncovered multiple
specific responsible proteins. The variety of identified defects has resulted in an
ever-broadening phenotypic spectrum, ranging from traditional benign recurrent
jaundice to progressive cholestasis and end-stage liver disease.

AIM
To review current data on defects in bile acid homeostasis, explore the expanding
knowledge base of genetic based diseases in this field, and report disease
characteristics and management.

METHODS
We conducted a systemic review according to PRISMA guidelines. We performed
a Medline/PubMed search in February-March 2019 for relevant articles relating
to the understanding, diagnosis, and management of bile acid homeostasis with a
focus on the family of diseases collectively known as PFIC. English only articles
were accessed in full. The manual search included references of retrieved articles.
We extracted data on disease characteristics, associations with other diseases, and
treatment. Data was summarized and presented in text, figure, and table format.
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RESULTS
Genetic-based liver disease resulting in the inability to properly form and secrete
bile constitute an important cause of morbidity and mortality in children and
increasingly in adults. A growing number of PFIC have been described based on
an expanded understanding of biliary transport mechanism defects and the
development of a common phenotype.

CONCLUSION
We present a summary of current advances made in a number of areas relevant
to both the classically described FIC1 (ATP8B1), BSEP (ABCB11), and MDR3
(ABCB4) transporter deficiencies, as well as more recently described gene
mutations -- TJP2 (TJP2), FXR (NR1H4), MYO5B (MYO5B), and others which
expand the etiology and understanding of PFIC-related cholestatic diseases and
bile transport.

Key words: Cholestasis; Progressive familial intrahepatic cholestasis; Benign recurrent
intrahepatic cholestasis; Intrahepatic cholestasis of pregnancy; Drug induced cholestasis;
Bile acids; Bile transport
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Core tip: Progressive familial intrahepatic cholestasis is a heterogeneous cohort of
diseases that present both diagnostic and treatment challenges for clinicians. Significant
advancement in the knowledge base related to the genetic underpinnings regulating bile
acid transport physiology has enabled new diseases to be identified with a breadth of
phenotypes from neonates to adults.
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INTRODUCTION
Progressive familial intrahepatic cholestasis (PFIC) refers to a heterogeneous group of
autosomal recessive disorders that are linked by the inability to appropriately form
and excrete bile from hepatocytes, resulting in a hepatocellular form of cholestasis.
While  the  diagnosis  of  such  disorders  had  historically  been  based  on  pattern
recognition of unremitting cholestasis without other identified molecular or anatomic
cause, recent scientific advancements have uncovered multiple specific responsible
proteins.  The  variety  of  identified  defects  has  resulted  in  an  ever-broadening
phenotypic  spectrum,  ranging  from  traditional  benign  recurrent  jaundice  to
progressive cholestasis and end-stage liver disease.

Bile is a unique aqueous secretion of the liver that is formed by the hepatocyte and
modified  downstream  by  absorptive  and  secretory  properties  of  the  bile  duct
epithelium. It is a combination of lipids (mainly phosphatidylcholine), bile acids,
cholesterol,  bilirubin,  and other substances that  serve to move toxins and waste
metabolites out of the liver and into the gut for excretion[1]. Micellarized bile is then
reabsorbed in the enterohepatic circulation in the distal small bowel via the apical
sodium dependent bile transporter (ASBT; SLC10A)[2]. Bile salts are synthesized in
hepatocytes and transported across the canalicular membrane via the bile salt export
pump (BSEP); the expression and trafficking of which is regulated by the farnesoid X
receptor (FXR) and dependent upon of MYO5B respectively[3,4]. The stability of the
canalicular membrane, in which the BSEP transporter lies, is dependent on the FIC1
ATPase that  regulates the phospholipid balance and the ABC translocase MDR3
which moves phosphatidylcholine across the canalicular membrane to inactivate bile
acids. The integrity of the system is in part dependent upon hepatocyte connections,
such as the TJP2-anchored tight junctions, which protect hepatocytes from bile salt
reflux  and subsequent  damage[4]  (Figure  1).  Defects  in  these  bile  acid  transport
processes result in the accumulation of bile salts in the hepatic parenchyma, which are
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toxic due to their detergent nature, and the phenotypic manifestations collectively
known as PFIC.

