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Abstract

Current genotyping approaches for single-nucleotide variations rely on short, accurate reads from second-generation
sequencing devices. Presently, third-generation sequencing platforms are rapidly becoming more widespread, yet
approaches for leveraging their long but error-prone reads for genotyping are lacking. Here, we introduce a novel
statistical framework for the joint inference of haplotypes and genotypes from noisy long reads, which we term
diplotyping. Our technique takes full advantage of linkage information provided by long reads. We validate hundreds
of thousands of candidate variants that have not yet been included in the high-confidence reference set of the
Genome-in-a-Bottle effort.
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Background
Reference-based genetic variant identification comprises
two related processes: genotyping and phasing. Genotyp-
ing is the process of determining which genetic variants
are present in an individual’s genome. A genotype at a
given site describes whether both chromosomal copies
carry a variant allele, whether only one of them carries it,
or whether the variant allele is not present at all. Phas-
ing refers to determining an individual’s haplotypes, which
consist of variants that lie near each other on the same
chromosome and are inherited together. To completely
describe all of the genetic variation in an organism, both
genotyping and phasing are needed. Together, the two
processes are called diplotyping.
Many existing variant analysis pipelines are designed

for short DNA sequencing reads [1, 2]. Though short
reads are very accurate at a per-base level, they can suf-
fer from being difficult to unambiguously align to the
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genome, especially in repetitive or duplicated regions [3].
The result is that millions of bases of the reference human
genome are not currently reliably genotyped by short
reads, primarily in multi-megabase gaps near the cen-
tromeres and short arms of chromosomes [4].While short
reads are unable to uniquely map to these regions, long
reads can potentially span into or even across them. Long
reads have already proven useful for read-based haplotyp-
ing, large structural variant detection, and de novo assem-
bly [5–8]. Here, we demonstrate the utility of long reads
for more comprehensive genotyping. Due to the histori-
cally greater relative cost and higher sequencing error rates
of these technologies, little attention has been given thus far
to this problem. However, long-read DNA sequencing
technologies are rapidly falling in price and increasing in
general availability. Such technologies include single-molecule
real-time (SMRT) sequencing by Pacific Biosciences
(PacBio) and nanopore sequencing by Oxford Nanopore
Technologies (ONT), both of which we assess here.
The genotyping problem is related to the task of infer-

ring haplotypes from long-read sequencing data, on which
a rich literature andmany tools exist [8–14], including our
own software WhatsHap [15, 16]. The most common for-
malization of haplotype reconstruction is the minimum
error correction (MEC) problem. TheMEC problem seeks
to partition the reads by haplotype such that a minimum
number of errors need to be corrected in order to make
the reads from the same haplotype consistent with each
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other. In principle, this problem formulation could serve
to infer genotypes, but in practice, the “all heterozygous”
assumption is made: tools for haplotype reconstruction
generally assume that a set of heterozygous positions is
given as input and exclusively work on these sites.
Despite this general lack of tools, some methods for

genotyping using long reads have been proposed. Guo et
al. [17] describe a method for long-read single-nucleotide
variant (SNV) calling and haplotype reconstruction which
identifies an exemplar read at each SNV site that best
matches nearby reads overlapping the site. It then par-
titions reads around the site based on similarity to the
exemplar at adjacent SNV sites. However, this method
is not guaranteed to discover an optimal partitioning of
the reads between haplotypes, and the authors report a
comparatively high false discovery rate (15.7%) and false-
negative rate (11.0%) for PacBio data of NA12878, which
corresponds to an F1 score of only 86.6%. Additionally,
two groups are presently developing learning-based vari-
ant callers which they show can be tuned to work using
long, noisy reads: In a recent preprint, Luo et al. [18]
describe a method which uses a convolutional neural net-
work (CNN) to call variants from long-read data, which
they report to achieve an F1 score between 94.90 and
98.52%, depending on parametrization (when training on
read data from one individual and calling variants on a
different individual, see Table 3 of [18]). Poplin et al. [19]
present another CNN-based tool, which achieves an F1
score of 92.67% on PacBio data (according to Supplemen-
tary Table 3 of [19]). These measures appear promising;
however, these methods do not systematically exploit the
linkage information between variants provided by long
reads. Thus, they do not leverage one of the key advan-
tages of long reads.
For an illustration of the potential benefit of using long

