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ABSTRACT

Shotgun metagenomics is a powerful, high-
resolution technique enabling the study of micro-
bial communities in situ. However, species-level res-
olution is only achieved after a process of ‘binning’
where contigs predicted to originate from the same
genome are clustered. Such culture-independent se-
quencing frequently unearths novel microbes, and
so various methods have been devised for reference-
free binning. As novel microbiomes of increasing
complexity are explored, sometimes associated with
non-model hosts, robust automated binning meth-
ods are required. Existing methods struggle with
eukaryotic contamination and cannot handle highly
complex single metagenomes. We therefore devel-
oped an automated binning pipeline, termed ‘Au-
tometa’, to address these issues. This command-
line application integrates sequence homology, nu-
cleotide composition, coverage and the presence
of single-copy marker genes to separate microbial
genomes from non-model host genomes and other
eukaryotic contaminants, before deconvoluting in-
dividual genomes from single metagenomes. The
method is able to effectively separate over 1000
genomes from a metagenome, allowing the study
of previously intractably complex environments at
the level of single species. Autometa is freely avail-
able at https://bitbucket.org/jason c kwan/autometa
and as a docker image at https://hub.docker.com/r/
jasonkwan/autometa under the GNU Affero General
Public License 3 (AGPL 3).

INTRODUCTION

Microbes are known to associate with almost all organisms
on Earth, including humans, where they are thought to have

tremendous impact in health, disease and agriculture (1–
3). However, it has long been known that only a minute
fraction of environmental microbes are readily cultured in
the laboratory (4). Thus, the vast majority of the micro-
bial tree of life is as yet only accessible through culture-
independent sequencing (‘metagenomics’). Early metage-
nomic studies focused on phylogenetic profiles of commu-
nities by examining the relative abundance of individual
bacterial species within different environments (quantified
through 16S rRNA gene sequencing), but offered limited in-
formation about the functional contribution and organism-
level interactions that shape these environments (5). Whole
genome ‘shotgun’ sequencing is able to overcome some of
the challenges faced by high-throughput 16S rRNA ampli-
con sequencing, such as the issue with non-canonical ribo-
somal RNA genes that are undetectable through standard
primers (6) and the inherent low-resolution nature of sin-
gle gene studies. However, the task of sorting metagenomic
contigs into clusters representing individual genomes (‘bin-
ning’) is a challenging computational problem and an active
area of research (7,8). Binning is a necessary step toward un-
derstanding the metabolic and functional contributions of
individual microorganisms to metabolic capabilities of the
community as a whole. In other words, genome-level resolu-
tion of metagenomes allows researchers to move beyond the
interpretation of metabolic function in aggregate to under-
standing the role of individual organisms within a complex
system in situ.

Given that most environments are predominantly com-
posed of uncharacterized microorganisms, different ap-
proaches have been taken to achieve reference-free bin-
ning. For instance, nucleotide composition has been used to
group contigs with emergent self-organizing maps (ESOM)
(9) or Barnes-Hut stochastic Neighbor Embedding (BH-
tSNE) (10,11). These approaches reduce variation in k-
mer frequencies to two dimensions, enabling the visual-
ization of highly dimensional data and allowing human-
driven clustering. Other efforts have focused on leverag-
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ing information from multiple samples, with the assump-
tion that contigs in shared genomes will show a distinct co-
variance in coverage. Both manual (12,13) as well as auto-
matic pipelines (14,15) have used this approach. However,
there are a number of disadvantages to this methodology.
Many multi-sample protocols require assembly of reads
from all samples (referred to as ‘co-assembly’), increasing
computational requirements and potentially degrading as-
sembly quality when shared genomes are not clonal. This is-
sue is known as ‘microdiversity’––a problem acknowledged
by Albertsen et al. (13) and recently demonstrated else-
where (16). By pooling samples for co-assembly, users can
also exacerbate the effect of population summing, whereby
a genome assembly represents broadly aggregated consen-
sus sequences instead of the genome of a single strain, or-
ganism or population taken from one sample (8,16,17).
Such aggregation can mask the presence of pan-genome se-
quences (18) found only in individual strains or samples,
which has important clinical and biotechnological impli-
cations when considering mobile elements that confer an-
tibiotic resistance (19,20) or biosynthetic gene clusters ac-
quired through horizontal transmission. There are further
situations where the underlying variability or overlap of the
system is unknown, and there is a desire to extract infor-
mation from a small number of pilot datasets. Additionally,
multi-sample comparisons, which by nature incur higher se-
quencing costs, do not necessarily aid in binning of genomes
unique to one sample (21).

To date, our efforts to sequence the genomes of marine in-
vertebrate symbionts that make bioactive small molecules
have relied upon semi-manual binning techniques (21,22).
However, marine sponge microbiomes, which offer a wealth
of biotechnological potential (23), can contain hundreds
of microbial species, occupying up to 40% of the sponge’s
tissue volume (24,25). Other systems are also challenging.
For example, we found that eggs of the beetle Lagria vil-
losa are associated with a mixture of several closely related
strains of Burkholderia gladioli, but only some of these are
culturable and produce antifungal compounds that protect
the eggs from infection (26). As these systems were be-
yond the limit of reasonable manual processing, and due
to the poor performance of existing automatic binning
pipelines for such host-associated metagenomes, we were
motivated to develop an automated and scalable binning
algorithm, which we call ‘Autometa’. This method carries
out clustering on a simplified subset of contigs (those taxo-
nomically classified as either Bacteria or Archaea), in or-
der to maximize scaling according to metagenomic com-
plexity from individual metagenome assemblies. The ini-
tial clusters serve as the training set for subsequent clas-
sification by a supervised machine learning algorithm. We
evaluated Autometa using a number of simulated and syn-
thetic metagenomes, where performance could be assessed
with reference to the known component genomes, as well
as a real host-associated metagenome we previously exam-
ined by semi-manual binning (21,22). We found that Au-
tometa performed comparably or outperformed MaxBin
(14), MetaBAT (27), MyCC (28) and BusyBee Web (29),
especially in cases with higher metagenome complexity and
in a host-associated dataset. We further found that contig-
level taxonomic classification using lowest common ances-

tor (LCA) analysis was able to improve Autometa’s perfor-
mance as well as the binning performance of other pipelines.

MATERIALS AND METHODS

Overview

Autometa bins microbial genomes de novo from single shot-
gun metagenomes using sequence homology, coverage and
nucleotide composition to distinguish between contigs. The
task is guided by the presence of marker genes, previously
identified in Bacteria and Archaea (30) and known to oc-
cur as single copies in microbial genomes. The presence of
marker genes can be used to estimate the genome com-
pleteness of bins, as well as the level of contamination, as
each marker should only be detected once per bin. Single-
copy markers have previously been used in MaxBin (14)
and MyCC (28), but here we take a different approach. In
MaxBin, single-copy markers are used to initialize the num-
ber of clusters and their average tetranucleotide frequencies
and coverage for an expectation maximization (EM) algo-
rithm (14). A median of ≥2 markers in a bin is used as a
crude measure of whether EM has converged. MyCC uti-
lizes single-copy markers after one round of clustering by
affinity propagation, to determine which clusters should be
merged or split (28). Both of these pipelines suffer from an
assumption that true genomes will have the expected num-
ber of markers, and in the case of MyCC, this information is
not used to guide the clustering step. By contrast, Autometa
uses single-copy markers to guide clustering, and does not
assume that recoverable genomes will necessarily be ‘com-
plete’. The microbes found in environmental metagenomes
can be highly divergent from all previously sequenced or-
ganisms, and those that associate with eukaryotic hosts of-
ten undergo a process of genome degradation and reduc-
tion, where functions essential to independent life can be
lost (31,32). For instance, we recently identified a genome-
reduced bacterium that was so divergent from known se-
quences that only 20% of genes had hits in the NCBI NR
database, and only 20% of the expected bacterial single-
copy markers could be detected (21). We therefore do not
assume bins should be close to 100% complete or use sin-
gle copy markers to pre-calculate the number of bins, as in
MaxBin (14). The overall process employed in Autometa
comprises three broad stages (Figure 1):

(i) Separate contigs into kingdom bins based on sequence
homology.