MATERIALS AND METHODS
This systematic  review was conducted according to the PRISMA guidelines.  We
searched Medline/PubMed in February–March 2019 for established cases of PFIC as
well as reports of defects in PFIC-related genes contributing to morbidity in adult
populations. English language only articles that were fully accessible were included in
the review. Data was manually extracted on disease characteristics in established
PFIC patients. Associated phenotypes with other diseases relating to specific genetic
defects were also collected. Treatment strategies were summarized. Data was collated
and presented in text, figure, and table format.

Statistical analysis
Descriptive statistics were utilized to present the data. The statistical methods of this
study were reviewed by Suraj Nepal, lead data analyst from the UPMC Children’s
Hospital of Pittsburgh department of surgery.

RESULTS
A summary of currently understood protein mechanisms, whose functions are critical
to bile acid homeostasis, and whose dysfunction results in a phenotype of PFIC is
presented in Figure 1. A gene-specific search identified 52 ATP8B1, 158 ABCB11, 250
ABCB4,  56  TJP2,  48  MYO5B,  and 363 NR1H4  articles.  Manual  review to identify
association with liver disease in humans revealed reports summarized in the current
manuscript. The three “Historical” PFIC diseases, the expanded phenotypes, and
emerging data on contributing morbidity in non-pediatric populations relating to
defects in PFIC-related genes are summarized.

Historical PFIC
ATP8B1 (FIC1, PFIC1, Byler’s disease): The first reported PFIC, progressive familial
intrahepatic cholestasis type 1, also called Byler’s disease, was described 1969 in seven
Amish children (from the  original  Byler  kindred in  Western  Pennsylvania)  as  a
progressive  cholestatic  disease  with  associated  extrahepatic  symptoms[5].  The
causative ATP8B1 gene and corresponding FIC1 protein was identified by Bull et al[6]

in 1998 by analyzing the genetics of patients from the initial Amish cohort as well as
patients from Northern Europe with benign recurrent intrahepatic cholestasis type 1
(BRIC1). Definitive FIC1 function remains ambiguous. Current understanding of its
action as an aminophospholipid translocase which transports phospholipids from
outside to inside the canalicular membrane is based on studies in Atp8b1-deficient
mice[7]. Additional modifiers of disease phenotype, such as mutation-specific effects
on FIC1 trafficking from the endoplasmic reticulum to the canalicular membrane,
have been proposed[8]. Ultimately, without appropriate concentrations of intracellular
phospholipids,  bile  acids  accumulate  intracellularly  and  are  cytotoxic  to  the
hepatocyte due to their detergent nature[9].

Deficient or defective FIC1 results in a low gamma glutamyl (GGT) cholestasis that
often presents in the neonatal period, though milder forms with transient jaundice
may present later in life[1,9,10]. Affected individuals have hyperbilirubinemia, mildly
elevated  transaminases,  and  elevated  serum  bile  acids.  Infants  often  present
jaundiced, with pruritis and hepatosplenomegaly developing over the first months of
life.  Severe  disease  manifests  with  persistent,  progressive  cholestasis  and  the
development of portal hypertension often in early childhood. Extrahepatic disease is
also notable due to the broad distribution of FIC1, which can clinically distinguish
FIC1  deficiency  from  other  forms  of  intrahepatic  cholestasis.  Affected  children
frequently  exhibit  profound  diarrhea,  poor  growth,  short  stature,  pancreatic
insufficiency, elevated sweat chloride, and sensorineural deafness[4,10]. Histopathology
demonstrates canalicular cholestasis with biliary plugs, giant cell transformation,
ductular  paucity,  and  lobular  disarray[11].  Visualized  bile  is  termed  as  “bland”
granular (Byler’s) bile[9,12].

Treatment for FIC1 deficiency, as with all PFIC diseases, is challenging with no
definitive medical therapies available. Supportive measures are focused on improving
nutritional  deficiencies  and  managing  complications  of  end  stage  liver  disease.
Patients should be treated with caloric, fat, and vitamin supplementation, with the
majority  of  fat  being medium chain  triglycerides[9].  Ursodeoxycholic  (UDCA),  a
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Figure 1

Figure 1  Molecular mechanisms of cholestasis at the apical hepatocellular membrane. FXR: Farnesoid X receptor; RXR: Retinoid x receptor alpha; ABCB11:
ATP binding cassette subfamily B member 11; MYO5B: Myosin VB; RAB11A: Ras-related protein Rab11a; FIC1: Familial intrahepatic cholestasis 1; BSEP: Bile salt
export pump; MDR3: Multidrug resistance 3; TJP2: Tight junction protein 2.