reads to diplotype across adjacent sites, consider Fig. 1a.
There are three SNV positions shown which are cov-
ered by long reads. The gray sequences represent the true
haplotype sequences, and reads are colored in blue and
red, where the colors correspond to the haplotype which
the respective read stems from: the red ones from the
upper sequence, and the blue ones from the lower one.
Since sequencing errors can occur, the alleles supported
by the reads are not always equal to the true ones in the
haplotypes shown in gray. Considering the SNVs indi-
vidually, it would be reasonable to call the first one as
A/C, the second one as T/G, and the third one as G/C,
since the number of reads supporting each allele is the
same. This leads to a wrong prediction for the second
SNV. However, if we knew which haplotype each read
stems from, that is, if we knew their colors, then we would
know that there must be sequencing errors at the sec-
ond SNV site. Since the reads stemming from the same
haplotypes must support the same alleles and there are

discrepancies between the haplotyped reads at this site,
any genotype prediction at this locus must be treated as
highly uncertain. Therefore, using haplotype information
during genotyping makes it possible to detect uncer-
tainties and potentially compute more reliable genotype
predictions.

Contributions
In this paper, we show that for contemporary long read
technologies, read-based phase inference can be simulta-
neously combined with the genotyping process for SNVs
to produce accurate diplotypes and to detect variants
in regions not mappable by short reads. We show that
key to this inference is the detection of linkage relation-
ships between heterozygous sites within the reads. To do
this, we describe a novel algorithm to accurately predict
diplotypes from noisy long reads that scales to deeply
sequenced human genomes.
We then apply this algorithm to diplotype one individual

from the 1000 Genomes Project, NA12878, using long
reads from both PacBio and ONT. NA12878 has been
extensively sequenced and studied, and the Genome in a
Bottle Consortium has published sets of high confidence
regions and a corresponding set of highly confident variant
calls inside these genomic regions [20]. We demonstrate
that our method is accurate, that it can be used to confirm
variants in regions of uncertainty, and that it allows for
the discovery of variants in regions which are unmappable
using short DNA read sequencing technologies.

Results
A unified statistical framework to infer genotypes and
haplotypes
We formulated a novel statistical framework based upon
hidden Markov models (HMMs) to analyze long-read
sequencing data. In short, we identify potential SNV
positions and use our model to efficiently evaluate the
bipartitions of the reads, where each bipartition corre-
sponds to assigning each read to one of the individual’s
two haplotypes. The model ensures that each read stays
in the same partition across variants, and hence does not
“switch haplotypes,” something which is key to exploit-
ing the inherent long range information. Based on the
read support of each haplotype at each site, the model
determines the likelihood of the bipartition. By using the
forward-backward algorithm, we pursue “global” diplo-
type inference over whole chromosomes, a process that
yields genotype predictions by determining themost likely
genotype at each position, as well as haplotype recon-
structions. In contrast to panel-based methods, like the
Li-Stephens model [21], our method relies on read data
instead of using knowledge of existing haplotypes. In
Fig. 1b, we give a conceptual overview of our approach and
describe it in more detail in the “Methods” section.
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Fig. 1Motivation and overview of diplotyping. a Gray sequences illustrate the haplotypes; the reads are shown in red and blue. The red reads
originate from the upper haplotype, the blue ones from the lower. Genotyping each SNV individually would lead to the conclusion that all of them
are heterozygous. Using the haplotype context reveals uncertainty about the genotype of the second SNV. b Clockwise starting top left: first,
sequencing reads aligned to a reference genome are given as input; second, the read alignments are used to nominate candidate variants (red
vertical bars), which are characterized by the differences to the reference genome; third, a hidden Markov model (HMM) is constructed where each
candidate variant gives rise to one “row” of states, representing possible ways of assigning each read to one of the two haplotypes as well as
possible genotypes (see the “Methods” section for details); forth, the HMM is used to perform diplotyping, i.e., we infer genotypes of each candidate
variant as well as how the alleles are assigned to haplotypes