(ii) Iteratively cluster kingdom-specific contigs.
(iii) Classify unclustered contigs to bins via supervised ma-

chine learning.

Separation of contigs into kingdom bins

A broad separation of contigs into kingdom bins allows
the removal of host-derived or other eukaryotic contami-
nation (even if the host genome is not represented in ref-
erence databases), as well as separation of contigs derived
from Bacteria and Archaea, simplifying subsequent decon-
volution. Genes are identified in all contigs longer than
a specified length cutoff with Prodigal (33) (the default
is 10 000 bp, but all datasets tested here were based on
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Figure 1. Autometa binning workflow. Autometa separates contigs from
a de novo metagenome assembly into kingdom-level bins based on se-
quence homology, iteratively clusters kingdom-specific (Bacterial or Ar-
chaeal) contigs, and then (optionally) classifies any remaining unclustered
contigs to bins using a decision tree classifier.

a 3000-bp cutoff). Translated coding sequences are then
queried against the NCBI NR database using the accel-
erated BLAST implementation Diamond (34). The LCA
of the hits with bitscore within 10% of the top hit is used
to assign a taxonomy ID to each predicted protein ac-
cording to the NCBI taxonomy database (https://www.ncbi.
nlm.nih.gov/taxonomy). To reduce the influence of horizon-
tally transferred genes, contig-level taxonomy is assigned
by a modified majority vote of the component predicted
coding sequences. Classifications are considered in order
of decreasing specificity (species, then genus, family, order,
class, phylum and kingdom), and accepted when a major-
ity (≥50%) classification is reached, provided that the ma-
jority of proteins classified with lower specificity are ances-
tors of this classification. If an answer cannot be reached
by this process, the lowest common ancestor of all proteins
within a contig is used as the contig classification. Because
eukaryotic genomes have low coding density, this system
might conceivably lead to incorrect assignment of eukary-
otic contigs as bacterial/archaeal in the case of interking-
dom horizontal gene transfer (HGT). While a filter for cod-
ing density might distinguish most bacterial contigs from
eukaryotic ones, employing the wrong cutoff would exclude
low-density symbiont genomes at early points in genome re-
duction (31). Most identified bacterial to eukaryotic HGT
events are from organelles (35), and therefore we anticipate
that in these cases the closest BLAST hits will be other or-
ganelle genes, tied to the host taxonomy. Additionally, the
use of prokaryotic gene-finding algorithm Prodigal is ex-
pected to yield multiple ORFs for each eukaryotic gene,
corresponding to each exon, thus potentially weighting eu-
karyotic classifications over prokaryotic ones. Very diver-
gent prokaryotic genomes can contain contigs with vary-
ing classification even at the phylum level (21), and there-
fore taxonomic classification is used cautiously in subse-
quent operations (see below). At this stage, contigs are sep-
arated into bins classified according to different kingdoms,

and contigs classified as Bacteria and/or Archaea are pro-
gressed to the next step.

Clustering kingdom-specific contigs

It has been shown that k-mer frequency patterns differ be-
tween bacterial species/strains (9,36), and that visualiza-
tion of k-mer frequency data after dimension reduction with
Barnes-Hut Stochastic Neighbor Embedding (BH-tSNE)
(37) effectively aids manual deconvolution of metagenomic
contigs (10,11). However, the feasibility and throughput of
visual (manual) binning using BH-tSNE quickly degrades
with increasing metagenome complexity. Autometa counts
5-mer frequencies in contigs, normalizes and reduces the
raw dimensions to 50 with principal component analysis
(PCA) as previously described (10), before dimension re-
duction with BH-tSNE.

In BH-tSNE, the parameter of ‘perplexity’ can be con-
ceptualized as the effective number of neighbors consid-
ered when the algorithm embeds local structure. In previ-
ous work (10), a perplexity value of 30 has been used, so
we sought to determine if this was a reasonable value to
use in all cases, or whether the parameter should be opti-
mized for different datasets. It has been suggested (38) that
a factor referred to as pseudo Bayesian Information Criteria
(pBIC, or S) might be used to determine the optimum per-
plexity value (judged by human machine learning experts),
where the optimum perplexity gives the minimum value of
S. In simulated and synthetic metagenomes (see below), we
found that minimum S values scale with the number of con-
tigs (Supplementary Figures S1– S6).

To determine whether S would be a valid parameter for
optimizing perplexity, we devised an objective measure of
separation based on alignments of metagenomic contigs to
the input genomes in simulated/synthetic datasets. For a
particular perplexity, we construct groups of points in BH-
tSNE space based on their assigned genomes (discounting
contigs that are misassembled or unalignable). Within the
groups, we discard outliers whose distance away from the
group’s centroid is greater than the third quartile of dis-
tances plus the interquartile range multiplied by 1.5. From
the remaining points, a convex hull is constructed, and we
determine both the total area of the hull, t, and the area
that is not overlapped by any other genome convex hull, u.
The ‘non-overlapping fraction’, v, of the coordinate set for
a given perplexity is given by equation (1), where the opti-
mum perplexity should yield the maximum value of v, rep-
resenting the greatest separation between genomes in BH-
tSNE space. We plotted v against perplexity for all simu-
lated datasets where a ground truth was known (see below,
Supplementary Figures S7– S12). Importantly, peak values
of v did not occur at perplexities close to those giving mini-
mum values for S, meaning that S is a poor predictor for v.
A degree of variability in adjacent values of perplexity was
observed, due to the stochastic nature of BH-tSNE, but the
peak value of v generally occurred between perplexities of
20 and 70, regardless of dataset size. As a relationship be-
tween dataset size and optimal perplexity was not found,
and a method for optimizing perplexity in the absence of
ground truth information was not apparent, we use a de-
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fault value of 30 in the Autometa pipeline.

v =

n∑

1
u

n∑

1
t

× 100 (1)