hydrophilic bile acid which replaces hydrophobic bile salts and may also induce BSEP
and MDR3 expression, can improve pruritis and biochemical markers of cholestasis[9].
Other antipruritic agents (Table 1) such as rifampin and cholestyramine may also be
utilized  but  are  often  less  helpful  in  FIC1  deficiency[9,10].  Certain  CFTR  folding
correctors have been shown to improve defective trafficking of FIC1 in cell culture [13];
however, studies in human subjects are lacking.

When medical therapy is insufficient, surgical intervention may be considered with
the goal of bypassing the enterohepatic circulation and/or decreasing reabsorption of
bile salts (Figure 2). Procedures including partial external biliary diversion (PEBD),
partial  internal  biliary diversion,  and ileal  exclusion have generally,  though not
uniformly, resulted in sustained clinical improvement in PFIC patients[14-16]. A large
surgical experience has been described in FIC1 deficiency[14-16].

Early procedures including PEBD were first reported more than 20 years ago[17].
PEBD utilizes an external stomal conduit (generally a cholecystojejunal cutaneous
stoma) to enable partial, unregulated external bile flow, resulting in decreased bile
acids in the enterohepatic circulation and reports of improved pruritis, growth, and
possibly hepatic fibrosis[14,17]. Remarkably, PEBD has been recognized to provide an
alternative  to  transplant,  with  many  patients  surviving  with  their  native  liver.
However, complications can occur including recurrent episodes of pruritis, possible
need  for  biliary  diversion  revision,  continued  need  for  aggressive  vitamin
supplementation, or progressive disease necessitating liver transplant[14,18,19].

An alternative to PEBD is the ileal bypass (IB, or ileal exclusion)[20]. This technique
bypasses the distal 15% of the ileum to avoid the major site of bile acid reabsorption
and is particularly useful in patients without an intact gall bladder[20]. Unfortunately,
severe malabsorption can occur and refractory disease has been reported[18,21,22].

More recently, partial internal biliary diversions (PIBD) has been described. The
procedure may involve the creation of a neo-conduit between the gall bladder and the
colon to prevent reabsorption of bile acids in the terminal ileum. This procedure may
utilize  a  cholecystojejunocolonic,  cholecystoileocolonic,  cholecystocolostomy,  or
cholecystoappendicocolonic  anastomosis  technique[22,23].  Reports  in the literature
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Table 1  Medical management of pruritus in children

Medicine Dose Mechanism of action

Cholestyramine Initial dose: 2 g BID Ion exchange resin which acts as BA binder in the
intestine

(max dose 24 g/d) Decreased ileal BA absorption, Increased BA
excretion (in feces)

Naltrexone Initial dose: 0.25-5 mg/kg per day Opioid antagonist

(max dose 50 mg/d) Block the permissive activity on pruritus neuronal
signaling

Rifampicin Initial dose: 5 mg/kg PXR agonist

Induces CYP3A4

(max dose 20 mg/kg per day) Increases metabolism and renal excretion of
pruritogenic substances

Antibacterial effect may modify intestinal
metabolism of pruritogenic substances

Sertraline Initial dose: 1 mg/kg per day Serotonin reuptake inhibitor

(max dose: 4 mg/kg per day) Proposed mechanism includes increase in central
serotonergic tone, which regulates pruritus

Ursodeoxycholic acid 600 mg/m2 per day Tertiary BA

Increases bile secretion

Reduces ileal absorption of hydrophilic BAs

BA: Bile acid; PXR: Pregnane X receptor.

suggest patients experience not only improvement of intractable pruritis and sleeping
difficulties, but also significant biochemical decrease in both bilirubin and plasma bile
acids[21-23]. Side effects described are most notable for diarrhea, which improved with
cholestyramine[21,23].  Notably,  no  single  procedure  has  demonstrated  definitive
superiority with center-experience likely driving center-specific approaches. Newer
therapeutics  including inhibitors  of  the  ileal  apical-sodium dependent  bile  acid
transporter (ASBT) which effectively act as a ‘chemical’ biliary diversion are currently
under investigation (NCT03566238)[24].