Adding robustness to our analysis, we provide two inde-
pendent software implementations of our model: one is
made available as an extension to WhatsHap [16, 22] and
the other is a from-scratch implementation calledMargin-
Phase. While the core algorithmic ideas are the same,
MarginPhase and WhatsHap differ primarily in their
specialized preprocessing steps, with the former being
developed to work primarily with nanopore data and the
latter developed to work primarily with PacBio (although
both can work with either). The MarginPhase workflow
includes an alignment summation step described in the
“Allele supports” section whereas WhatsHap performs a
local realignment around analyzed sites explained in the
“Allele detection” section.

Data preparation and evaluation
To test our methods, we used sequencing data for
NA12878 from two different long-read sequencing tech-
nologies. NA12878 is a participant from the 1000
Genomes Project [2] who has been extensively sequenced
and analyzed. This is the only individual for whom there
is both PacBio and Nanopore sequencing reads publicly
available. We used Oxford Nanopore reads from Jain et
al. [7] and PacBio reads from the Genome in a Bot-
tle Consortium [23]. Both sets of reads were aligned
to GRCh38 with minimap2, a mapper designed to
align error-prone long reads [24] (version 2.10, using
default parameters for PacBio and Nanopore reads,
respectively).
To ensure that any variants we found were not arti-

facts of misalignment, we filtered out the reads flagged
as secondary or supplementary, as well as reads with a

mapping quality score less than 30. Genome-wide, this left
approximately 12 million Nanopore reads and 35 million
PacBio reads. The Nanopore reads had a median depth of
37× andmedian length of 5950 bp, including a set of ultra-
long reads with lengths up to 900 kb. The PacBio reads
had a median depth of 46× and median length of 2600 bp.
To validate the performance of our methods, we used

callsets from Genome in a Bottle’s (GIAB) benchmark
small variant calls v3.3.2 [20]. First, we compared against
GIAB’s set of high confidence calls, generated by a consen-
sus algorithm spanning multiple sequencing technologies
and variant calling programs. The high confidence regions
associated with this callset exclude structural variants,
centromeres, and heterochromatin. We used this to show
our method’s accuracy in well-understood and easy-to-
map regions of the genome.
We also analyzed our results compared to two more

expansive callsets, which cover a larger fraction of the
genome, that were used in the construction of GIAB’s
high confidence variants, one made by GATK Haplotype-
Caller v3.5 (GATK/HC, [1]) and the other by Freebayes
0.9.20 [25], both generated from a 300× PCR-free Illu-
mina sequencing run [20].

Evaluation statistics
We compute the precision and recall of our callsets using
the tool vcfeval fromReal TimeGenomics [26] (version
3.9) in order to analyze our algorithm’s accuracy of vari-
ant detection between our query callsets and a baseline
truth set of variants. All variants that identically match
between the truth and query callsets (meaning they share
the same genomic position, alleles, and genotype) are
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considered true positive calls. Calls that do not match any
variants in the truth callset are false negatives and truth
callset variants that are not matched in our callset are false
positives.
In order to evaluate the ability of our algorithm to geno-

type a provided set of variant positions, we compute the
genotype concordance. Here, we take all correctly iden-
tified variant sites (correct genomic position and alleles),
compare the genotype predictions (homozygous or het-
erozygous) made by our method to the corresponding
truth set genotypes, and compute the fraction of correct
genotype predictions. This enables us to analyze how well
the genotyping component of our model performs regard-
less of errors arising from wrongly called variant sites in
the detection stage of the algorithm.
We evaluate the phasing results by computing the