Clustering is achieved with the DBSCAN algorithm (39),
which clusters based on local density and is able to exclude
outliers. In other words, it does not force all contigs into
a bin, minimizing the potential for overfitting. DBSCAN
has been previously implemented to cluster the output of di-
mension reduction of pentanucleotide frequencies via BH-
tSNE (40). Here, as input to the DBSCAN algorithm, we
use the two dimensions produced by BH-tSNE as well as
contig coverage. The eps parameter for DBSCAN controls
the size of the local neighborhood around each point that is
explored during clustering, and we cycle through ascending
values of eps from 0.3, increasing by 0.1 until only one group
is obtained. For each of these iterations, Autometa assesses
clusters by examining both their completeness (number of
expected single copy markers) and purity (number of single
copy markers that are unique in the cluster). The eps value
selected is the one that gives the highest median complete-
ness of bins that are above 20% complete and 90% pure,
and the resulting bins that pass these criteria are kept. This
method has the advantage that it assesses clustering in a bi-
ologically relevant manner, in contrast to internal clustering
validation functions (41), and it balances recall (complete-
ness) and precision (purity) of the resulting bins. The clus-
ters that do not meet these criteria and contigs in the ‘un-
clustered’ bin are then subjected to another round of DB-
SCAN, again maximizing for median completeness of clus-
ters over 20% complete and 90% pure. This process is iter-
ated until no more clusters meeting the completeness and
purity criteria can be obtained. In our investigations of the
effects of perplexity on v (Supplementary Figures S7– S12),
we found that peak values of v decreased with increasing
dataset size, illustrating that BH-tSNE is not able to avoid
spatial overlap in complex datasets. In these cases, it is ex-
pected that further fractionation of the data based on or-
thogonal properties will improve clustering quality. There-
fore, we allow the unclustered fraction in each iteration to be
optionally further divided into taxonomic groups in ascend-
ing order of specificity (phylum, then class, order, family,
genus and species). After each split, the iterative DBSCAN
algorithm described above is repeated, and if unclustered
sequences result, they are pooled for clustering at the next
specific taxonomic level. This process allows the deconvo-
lution of taxonomically distinct genomes that exhibit sim-
ilar k-mer frequency and coverage, and starts at the non-
specific end of the taxonomic spectrum (i.e. phylum before
class) to first yield well-separated clusters and to maximize
the chance of clustering divergent genomes that exhibit un-
certain taxonomic classification (see above).

Classifying the remaining contigs by supervised machine
learning

Following initial clustering of contigs into bins, all remain-
ing (i.e. unclustered) contigs are further recruited to these

cores using a supervised decision tree classifier approach.
The classifier is trained with features of clustered single copy
gene marker-containing contigs, using 5-mer frequencies re-
duced to 50 dimensions via PCA, as well as sequence cov-
erage, and (optionally) taxonomic information encoded as
a binary indicator matrix. The confidence of each of the
classifier’s predictions is measured using jackknife cross val-
idation whereby the classifier is iteratively re-trained with
a random subset (50%) of the training data (42). By de-
fault, a prediction will only be accepted if this metric re-
ports 100% confidence (e.g. 10/10 consistent classifications
when trained with 10 random subsamples of the training
data) and the prediction does not add any marker contam-
ination to the predicted bin. After each full round of pre-
dictions, any marker-containing contig that is confidently
classified to pre-existing clusters is added to the training
data for subsequent rounds of classification, until no further
marker-containing contigs are confidently classified. This
approach is similar to the ‘bootstrapping’ of supervised ma-
chine learning in BusyBee Web using the result of unsuper-
vised clustering, except that it includes features beyond nu-
cleotide composition, such as sequence coverage and taxo-
nomic information in the prediction process and uses jack-
knife cross validation (Supplementary Figure S13) to assess
the confidence of each prediction.

Implementation

Autometa is implemented in Python, and the source code is
available at https://bitbucket.org/jason c kwan/autometa.
The pipeline is run through the command line, and has been
tested on various Linux distributions. Full documentation
on installation, dependencies, etc. is provided with the code
repository, and we have also built a Docker image (available
at https://hub.docker.com/r/jasonkwan/autometa) to facili-
tate easy installation and reproducible analyses.

Benchmarking datasets

Simulated metagenomes of increasing complexity (see Ta-
ble 1) were created by picking random genomes out of the
bacterial genome assemblies held in the NCBI database. Il-
lumina reads (2 × 125 bp) were simulated using ART (43)
and assembled with metaSPAdes (v3.9.0) (44). A script in-
cluded with Autometa (‘make simulated metagenome.py’)
was used to generate these test datasets, automating as-
sembly retrieval and read simulation of randomly selected
bacterial genomes. This script used art illumina parame-
ters: -p -ss HS25 -l 125 -m 275 -s 90, and the default pa-
rameters for metaSPAdes (i.e. SPAdes was run with the
- -meta flag). Datasets were simulated to represent each
component genome with equal coverage in order to stress-
test binning performance based on nucleotide composition.
Five synthetic metagenomes were also prepared. ‘Mix-51’
was made by mixing together roughly equal amounts of
cell pellets from 51 bacteria isolated from the human gut,
before extracting DNA. For the remaining four synthetic
metagenomes, DNA was separately extracted from the 51
bacterial isolates and quantified. Two DNA solutions of
Mix-51 were prepared at equimolar and differential concen-
trations (‘Mix-51-equal’ and ‘Mix-51-staggered’), respec-
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Table 1. Datasets used in this study

Dataset Type No. genomes N50 (bp)a Assembled length (Mbp)a

78.125 Mbp Simulated 23 96 188 78.0
156.25 Mbp Simulated 42 150 368 156.2
312.5 Mbp Simulated 85 123 776 297.2
625 Mbp Simulated 157 139 531 607.8
1250 Mbp Simulated 341 106 210 1,193.2
2500 Mbp Simulated 650 59 220 2,217.4
5000 Mbp Simulated 1,308 7222 3,179.1
10000 Mbp Simulated 2,617 4611 427.5
Mix-51 Synthetic 51 133 668 184.6
Mix-51-equal Synthetic 51 114 621 188.5
Mix-51-staggered Synthetic 51 46 545 160.1
FL20-9-Mix-51-equal Synthetic Host-Associated 223b 8810 1224
FL20-9-Mix-51-staggered Synthetic Host-Associated 223b 7668 1209
AB1 ovicells Host-Associated 8c 11 056 237.6

aFor contigs ≥3 kbp.
bIncludes 51 genomes in synthetic mixture and 172 additional genome bins in the sponge metagenome, obtained through Autometa analysis of the non-
spiked metagenome.
cAs previously identified in Miller et al. (21).

tively (see Table 2 and Supplementary Table S1). An envi-
ronmental metagenome from a sample of the marine sponge
Hippospongia lachne (termed ‘FL20-9’) was spiked into one
of each of the synthetic metagenomes resulting in ‘FL20-9-
Mix-51-equal’ and ‘FL20-9-Mix-51-staggered’ (see Supple-
mentary Table S1). DNA pellets for each of the mixtures or
strains were dissolved in TE buffer (10 mM Tris–HCl pH
8.0, 1 mM ethylenediaminetetraacetic acid) then column-
purified using the Nucleospin Gel and PCR Clean-up kit
(Macherey-Nagel Inc, Bethlehem, PA). DNA extractions
were performed as previously described (45). The DNA
concentration of Mix-51 was measured using the Qubit BR
dsDNA assay (Invitrogen, Eugene, OR). DNA from the
separate bacterial isolates and the sponge metagenome were
quantified using the Quant-iT PicoGreen dsDNA assay kit
(Life Technologies, Eugene, OR). Sequencing of Mix-51
DNA was carried out on an Illumina HiSeq 2500, in a 2
× 125 bp run. Sequencing of the concentration-controlled
Mix-51 samples was carried out on an Illumina NovaSeq
6000, in 2 × 150 bp runs. Adapters were trimmed from the
resulting reads using Trimmomatic (46), before being as-
sembled with metaSPAdes (44). Further information on the
datasets, including details of component genomes, can be
found in Table 2 and Supplementary Table S2.