Liver transplant is indicated in those with a refractory course and in those who
develop end stage  disease.  While  hepatocellular  carcinoma as  an  indication  for
transplant has been reported in other PFIC diseases, FIC1 deficiency is not known to
associate with tumor development. However, mutations in ATP8B1 have been found
while sequencing hepatocellular carcinoma in patients without cholestatic disease[25].
Importantly, patients should be counseled that the diarrhea associated with FIC1
deficiency may persist, or even worsen, following transplant. This phenomenon has
been reported concomitant  with the development of  both allograft  steatosis  and
fibrosis,  which can progress requiring re-transplantation[9,26].  In order to prevent
damaging steatosis in the graft, ileal diversion at the time of transplant has sometimes
been utilized[27].

Notably, the recognition of variable disease courses and responses to therapy in
individuals with identical ATP8B1 mutations would suggest the presence of disease
modifiers[10,14]. While the majority of FIC1 deficiency presents in childhood, mutations
in the ATP8B1 gene may also lead to more mild manifestations of disease including
BRIC1  and  intrahepatic  cholestasis  of  pregnancy  type  1  (ICP1)[28-30].  Dozens  of
mutations have been described, with missense mutations being more common in
BRIC1  patients  and  nonsense  or  large  deletions  more  common  in  severe  FIC1
disease[31].

ABCB11  (BSEP, PFIC2):  Historical PFIC2 results from defects or deficiency in the
BSEP  encoded  by  ABCB11.  The  location  of  the  defect  was  initially  mapped  to
chromosome 2q24 to be positional match to BSEP, which had been cloned previously
in the mouse genome and was shown soon after to export bile acids[32,33]. This defect
results in a severe hepatobiliary phenotype due to impairment of bile salt handling
and subsequent damage to hepatocytes[9]. As of this writing, more than 200 causative
mutations have been identified[34]. Affected infants initially present jaundiced, with
pruritis developing around 4-5 mo of age and often progressing to the development of
portal hypertension within the first year of life[9,35,36]. Scleral icterus, hepatomegaly,
excoriation of skin, and poor growth due to fat malabsorption and fat-soluble vitamin
deficiency may also be apparent due to cholestasis, though extrahepatic symptoms are
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Figure 2

Figure 2  Representative surgical interventions for progressive familial cholestasis. A: Partial external biliary diversion; B: Partial internal biliary diversion using
a cholecystocolostomy approach; C: Ileal bypass/exclusion.

less significant than in FIC1 deficiency[4,9].  Laboratory findings demonstrate a low
GGT cholestasis with transaminases typically more than twice the upper limit of
normal[36]. Similar to FIC1 deficiency, treatment is primarily supportive and focuses on
nutritional  supplementation  and  antipruritic  agents.  Zebrafish  models  of  BSEP
deficiency suggest  a  potential  role  for  therapies  aimed at  promoting alternative
transporters to excrete bile[37] while reports in human subjects using cell surface BSEP-
enhancer  molecules  (i.e.,  4-phenylbutyrate)  alone[38]  or  as  part  of  a  cocktail  of
medications[39]  have  shown  promise.  Both  approaches  require  more  complete
investigation, which may be facilitated through new disease models using patient-
specific  induced  pluripotent  stem  cell-derived  hepatocyte  like  cells[40].  Surgical
interruption of  the  enterohepatic  circulation  may improve  pruritis  but  may not
change the course of disease[16]. Notably, the response to diversion has been shown to
be  dependent  on  the  gene  defect,  with  those  who  retain  some  residual  protein
function having better outcomes than those with mutations resulting in severely
dysfunctional or absent protein[41,42].  Pathology typically demonstrates canalicular
cholestasis, hepatocellular disarray, and lobular and portal fibrosis[9]. Importantly,
there  is  up to  15% rate  of  malignancy (hepatocellular  carcinoma and cholangio-
carcinoma)  that  has  been described in  children as  young as  13  mo[43].  Therefore,
patients with PFIC2 should be screened for malignancy with an alpha-fetoprotein
(AFP) level and abdominal ultrasound every 6-12 mo[9].  Liver transplant has been
successfully used to treat severe BSEP disease and in those who develop tumor. While
organ replacement has historically been considered a ‘’cure’’, patients can develop
allo-reactive antibodies specific to the extracellular loop of the BSEP protein resulting
in  an  immune  mediated  recurrence  of  their  BSEP  disease  in  the  allograft[44-46].
Monitoring for disease recurrence is critical as most disease will respond to increased
immunosuppression. However, with refractory disease recurrence, more intensive
management such as B-cell depleting antibody therapy[47], allogenic hematopoietic
stem cell transplant[48], and repeat solid organ transplant[49] may be required.