We also included sample AB1 ovicells in benchmarks,
which we previously examined semi-manually (21,22). This
is a metagenome associated with a marine bryozoan,
containing the uncultured bryostatin-producing symbiont,
‘Candidatus Endobugula sertula’ along with several diver-
gent bacteria and several genomes that are very similar in
GC content and/or coverage. The same assembly used pre-
viously (21,22) was assessed as a point of comparison to
manual binning efforts. All datasets were tested using Au-
tometa commit version 9592e35 and run on a linux server
(Dell Poweredge T430 with two Intel Xeon E5-2650 v3
2.3 GHz CPUs, 128 GB of RAM and 1.7 TB of disk space).

RESULTS

Benchmarking approach

Choice of comparison pipelines. To enable an appo-
site comparison of Autometa’s performance with existing

pipelines, we excluded pipelines with different aims, such as
those designed to pre-cluster raw sequence reads or those
that required multiple metagenomic datasets. We also ex-
cluded pipelines that required manual interpretation of vi-
sualizations, on the grounds that these did not include an
automated clustering step. This rationale led us to focus
on four pipelines for comparison: MaxBin (14), MetaBAT
(27), MyCC (28) and BusyBee Web (29).

Evaluation metrics. AB1 ovicells is a real dataset asso-
ciated with the adult bryozoan Bugula neritina. In previ-
ous investigations (22), we sought to assemble the verti-
cally transmitted symbiont ‘Candidatus Endobugula ser-
tula’ by identifying non-host contigs with >1× coverage in
both AB1 ovicells and the metagenome of free-swimming
larvae. Therefore, because the complete ground truth in
AB1 ovicells is unknown, we assess the results with refer-
ence to conservation in both the adult and larval samples in
the case of ‘Ca. E. sertula’ and by using estimates of com-
pleteness and purity by CheckM (47) for other bacterial
species present. In the case of the simulated metagenomes
and Mix-51 derivatives, contigs were assigned to reference
genomes with MetaQUAST (48). Precision and recall were
then calculated as described previously (28) according to
equations (2) and (3), where we consider the binning of
N genomes into M clusters and Sij is the combined length
of contigs in cluster i which belong to reference genome j.
Precision is a property of clusters, described as the length
fraction of a cluster taken up by contigs belonging to the
genome accounting for the largest length fraction of the
cluster (maxj). Recall is a property of reference genomes, de-
scribed as the length fraction of the genome assigned to the
cluster with the largest fraction of that genome (maxi). For
the purposes of these calculations, contigs labeled as ‘mis-
assembled’ by MetaQUAST were excluded. The F1 score
is the harmonic mean of precision and recall (equation 4).
Note here that in order to distinguish the effects of assem-
bly from binning, a perfect F1 score is achieved when all
assembled contigs from a given genome are assigned to a
single bin.

Precision =
∑M

i=1 max j Si j
∑M

i=1

∑N
j=1 Si j

× 100 (2)
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Table 2. Component genomes of Mix-51 datasets

Strain Accession
Genome size

(bp) Status

Attomoles in
Mix-51-

staggereda

Alistipes indistinctus YIT 12060 GCA 000231275.1 2 855 429 Draft 4
Bacteroides cellulosilyticus DSM 14838 GCA 000158035.1 6 870 144 Draft 200
Bacteroides finegoldii DSM 17565 GCA 000156195.1 4 892 401 Draft 20
Bacteroides intestinalis DSM 17393 GCA 000172175.1 2 642 081 Draft 120
Bacteroides ovatus ATCC 8483 NZ CP012938.1 6 465 369 Complete 60
Bacteroides plebeius DSM 17135 GCA 000187895.1 4 421 924 Draft 80
Bacteroides stercoris ATCC 43183 GCA 000154525.1 4 009 829 Draft 240
Bacteroides thetaiotaomicron 3731 7 187 176 Complete 160
Bacteroides thetaiotaomicron 7330 GCA 001314975.1 6 487 685 Complete 320
Bacteroides thetaiotaomicron VPI-5482 GCA 000011065.1 6 293 399 Complete 40
Bacteroides uniformis ATCC 8492 GCA 000154205.1 4 719 097 Draft 280
Bacteroides vulgatus ATCC 8482 GCA 000012825.1 5 163 189 Complete 400
Bacteroidetes dorei DSM 17855 GCA 000156075.1 5 566 217 Draft 4
Bifidobacterium adolescentis L2-32 GCA 000154085.1 2 389 110 Draft 4
Bifidobacterium angulatum DSM 20098 NZ AP012322.1 2 008 208 Complete 60
Bifidobacterium bifidum ATCC 29521 NZ AP012323.1 2 201 251 Complete 80
Bifidobacterium dentium ATCC 27678 GCA 000172135.1 2 642 081 Draft 40
Bifidobacterium pseudocatenulatum DSM
20438

GCA 000173435.1 2 304 808 Draft 20

Blautia hansenii DSM 20583 NZ CP022413.2 3 058 721 Complete 8
Blautia luti DSM 14534 4 068 430 Complete 32
Citrobacter youngae ATCC 29220 GCA 000155975.1 5 154 159 Draft 64
Clostridium asparagiforme DSM 15981 GCA 000158075.1 6 417 332 Draft 64
Clostridium bolteae ATCC BAA-613 NZ CP022464.2/NZ CP022465.2 6 557 988 Complete 8
Clostridium hathewayi DSM 13479 GCA 000160095.1 7 163 884 Draft 32
Clostridium hylemonae DSM 15053 GCA 000156515.1 3 889 859 Draft 16
Clostridium ramosum DSM 1402 GCA 000154485.1 3 235 195 Draft 16
Clostridium sp. M62/1 GCA 000159055.1 3 842 594 Draft 64
Clostridium sporogenes ATCC 15579 GCA 000155085.1 4 102 325 Draft 8
Clostridium symbiosum ATCC 14940 GCA 000466485.1 4 823 675 Draft 32
Collinsella intestinalis DSM 13280 GCA 000156175.1 1 809 497 Draft 16
Collinsella stercoris DSM 13279 GCA 000156215.1 2 475 429 Draft 16
Coprococcus comes ATCC 27758 GCA 000155875.1 3 242 215 Draft 8
Dorea formicigenerans ATCC 27755 GCA 000169235.1 3 186 031 Draft 32
Edwardsiella tarda ATCC 23685 GCA 000163955.1 3 744 568 Draft 8
Enterobacter cancerogenus ATCC 35316 GCA 000155995.1 4 638 653 Draft 4
Escherichia fergusonii ATCC 35469 GCA 000026225.1 4 643 861 Complete 16
Eubacterium biforme DSM 3989 GCA 000156655.1 2 517 763 Draft 4
Eubacterium eligens ATCC 27750 GCA 000146185.1 2 831 389 Complete 16
Holdemania filiformis DSM 12042 GCA 000157995.1 3 932 923 Draft 4
Lactobacillus reuteri DSM 20016 GCA 000016825.1 1 999 618 Complete 4
Lactobacillus ruminis DSM 20403 GCA 001436475.1 2 008 484 Draft 32
Marvinbryantia formatexigens DSM 14469 GCA 000173815.1 4 548 960 Draft 64
Megamonas funiformis YIT 11815 GCA 000245775.1 2 562 512 Draft 4
Parabacteroides johnsonii DSM 18315 GCA 000156495.1 4 787 097 Draft 80
Parabacteroides merdae ATCC 43184 GCA 000154105.1 4 434 377 Draft 40
Proteus penneri ATCC 35198 GCA 000155835.1 3 749 229 Draft 8
Roseburia intestinalis L1-82 GCA 000156535.1 4 411 375 Draft 64
Ruminococcus gnavus ATCC 29149 GCA 000169475.1 3 501 911 Draft 8
Streptococcus infantarius ATCC BAA-102 GCA 000154985.1 1 925 187 Draft 64
Subdoligranulum variabile DSM 15176 GCA 000157955.1 3 245 471 Draft 16
Tyzzerella nexilis DSM 1787 GCA 000156035.2 3 995 628 Draft 4