Similar to ATP8B1,  a phenotypic continuum has been recognized with ABCB11
mutations. Transient neonatal cholestasis, benign recurrent intrahepatic cholestasis
type 2 (BRIC2), intrahepatic cholestasis of pregnancy type 2 (ICP2), and drug induced
cholestasis have all been associated with abnormalities in BSEP[50,51]. Two mutations
have been found that prognosticate a modified disease course of BSEP disease: D482G
leads to a more slowly progressive disease with the development of cirrhosis at a later
age, and E297G results in PFIC2 or BRIC2 that may be more responsive to medical
therapy[4,9]. Drug induced cholestasis is often associated with the V444A mutation,
which leads to decreased BSEP expression, and specifically contraceptive induced
cholestasis has been associated with the 1331T>C polymorphism[52,53].

ABCB4 (MDR3, PFIC3): Also described as a cholangiopathy, PFIC3 is secondary to
defects in the multidrug resistance class 3 (MDR3) glycoprotein, encoded by ABCB4[54].
As  a  phospholipid  translocator,  MDR3  facilitates  the  incorporation  of
phosphatidylcholine into bile. Without phosphatidylcholine to neutralize bile acids,
the imbalance of free bile acids damages cholangiocytes, and cholesterol crystallizes
into liver-damaging stones[9].  As with other PFIC diseases, there is a spectrum of
disease that can be explained by the extent to which MDR3 is impaired by a particular
genetic mutation[55,56].  Those with a heterozygous mutation typically have a mild
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disease course, including forms of transient neonatal cholestasis[55,57]. Of the described
defects  in  MDR3,  the  majority  are  missense  mutations  that  result  in  defective
processing or intracellular transport;  while the minority have completely absent
MDR3 expression secondary to early truncation or destruction of the protein[9,55,57,58].
While presentation in the first months of life are reported, MDR3 deficiency more
often presents in late adolescence or even adulthood[59]. The phenotype of adults with
ABCB4  mutations  can  be  varied,  ranging  from  slowly  progressive  disease,
cholelithiasis,  ICP,  drug  induced cholestasis,  and benign  recurrent  intrahepatic
cholestasis[58]. In children and adolescents, symptoms are typically few, and the first
may be variceal bleeding secondary to portal hypertension[9]. A retrospective review
of 38 patients found that those diagnosed in childhood presented with pruritis around
1 year of age and most had hepatosplenomegaly, portal hypertension, and jaundice at
the time of presentation[58]. Pediatric disease has also been associated with growth
restriction,  reduced  bone  density,  and  learning  disabilities[58].  GGT  is  typically
elevated  at  presentation,  with  relatively  milder  elevation  of  transaminases  and
bilirubin[41,59]. Medical treatment should be initiated early in the disease course. Care is
supportive including nutrition supplementation and antipruritic agents, though it is
not clear if these therapies alter the disease course[4,55]. In vitro studies have suggested
that disease-associated mutations resulting in impaired ABCB4 trafficking may be
functionally rescued by chemical chaperones[56]. Temporizing surgical interventions as
described above are rarely successful due to the severity of disease when diagnosed
and liver  transplant  remains  the  only definitive  therapy[4,59].  Histology typically
demonstrates portal fibrosis and bile duct proliferation with mild giant cell hepatitis
at  disease  onset  with  occasional  intraductal  cholel i thiasis [ 9 ] .  MDR3
immunohistochemical staining will be absent, decreased, or potentially normal if
there are functional protein defects [9]. Carcinogenesis and the development of both
cholangiocarcinoma and hepatocellular carcinoma have been reported[9,60,61].