aBased on the assumption that draft-quality genomes represent the true genome size. As discussed in the main text, under ‘Performance in synthetic
metagenomes with highly similar strains’, coverages in the resulting assembled metagenomes suggested that calculated molar quantities of draft genomes
were inaccurate due to uncertainty in the genome sizes.

Recall =
∑N

j=1 maxi Si j
∑M

i=1

∑N
j=1 Si j + ∑

unbinned
× 100 (3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

Performance in a host-associated metagenome

Compared to our previous semi-manual binning efforts for
the AB1 ovicells sample, all four tested programs produced
a greater number of bins. Autometa produced 22 genome
bins (Table 3) compared to the eight we identified by our
earlier, semi-manual approach (Figure 2 and Table 1). How-
ever, when comparing the performance of these programs

to the composition of manually classified sequences, the
bin-level performance was more variable. For instance, each
program performed differently when compared to our semi-
manual classification of ‘Ca. Endobugula sertula’ contigs.
We defined the original AB1 ovicells ‘Ca. E. sertula’ as-
sembly to include 3.32 Mbp in 117 contigs that also had
coverage in the larval ‘MHD larvae’ metagenome (22). The
cluster statistics of the ‘Ca. E. sertula’ bin as identified by
the four different programs are detailed in Supplementary
Table S3. Autometa produced the genome bin most con-
sistent with semi-manual binning (recovering 92/117 con-
tigs (93.3% of length) derived from semi-manual binning).
MaxBin had the second highest recovery of the original
‘Ca. E. sertula’ assembly, at a 91.9% recovery rate. Au-
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Figure 2. Visualization of genome bins from a host-associated
metagenome derived from semi-manual binning (left column, (A)
and (C)) versus automated binning (right column, (B) and (D)). Points
represent contigs and are colored based on their assigned bin with size
scaled by length; unclustered contigs are represented by black crosses.
In the top row ((A) and (B)), contigs are plotted on axes of GC% and
coverage, while in the bottom row ((C) and (D)), contigs are plotted on the
two dimensions derived from dimension-reduction of 5-mer frequencies
by Barnes-Hut Stochastic Neighbor Embedding.

tometa and MaxBin were tied for the highest apparent com-
pleteness for this cluster, at 96.2% (as assessed by CheckM
(47)). The ‘Ca. E. sertula’ cluster identified by MyCC had
a slightly higher purity (98.2% compared to 96.6%, accord-
ing to CheckM results), but with the lowest completeness
(71.6%). Interestingly, both MyCC and Autometa identified
a shared set of 44 contigs, within the ‘Ca. E. sertula’ bin,
that we had previously left unclassified through our semi-
manual efforts. The nucleotide composition of these con-
tigs was consistent with contigs we identified as belonging to
‘Ca. E. sertula’ (Supplementary Figure S14), but had lower
sequence coverage on average (Supplementary Figure S15).
However, 12 of these 44 contigs (27%) identified by Au-
tometa and MyCC were assigned the order level taxonomy
of ‘Oceanospirillales,’ which suggests contamination from
another gammaproteobacterial genome bin that we previ-
ously identified as an Endozoicomonas sp. (Supplementary
Figure S16).

The aggregate binning results for Autometa and MyCC
for the AB1 ovicells sample appear comparable in the num-
ber of bins recovered, along with median purity and com-
pleteness metrics, with an apparent tradeoff between pu-
rity (higher with Autometa) and completeness (higher with
MyCC). However, it is worth noting that CheckM does not
systematically consider contamination from host Eukary-
otic sequences in its reported contamination statistics and
much of the sequence clustered by MyCC, MaxBin and
MetaBAT appears contaminated with Eukaryotic sequence
(Supplementary Table S4). In fact, at least two MyCC
clusters (Cluster.8 and Cluster.2, Supplementary Table S5)
appear heavily contaminated by host bryozoan sequence,
though CheckM reports their purity as 87.5% and 77.3%
and marker lineage as Archaea (Supplementary Table S5).

These clusters represent 136.3 and 31.7 Mbp, in 16 825 and
2811 contigs, respectively (Supplementary Table S5). Anal-
ysis with Autometa’s LCA workflow suggests only 3.5 Mbp
(2.5%) and 1.8 Mbp (5.8%), respectively, of these MyCC
clusters are represented by prokaryotic sequence (Supple-
mentary Table S6).

Thus, to test the effect of taxonomic filtering on the bin-
ning performance of other pipelines, we repeated runs with
MaxBin, MetaBAT and MyCC on just contigs that Au-
tometa’s LCA workflow identified as bacterial. This tax-
onomic filtering step resulted in decreased bin fragmenta-
tion for MaxBin and MetaBAT. In addition to prevent-
ing putative host sequences from populating MyCC bins,
taxonomic filtering improved the median cluster statistics
for MetaBAT and MaxBin. Without taxonomic filtering,
MetaBAT identified 40 genome bins with a median com-
pleteness of 13.2, compared to the 25 bins identified with
a median completeness of 23.6 with taxonomy-filtered con-
tigs (Table 3). Taxonomic filtering also resulted in a consoli-
dation of bins produced by MaxBin, with a concomitant in-
crease in median completeness (74.3% with and 23.7% with-
out taxonomic filtering).

Performance in synthetic metagenomes with highly similar
strains

We first sought to quantify the differing composition of the
Mix-51 assemblies, and the resulting effects on assembly
quality. Quality-filtered reads from the respective dataset
were aligned to the 51 reference genomes. We quantified
coverage of each genome by discarding reads that aligned
to more than one genome and/or more than one location
in a single genome. The length-weighted average coverage
of the portion of resulting alignments with coverage >0 is
presented in Supplementary Table S7. The average genome
coverage is similar for all Mix-51 datasets, but unexpectedly
the standard deviation for coverage is the smallest for Mix-
51, where roughly equal amounts of cells were mixed prior
to DNA extraction. The coverage standard deviation is
smaller in Mix-51-equal versus Mix-51-staggered (104 and
201 respectively), but there is higher than expected varia-
tion in the former. We suspect that this variation could have
resulted from the sizes of draft-quality NCBI genomes be-
ing inaccurate, which affected the molar quantities of DNA
added to the mixtures. Typically, draft-quality genomes do
not accurately reflect the true length of chromosomes, in-
cluding repeats, and it is not possible to infer the relative
copy numbers of plasmids versus chromosomes from se-
quence alone. GC biases in the amplification step of Il-
lumina sequencing could also contribute to this coverage
variation. Importantly, for our purposes, many of the 51
component genomes vary in coverage across the Mix-51
datasets, providing a realistic test for our algorithm. We
also combined both Mix-51-equal and Mix-51-staggered
with metagenomic DNA from a marine sponge, ‘FL20-
9’. In analysis of this marine sponge metagenome, which
will be reported elsewhere, Autometa was able to yield 172
bacterial genome bins. We spiked in Mix-51 mixtures and
sequenced to a depth that achieved similar coverages for
the 51 input genomes in both the synthetic and sponge-
spiked metagenomes (Supplementary Table S7). The assem-
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Table 3. Effect of taxonomic partitioning on binning performance of AB1 ovicells

AB1 ovicells AB1 ovicells
Without taxonomic filtering With taxonomic filtering

Algorithm No. bins
Median

completenessa
Median
puritya

Bacterial
fraction (%)

b No. bins
Median

completenessa
Median
puritya

Bacterial
fraction (%) b

Autometa 20 40.9 99.1 97.7 22 34.0 99.6 100
MyCC 22 41.1 96.3 24.7 25 31.0 98.8 100
MaxBin 27 23.7 95.6 28.5 13 74.3 88.1 100
MetaBAT 40 13.2 100.0 24.6 25 23.6 99.9 100

aEstimated based on analysis by CheckM (47).
bFraction of the total binned length classified under kingdom Bacteria by Autometa’s LCA pipeline.

bly quality of genomes in Mix-51 was not appreciably af-
fected by mixture with FL20-9, in terms of the percent-
age of the reference genome assembled de novo, with the
exception of genomes that were low coverage in Mix-51-
staggered compared to Mix-51-equal and Mix-51. Granu-
lar examination of assembly quality (i.e. number of con-
tigs, assembly length, N50, longest contig length) showed
that mixture of Mix-51-equal with FL20-9 did not appre-
ciably affect assembly (Supplementary Table S8). In fact,
a number of genomes were better assembled in FL20-9-
Mix-51-staggered versus Mix-51-staggered, perhaps due to
slightly higher coverage. For instance, Alistipes indistinctus
contigs were found at 5.6× coverage in Mix-51-staggered
and 9.9× coverage in FL20-9-Mix-51-staggered, and there
is a marked increase in assembly quality in the latter (59
contigs, N50 99 kbp versus 756 contigs and N50 5 kbp in
Mix-51-staggered). This suggests that coverage affected as-
sembly quality by metaSPAdes more than the complexity
of the mixture of synthetic and sponge metagenomes. Some
genomes also appeared to be poorly assembled by virtue
of having close relatives in the mixture (i.e. only small por-
tions of their genomes with uniquely aligned reads), such as
Bacteroidetes thetaiotaomicron strains VPI-5482 and 3731.
Overall, the most important factors determining assembly
quality appeared to be coverage and presence of related
strains.

F1 scores of all 51 input genomes were quantified with re-
spect to the assembled fraction in the respective five Mix-51
assemblies, for each of the five tested algorithms. Contigs in
each assembly were assigned to one of the 51 bacterial ref-
erence genomes with MetaQUAST (48), and the identified
contigs were used as the basis for calculating F1. Autometa
consistently yielded the most bins with the highest ranking
F1 scores for specific input genomes (Supplementary Table
S9). We also quantified the median F1 of all obtained bins,
and additionally F1 recovery (the sum of all F1 scores for
each genome bin divided by the theoretical maximum sum;
Supplementary Table S10). Autometa consistently scored
the highest median F1 in all Mix-51 datasets (Supplemen-
tary Table S10), and the highest F1 recovery in all datasets
except Mix-51-staggered, where MetaBAT had a slightly
higher score. All tested algorithms were challenged by the
high strain overlap of the synthetic Mix-51 community (Fig-
ure 3 and Supplementary Table S9). Scores for spiked-in
metagenomes were broadly similar to the corresponding
synthetic mixture, except that Autometa was able to exclude
eukaryotic contigs from bins. Bins produced by MyCC,
Maxbin and MetaBAT were contaminated with eukary-

otic sequences (Supplementary Figure S17). All algorithms
struggled when there were multiple related strains present,
to a varying extent, as evidenced by the concentration of low
F1 scores with tight clades (Figure 3). The performance of
the algorithms in closely related genomes appeared to be
modulated by the relative abundance of the components,
as evidenced by differing performance in different Mix-51
datasets. However, patterns did not adhere strictly to the
principle that differing coverage of related genomes equates
to higher F1. For example, Autometa yielded moderate re-
sults for the Bifidobacterium strains in Mix-51-equal, de-
spite the fact that coverage of each strain was fairly similar
(25–38×, Supplementary Table S7). Performance in these
strains was far worse in Mix-51-staggered, where coverages
were much lower (1–18×) and assembly quality was lower
(Supplementary Table S8). This pattern indicates that al-
though we have endeavored to minimize the effects of as-
sembly on binning results, a decrease in assembly quality
ultimately translates to considerably degraded bins.

In addition to stress-testing these automated binning pro-
grams with high-strain overlap, the Mix-51 sample was used
to validate the performance of the machine learning classi-
fication step as a proof of concept. When contigs contain-
ing single copy marker contigs (30) were used to train the
decision tree classifier (with known reference genomes––as
annotated by metaQUAST alignment––provided as labels),
the classifier was able to predict the genome identity of
other contigs with very high accuracy, where predictions
were reported to have high confidence values. There was a
strong correlation between the classifier’s confidence (as de-
termined by a jackknife cross-validation approach (Supple-
mentary Figure S13) and the percent of accurate predictions
(Figure 3B; Pearson Correlation Coefficient, 0.9887931, P
= 6.809 × 10−8). For instance, 95.4% (436/457) of pre-
dictions with 100% confidence were accurate, recruiting 17
Mbp of sequence. On the other hand, only 18.3% (131/714)
of predictions with <50% confidence were accurate. It also
appears that the confidence of the classifier is positively as-
sociated with sequence length (Figure 3C), likely because
the signal and resolving power of k-mer frequency is known
to improve with sequence length (8). The median confidence
of predictions for contigs >100, 10–100 and <10 kbp were
90%, 70% and 50%, respectively (Figure 3C).

Performance in uniform coverage simulated metagenomes

Due to the innate complexity of some marine inverte-
brate associated microbial communities, such as marine
sponges (23–25), we tested the scalability of composition
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Figure 3. Performance testing and proof of concept of machine learning classification using synthetic metagenomes with high coverage and strain overlap.
(A) F1 values of individual genomes in Mix-51 datasets as compared to phylogeny based on concatenated protein marker alignments using AMPHORA2
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well as to Bifidobacterium bifidum in both Mix-51-staggered and FL20-9-Mix-51-staggered. These genomes have been assigned F1 scores of zero for the
respective datasets. (B) Number of accurate and inaccurate predictions compared to the confidence (based on jackknife cross validation, Supplementary
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correlation coefficient for the percent of accurate predictions is 0.9887931, P = 6.809 × 10−8). (C) Density plot showing confidence of the classifier’s
predictions compared to the length of the contig being classified.

and homology-based techniques for single sample binning
analysis. To this end, we tested our algorithm along with
MyCC, MaxBin, MetaBAT and BusyBee Web using a set
of increasingly complex simulated sequence sets with uni-
form coverage (Table 1).