Expanded PFIC
TJP2 (TJP2): Recently, alternate proteins have been identified in whom mutations
result  in a phenotypic pattern that is  similarly to ‘’classic’’  PFIC disease,  mainly
cholestasis presenting in the neonatal period. The first of these identified stems from
loss of function mutations in TJP2 encoding the tight junction protein TJP2. TJP2 is
one of the intracellular anchors for tight junctions that seal canaliculi and prevent
damage from cytotoxic detergent bile salts[4,59]. To date the largest case series consists
of 12 infants from 8 families (most consanguineous) who presented ≤ 3 mo of age with
severe  liver  disease [62].  Though  still  exceedingly  rare,  advances  in  genetic
understanding has enabled retrospective re-classification suggesting TJP2 deficiency
may be more common than previously thought[63]. The disease results from biallelic
mutations in TJP2 with extrahepatic manifestation in the respiratory and neurologic
systems having been reported. The mechanism of injury is thought to relate to TJP2’s
function  maintaining  junction  integrity,  the  disturbance  of  which  enables  toxic
molecules  to  reflux  into  the  paracellular  space;  however,  this  is  not  clearly
described[62]. Though few samples are available, pathology demonstrates intracellular
cholestasis and giant cell transformation, with absence of TJP2 specific staining[4].
Several  mutations  have  been  noted  specific  to  the  families  who  manifested  the
disease, but it is not yet clear if some mutations pertain to less severe disease than
others or if there is a milder form of disease that may be appreciated in adult patients.
Hepatocellular carcinoma has been described at presentation in infants[64,65]. Due to the
severity  of  presentation,  9  of  the  initial  12  patients  described  underwent  liver
transplant; 2 have survived with portal hypertension, and one passed away of their
disease[62].

NR1H4  (FXR):  PFIC phenotype can also result  from mutations in NR1H4,  which
encodes the FXR, the nuclear receptor transcription factor which regulates BSEP
expression  via  negative  feedback  loop  and  induces  FGF19  to  repress  bile  acid
synthesis[4,66].  Patients reported with these defects are extremely rare, with only 5
patients  reported  in  the  literature[67,68].  Without  appropriate  regulation  of  BSEP,
patients with this defect have presented in the neonatal period with normal GGT
cholestasis, normal liver enzymes, elevated serum bile acids, extremely elevated AFP,
and  rapidly  progressed  to  end  stage  liver  disease  with  vitamin  K  independent
coagulopathy and hyperammonemia[67,68]. On native liver pathology, the patients were
found  to  have  intralobular  cholestasis  with  ductular  reaction,  hepatocellular
ballooning, giant cell transformation, and fibrosis with progression to micronodular
cirrhosis. Three patients underwent liver transplant with 2 of 3 showing steatosis in
the graft organ on follow up[67].

MYO5B  (MYO5B):  Defects in MYO5B,  on which BSEP depends to localize to the
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canalicular hepatocellular membrane, usually cause microvillus inclusion disease but
also may result in isolated liver disease[4].  Without appropriate BSEP localization,
secretion of bile acids is impaired and causes hepatocellular toxicity[69]. This results in
a clinical picture of low GGT cholestasis, hepatomegaly, normal or mildly elevated
transaminases. Patients have preserved synthetic function but struggle with pruritis
and  present  around  1  year  of  age,  similar  to  FIC1  and  BSEP  disease[69].  The
hepatocellular damage results in a pathologic pattern of hepatocellular cholestasis
with portal and lobular fibrosis and giant cell transformation. Present but abnormal
BSEP  and  MDR3  staining  suggest  that  these  transporters  are  made  but  can’t
appropriately migrate to the canalicular membrane[69].

Because MYO5B interacts with rab11 for appropriate functioning of polarized cells,
extrahepatic manifestations can be present. MYO5B has previously been implicated in
microvillous inclusion disease, thus some patients with genetic cholestasis have also
had diarrheal manifestations of disease[69]. Similarly, some patients also suffer short
stature, though others have normal growth. Finally, some patients with this disease
have  neurologic  findings,  though  it  is  not  clear  if  these  are  related  to  the  gene
defect[4,69]. In addition to supportive care for nutrition and diarrhea, patients have been
treated  with  antipruritic  and anticholestatic  agents,  including UDCA,  rifampin,
cholestyramine, traditional Chinese medicine[4,69]. If pruritis is refractory to medical
therapy, some success has been seen with PEBD. Finally, liver transplant has been
undertaken  if  pruritis  is  refractory,  though  it  does  not  address  extrahepatic
symptoms[69]. At our institution, the association between MYO5B defects, intestinal
failure, and isolated liver disease has made decisions regarding type of transplant
(isolated  bowel,  liver  bowel,  multi-visceral,  etc)  challenging  in  patients  with
microvillus inclusion disease.

USP53  (USP53)  and LSR  (LSR):  A recent report utilizing exome sequencing and
positional mapping was able to identify 2 novel loci with defects associated with low-
GGT cholestatic liver disease presenting in childhood[70]. In the first case, 3 members of
a family (2 sisters and a cousin) presented with low-ggt cholestasis, liver enzyme
elevations, and pruritus. Defects in the USP53 protein, thought to colocalize with TJP2
and be part of the tight junction complex[71],  was identified. In the second case, a
young  boy  who  presented  with  hypocalcemic  seizures,  pruritus,  liver  enzyme
elevation,  and  low-ggt  cholestasis  was  found  to  have  a  mutation  in  lipolysis-
stimulated lipoprotein receptor (LSR). Mechanisms by which LSR contributed to the
liver  disease  were  not  reported,  although  LSRs  role  in  animal  models  of  liver
development suggests an area for future research[70].

Contributions beyond pediatrics
The traditional understanding of the PFIC-associated genes contributing to morbidity
in adults mainly encompass the phenotypes of BRIC and ICP. The phenotype of BRIC
is  characterized by intermittent  episodes  of  cholestasis  with  varying degrees  of
severity.  Both  ATP8B1  and  ABCB11  mutations  have  been  associated  with  the
phenotype[12,51]. While classic descriptions of BRIC note complete symptom resolution
without progression, several cases have been reported to transition to more persistent,
progressive disease[72].  Treatment of cholestatic episodes with steroids, choleretic
agents, and bile acid binders have generally been ineffective, although rifampicin has
been shown to decrease pruritus and shorten exacerbations[73,74].  ICP is a common
condition affecting about 1% of all pregnancies[75]. ICP manifests during pregnancy
with pruritus, hepatic impairment, and cholestasis which usually resolves completely
after delivery. While generally considered benign for the mother, adverse perinatal
outcomes for the child,  such as fetal  distress,  premature birth,  and stillbirth,  can
occur[75].  While  rare,  stillbirth  has  been  shown  to  be  associated  with  bile  acid
concentrations of ≥ 100 μmol/L highlighting the importance of close monitoring[76].
The  use  of  ursodiol  has  been  shown  to  symptomatically  improve  pruritus  and
decrease the risk of premature birth[77,78]. An expanded understanding of the genetics
associated with ICP has identified mutations in ABCB4, ABCB11, ATP8B1, ABCC2
(associated with Dubin-Johnson), and TJP2 contributing to disease[79]. Additionally,
variations in NR1H4 may be implicated in ICP, possibly via downregulation of BSEP
expression[80]. Beyond BRIC and ICP, drug-induced injury has been historically been
linked to PFIC gene associated polymorphisms[52].

More recently, investigators have begun looking more broadly at the contributions
that these genes may have on morbidity in adult populations(Table 2). Mutations in
ATP8B1, ABCB11, ABCB4, and TJP2 have been reported in adults with cryptogenic
cirrhosis[81] while ABCB4 defects have been linked to the development of sclerosing
cholangitis,  biliary  cirrhosis,  and  low-phospholipid  cholelithiasis[82,83].  Genetic
sequencing of large cholestatic populations have revealed disease causing mutations
in up to a third of patients, with common variants detected in a high number of those
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without  known  disease-causing  defects  suggesting  that  they  still  may  have  a
contributing role to the development of cholestasis[83].  Importantly, several of the
recently identified contributing genes, such as NR1H4, MYO5B, USP53 and LSR were
not tested for in these studies, suggesting the burden may still be higher.