For each of the simulated datasets, Autometa was able
to recover more genome bins (Supplementary Table S12),
including in the largest tested dataset (10 000 Mbp), which
represented the simulated sequencing of a metagenome con-
taining 2617 bacterial genomes. At the same time, the me-
dian F1 score of bins yielded by Autometa is consistently
close to 1.0 (Supplementary Table S13), up to and includ-
ing the 5000 Mbp dataset (Figure 4A). It should be noted
that MaxBin was the only pipeline other than Autometa
able to complete successfully for the two largest datasets
(5000 and 10 000 Mbp). In the smaller datasets (78.125,
156.25 and 312.5 Mbp), the performance of other pipelines
is comparable to Autometa, but their performance rapidly
declines in more complex datasets. We also calculated F1
recovery for all pipelines (Figure 4B and Table 1). Based
on this metric, Autometa and MyCC performed compara-
bly for the three smallest datasets. However, for the larger
datasets (625 to 10 000 Mbp) Autometa consistently out-
performed MyCC. MaxBin, MetaBAT and BusyBee Web
underperformed Autometa and MyCC in all datasets ex-
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Figure 4. Performance in increasingly complex simulated metagenomes
with uniform sequence coverage profiles based on median F1 (A) and F1
recovery (B).

cept for the smallest (78.125 Mbp) by this measure, where
MetaBAT scored higher (Supplementary Table S14).
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It is worth noting that while Autometa’s performance ap-
pears to drop dramatically after the 5000 Mbp dataset, this
drop is most likely a result of the sharp decline in the assem-
bly quality (Table 1), whereby the N50 (for contigs ≥3 kbp)
drops from 7222 to 4611 bp, and where the total assem-
bled length drops from 3179.1 to 427.5 Mbp (for contigs
≥3 kbp), for the 5000 and 10 000 Mbp datasets, respectively.
It is possible that if simulated sequencing parameters were
adjusted to simulate greater sequencing depth, the quality
of the assembly and thus binning results would continue to
scale.

DISCUSSION

Shotgun sequencing coupled with genome binning enables
species-level resolution of metagenomes, even when the
genomes of their microbial constituents lack representatives
in reference databases. This reference-free approach is mov-
ing the field of microbiology from phylogenetic profiling of
communities and aggregate interpretation of metagenomic
data to a higher resolution perspective of which organisms
play particular roles in a given ecosystem. Such informa-
tion can be invaluable in a diverse array of biotechnolog-
ical applications, such as identifying the source of bioac-
tive secondary metabolites in complex marine invertebrate
communities (17,50,51) or antibiotic resistance mechanisms
(20,52–55) in uncultured clinical samples (56,57). However,
despite the advances stemming from this paradigm shift in
metagenomic analysis, a number of challenges remain.

Many available automated binning programs require the
use of multiple samples in order to bin contigs into genome
bins based on differential coverage profiles. However, this
type of sample collection strategy is often not possible for
marine invertebrate communities with dynamic composi-
tions (21), and can be too costly for exploratory sequenc-
ing studies (17). Furthermore, these techniques typically
rely on the use of co-assemblies, a strategy whereby reads
from multiple samples are pooled prior to assembly. This
approach leads to increasingly aggregate and chimeric rep-
resentation of sequences and has been shown to reduce the
overall genome assembly quality of constituent genomes
(16), which, in turn, reduces the accuracy of the genome
binning process. Here, we instead focussed on maximizing
the binning performance that can be achieved from single
samples, and in subsequent efforts we will aim to capitalize
on multiple metagenomes, where available, without resort-
ing to co-assembly and with awareness of intersample strain
variability.

In a recent review by Sangwan et al., the authors cited a
general lack of binning strategies that integrate phylogenetic
analysis with nucleotide composition (8). Part of the chal-
lenge in analyzing non-model host-associated microbiomes
is the fact that most eukaryotic hosts lack any type of refer-
ence genome, and thus, unlike studies of the human micro-
biome, resulting reads from shotgun sequencing cannot be
easily separated from these sequencing datasets using align-
ment techniques. Much of our approach in developing Au-
tometa aimed to both address this fundamental issue and
to further leverage contig-level taxonomic assignments to
improve the binning process. Other efforts have focused on
removing prokaryotic contamination following de novo as-

sembly efforts of eukaryotic genomes (58). Here we have im-
plemented kingdom-level taxonomic partitioning prior to
binning, in addition to incorporating taxonomic informa-
tion in clustering and classification steps, improving binning
performance both for Autometa and for other tested bin-
ning pipelines in the bryozoan metagenome tested here.

The necessity for genome binning ultimately stems from
the underlying shortcomings of modern sequencing tech-
nology (8,17), especially in regards to the trade off be-
tween read length, accuracy and sequencing depth (59).
Thus, short-read sequencing technologies, such as Illumina,
are the only platforms currently capable of delivering suf-
ficient sequencing depth and per-read accuracy to effec-
tively assemble low abundance genomes directly from host-
associated metagenomes without physical or chemical en-
richment of bacterial DNA (60), which can introduce un-
forseen sampling bias. As the throughput and accuracy of
longer read technologies continue to advance, the demands
for binning strategies could feasibly decrease. However, for
the foreseeable future, genome-resolved metagenomics will
rely on contig-binning strategies based on a combination of
coverage, composition and homology. No individual bin-
ning model will likely be able to outperform all others under
every circumstance. Furthermore, there are fundamental
limitations of binning sequences based on coverage, com-
position, and homology features that complicate the proper
assignment of mobile elements such as plasmids and genes
acquired through horizontal transmission, especially when
they are poorly assembled (for instance, due to high repeat
content). Thus, it is important that users understand the
assumptions of each approach (7,8) and interpret results
accordingly. Others have suggested and demonstrated that
a combined strategy, particularly using programs with dis-
tinct underlying algorithms, is most likely to yield the most
robust results (8,61,62). We have shown here, however, that
the integration of taxonomic information with nucleotide
composition in Autometa allows it to outperform several
other pipelines in host-associated and extremely complex
metagenomes, yielding hundreds of high-quality genome
bins from single datasets. This capability will complement
existing multi-sample techniques by allowing the analysis
of inter-sample strain variability in high resolution, which
is likely to be seen in vertically transmitted symbionts.

DATA AVAILABILITY

The raw reads of the Mix-51-derived datasets are ac-
cessible through the Sequence Read Archive (SRA), un-
der accession numbers SRR5679054, SRR8304764–67,
SRR8304769–76 and SRR8304783–86. Previously pub-
lished raw reads and annotated assemblies associated with
sample AB1 ovicells are available through NCBI (BioPro-
ject PRJNA322176).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors wish to thank Miguel Pignatelli for insight
into his Blast2LCA algorithm and Sam Waterworth for as-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz148#supplementary-data


PAGE 11 OF 12 Nucleic Acids Research, 2019, Vol. 47, No. 10 e57

sistance in preparing Mix-51-equal and Mix-51-staggered
synthetic metagenomes. The authors would also like thank
Marc Chevrette, Chase Clark and Cedric Laczny for helpful
feedback, and two anonymous reviewers whose comments
greatly improved the manuscript.