DISCUSSION
PFIC is a heterogeneous cohort of diseases that present both diagnostic and treatment
challenges for clinicians. While significant advancement in bile transport physiology
has been made by studying these diseases, the breadth of phenotypes from neonates
to adults demonstrates that there remains much more to be understood. In the future,
precise  molecular  diagnosis  may  allow  individualized  therapy  through  gene
replacement or protein augmentation therapies.
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Table 2  Adult manifestations of progressive familial intrahepatic cholestasis gene mutations

Etiology Genetic defect Manifestations

FIC1 deficiency ATP8B1 BRIC1

ICP1 and contraceptive-induced cholestasis

Cryptogenic cirrhosis

BSEP deficiency ABCB11 BRIC2

ICP2 and contraceptive-induced cholestasis

DILI

Cryptogenic cirrhosis

MDR3 deficiency ABCB4 ICP3 and contraceptive-induced cholestasis

Drug induced cholestasis

Low phospholipid-associated cholestasis

Cholesterol gallstone disease

Biliary fibrosis or liver cirrhosis without cholestasis

Cryptogenic cirrhosis

TJP2 deficiency TJP2 Cryptogenic cirrhosis

FXR NR1H4 ICP

Drug induced cholestasis associated with propylthiouracil

BRIC: Benign recurrent intrahepatic cholestasis; BSEP: Bile salt export pump; ICP: Intrahepatic cholestasis of pregnancy; DILI: Drug induce liver injury.

ARTICLE HIGHLIGHTS
Research background
Progressive familial  intrahepatic  cholestasis  (PFIC)  is  an umbrella  term originally  used to
describe 3 classic genetic-based cholestatic diseases in children. Recent advancements in how
genetic  defects  in  proteins  affect  bile  acid  homeostasis  and  caused  disease  has  led  to  an
expanded list of syndromes categorized as PFIC and a growing understanding of how adults can
be affected. In this report, we review the literature to summarize the understanding of ‘classic’
PFIC diseases and present up-to-date information the expanding list of genetic defects that are
now known to contribute to the PFIC phenotype.

Research motivation
Bile  acid  metabolism,  homeostasis,  and  transport  is  a  complex  physiologic  process,  the
importance of which is underscored when defects in the system cause disease. While recent
advancements  have  identified  critical  genes  and  protein  products  that,  when  defective,
contribute to disease, phenotypic variability persists, and treatment remains mainly supportive.
Furthermore, it is clearly that additional genes and proteins are likely to be identified as the field
continues to evolve. In the future, better diagnostics and precise molecular defect identification
may identify  individualized therapy options that  will  improve the care  provided to  these
patients.

Research objectives
The objectives of this work were to thoroughly review the current published literature and
present an up-to-date summarization of both the ‘’Classic’’ and ‘’Expanded’’ PFIC diseases.

Research methods
A Medline/PubMed search was performed to identify established articles relating to PFIC as
well as reports of defects in PFIC-related genes contributing to morbidity in adult and pediatric
populations. Data was manually extracted on disease characteristics. Associated phenotypes
with other diseases relating to specific genetic defects were also collected. Treatment strategies
were summarized. Data was collated and presented in text, figure, and table format.

Research results
We present a comprehensive summary of the ‘’Classic’’ PFIC disorders resulting from defects in
ATP8B1 (FIC1 protein), ABCB11 (BSEP protein), and ABCB4 (MDR3 protein). We further explore
and summarize the “Expanded” PFIC disorders including those related to TJP1 (TJP2 protein),
NR1H4 (FXR protein), MYO5B (MYO5B protein, USP53 (USP53 protein), and LSR (LSR protein)
defects. While many of these disorders have historically affected children, we also looked to
present the growing literature related to the significant morbidity that these diseases cause in
adults.

Research conclusions
In  this  review,  we  present  a  comprehensive  summary  of  the  current  understanding  and
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management of PFIC-related disorders. The recent identification of the “Expanded” disorders
underscores  the  importance  of  continued  exploration  of  the  genetic  basis  of  bile  acid
homeostasis. However, idiopathic disease remains a considerable challenge to patients and
healthcare professionals suggesting opportunities for further investigation. Future strategies to
improve the treatment provided to patients affected by these devastating diseases are also
critically needed.

Research perspectives
Since their first description in 1969, the last 50 years has brought dramatic advancements in both
the  understanding  and  management  of  PFIC-related  diseases.  Still,  challenges  remain.
Continued idiopathic disease suggest improvement in diagnostic strategies are needed and
treatment options remain frustratingly small. Variability in both phenotype and response to
therapy opens the possibility that specific gene defects or modifiers can identify sub-populations
where more personalized approaches can be more affective. Improved disease models, both in
vitro  and  in  vivo,  are  needed  to  better  understand  mechanisms  and  identify  therapeutic
strategies. Finally, the growing morbidity linked to defects in PFIC-related genes identified in
adults highlights the urgency, but also the opportunity, for future investigation.
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