FUNDING

NIAID [R21AI121704 to J.C.K.]; University of Wisconsin–
Madison; American Foundation for Pharmaceutical Edu-
cation Predoctoral Fellowship (to I.J.M.); Biotechnology
Training Program, NIGMS, [T32GM008349 to E.R.R.];
This research was performed in part using the computer
resources and assistance of the UW-Madison Center for
High Throughput Computing (CHTC) in the Department
of Computer Sciences. The CHTC is supported by UW-
Madison, the Advanced Computing Initiative, the Wiscon-
sin Alumni Research Foundation, the Wisconsin Institutes
for Discovery, and the National Science Foundation, and is
an active member of the Open Science Grid, which is sup-
ported by the National Science Foundation and the U.S.
Department of Energy’s Office of Science. Funding for open
access charge: NIH [R21AI121704].
Conflict of interest statement. None declared.

REFERENCES
1. Dubilier,N., McFall-Ngai,M. and Zhao,L. (2015) Microbiology:

Create a global microbiome effort. Nature, 526, 631–634.
2. Alivisatos,A.P., Blaser,M.J., Brodie,E.L., Chun,M., Dangl,J.L.,

Donohue,T.J., Dorrestein,P.C., Gilbert,J.A., Green,J.L., Jansson,J.K.
et al. (2015) A unified initiative to harness Earth’s microbiomes.
Science, 350, 507–508.

3. Buick,R. (2008) When did oxygenic photosynthesis evolve?. Philos.
Trans. R. Soc. Lond. B Biol. Sci., 363, 2731–2743.

4. Staley,J.T. and Konopka,A. (1985) Measurement of in situ activities
of nonphotosynthetic microorganisms in aquatic and terrestrial
habitats. Annu. Rev. Microbiol., 39, 321–346.

5. Escobar-Zepeda,A., Vera-Ponce de León,A. and Sanchez-Flores,A.
(2015) The road to metagenomics: From microbiology to DNA
sequencing technologies and bioinformatics. Front. Genet., 6, 348.

6. Brown,C.T., Hug,L.A., Thomas,B.C., Sharon,I., Castelle,C.J.,
Singh,A., Wilkins,M.J., Wrighton,K.C., Williams,K.H. and
Banfield,J.F. (2015) Unusual biology across a group comprising more
than 15% of domain Bacteria. Nature, 523, 208–211.

7. Sedlar,K., Kupkova,K. and Provaznik,I. (2017) Bioinformatics
strategies for taxonomy independent binning and visualization of
sequences in shotgun metagenomics. Comput. Struct. Biotechnol. J.,
15, 48–55.

8. Sangwan,N., Xia,F. and Gilbert,J.A. (2016) Recovering complete and
draft population genomes from metagenome datasets. Microbiome, 4,
8.

9. Dick,G.J., Andersson,A.F., Baker,B.J., Simmons,S.L., Thomas,B.C.,
Yelton,A.P. and Banfield,J.F. (2009) Community-wide analysis of
microbial genome sequence signatures. Genome Biol., 10, R85.

10. Laczny,C.C., Pinel,N., Vlassis,N. and Wilmes,P. (2014)
Alignment-free visualization of metagenomic data by nonlinear
dimension reduction. Sci. Rep., 4, 4516.

11. Laczny,C.C., Sternal,T., Plugaru,V., Gawron,P., Atashpendar,A.,
Margossian,H.H., Coronado,S., der Maaten,L.v., Vlassis,N. and
Wilmes,P. (2015) VizBin - an application for reference-independent
visualization and human-augmented binning of metagenomic data.
Microbiome, 3, 1.

12. Nielsen,H.B., Almeida,M., Juncker,A.S., Rasmussen,S., Li,J.,
Sunagawa,S., Plichta,D.R., Gautier,L., Pedersen,A.G., Le
Chatelier,E. et al. (2014) Identification and assembly of genomes and
genetic elements in complex metagenomic samples without using
reference genomes. Nat. Biotechnol., 32, 822–828.

13. Albertsen,M., Hugenholtz,P., Skarshewski,A., Nielsen,K.L.,
Tyson,G.W. and Nielsen,P.H. (2013) Genome sequences of rare,
uncultured bacteria obtained by differential coverage binning of
multiple metagenomes. Nat. Biotechnol., 31, 533–538.

14. Wu,Y.-W., Tang,Y.-H., Tringe,S.G., Simmons,B.A. and Singer,S.W.
(2014) MaxBin: An automated binning method to recover individual
genomes from metagenomes using an expectation-maximization
algorithm. Microbiome, 2, 26.

15. Alneberg,J., Bjarnason,B.S., de Bruijn,I., Schirmer,M., Quick,J.,
Ijaz,U.Z., Lahti,L., Loman,N.J., Andersson,A.F. and Quince,C.
(2014) Binning metagenomic contigs by coverage and composition.
Nat. Methods, 11, 1144–1146.

16. Olm,M.R., Brown,C.T., Brooks,B. and Banfield,J.F. (2017) dRep: A
tool for fast and accurate genomic comparisons that enables
improved genome recovery from metagenomes through
de-replication. ISME J., 11, 2864–2868.

17. Miller,I.J., Chevrette,M.G. and Kwan,J.C. (2017) Interpreting
microbial biosynthesis in the genomic age: Biological and practical
considerations. Mar. Drugs, 15, 165.

18. Medini,D., Donati,C., Tettelin,H., Masignani,V. and Rappuoli,R.
(2005) The microbial pan-genome. Curr. Opin. Genet. Dev., 15,
589–594.

19. Tettelin,H., Riley,D., Cattuto,C. and Medini,D. (2008) Comparative
genomics: The bacterial pan-genome. Curr. Opin. Microbiol., 11,
472–477.

20. Bishara,A., Moss,E.L., Tkachenko,E., Kang,J.B., Zlitni,S.,
Culver,R.N., Andermann,T.M., Weng,Z., Wood,C., Handy,C. et al.
(2018) Strain-resolved microbiome sequencing reveals mobile
elements that drive bacterial competition on a clinical timescale
(preprint: not peer-reviewed). bioRxiv, doi:10.1101/125211.

21. Miller,I.J., Weyna,T.R., Fong,S.S., Lim-Fong,G.E. and Kwan,J.C.
(2016) Single sample resolution of rare microbial dark matter in a
marine invertebrate metagenome. Sci. Rep., 6, 34362.

22. Miller,I.J., Vanee,N., Fong,S.S., Lim-Fong,G.E. and Kwan,J.C. (2016)
Lack of overt genome reduction in the bryostatin-producing
bryozoan symbiont ‘Candidatus Endobugula sertula’. Appl. Environ.
Microbiol., 82, 6573–6583.

23. Lackner,G., Peters,E.E., Helfrich,E. J.N. and Piel,J. (2017) Insights
into the lifestyle of uncultured bacterial natural product factories
associated with marine sponges. Proc. Natl. Acad. Sci. U.S.A., 114,
e347–e356.

24. Hentschel,U., Piel,J., Degnan,S.M. and Taylor,M.W. (2012) Genomic
insights into the marine sponge microbiome. Nat. Rev. Microbiol., 10,
641–654.

25. Taylor,M.W., Radax,R., Steger,D. and Wagner,M. (2007)
Sponge-associated microorganisms: Evolution, ecology, and
biotechnological potential. Microbiol. Mol. Biol. Rev., 71, 295–347.
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