switch error rate between the haplotypes our algorithms
predict and the truth set haplotypes. We take all variants
into account that were correctly genotyped as heterozy-
gous in both our callset and the truth set. Switch errors
are calculated by counting the number of times a jump
from one haplotype to the other is necessary within a
phased block in order to reconstruct the true haplotype
sequence [16].
We restrict all analysis to SNVs, not including any short

insertions or deletions. This is due to the error profile of
both PacBio and Nanopore long reads, for which erro-
neous insertions and deletions are the most common type
of sequencing error by far, particularly in homopolymers
[27, 28].

Comparison to short read variant callers
We explored the suitability of the current state-of-the-art
callers for short reads to process long-read data (using
default settings) but were unsuccessful. The absence of
base qualities in the PacBio data prevented any calling;
for Nanopore data, FreeBayes was prohibitively slow and
neither Platypus nor GATK/HC produced any calls.

Long read coverage
We determined the regions where long and short reads
can be reliably mapped to the human genome for the pur-
pose of variant calling, aiming to understand if long reads
could potentially make new regions accessible. In Fig. 2,
various coverage metrics for short and long reads are plot-
ted against different genomic features, including those
known for being repetitive or duplicated. These metrics
are described below.
The callsets on the Illumina data made by GATK/HC

and FreeBayes come with two BED files describing
where calls were made with some confidence. The first,
described in Fig. 2 as Short Read Mappable, was gener-
ated using GATK CallableLoci v3.5 and includes regions
where there is (a) at least a read depth of 20 and (b) at

most a depth of twice the median depth, only including
reads with mapping quality of at least 20. This definition
of callable only considers read mappings.
The second, described asGATKCallable, was generated

from the GVCF output from GATK/HC by excluding the
areas with genotype quality less than 60. This is a more
sophisticated definition of callable as it reflects the effects
of homopolymers and tandem repeats. We use these two
BED files in our analysis of how short and long reads map
differently in various areas of the genome.
For long reads, we show four coverage statistics. The

entries marked as “mappable” describe the areas where
there is at least one high-quality long-read mapping
(PacBio Mappable, Nanopore Mappable, and Long Read
Mappable for regions where at least one of the sequenc-
ing technologies mapped). The Long Read Callable entries
cover the regions where our methods should be able to
call variants due to having a sufficient depth of read cov-
erage. In these regions, both sequencing technologies had
a minimum read depth of 20 and a maximum of twice the
median depth (this is similar to the GATK CallableLoci
metric, although made from BAMs with significantly less
read depth).
Figure 2 shows that in almost all cases, long reads map

to a higher fraction of the genome than short reads map
to. For example, nearly half a percent of the whole genome
is mappable by long reads but not short reads. Long reads
also map to 1% more of the exome, and 13% more of
segmental duplications. Centromeres and tandem repeats
are outliers to this generalization, where neither PacBio
nor Nanopore long reads cover appreciably more than
Illumina short reads.

Comparison against high confidence truth set
To validate our method, we first analyzed the SNV detec-
tion and genotyping performance of our algorithm using
the GIAB high confidence callset as a benchmark. All vari-
ants reported in these statistics fall within both the GIAB
high confidence regions and regions with a read depth
between 20 and twice the median depth.

Variant detection
Figure 3 (top) shows precision and recall ofWhatsHap run
on PacBio data and MarginPhase on Oxford Nanopore
data, which gives the best performance for these two data
types (see Additional file 1: Figure S1 for the results for
WhatsHap on ONT and MarginPhase on PacBio). On
PacBio reads, WhatsHap achieves a precision of 97.9%
and recall of 96.3%. On Nanopore reads, MarginPhase
achieves a precision of 76.9% and a recall of 80.9%. We
further stratify the performance of our methods based
on the variant type. For homozygous variants, WhatsHap
on PacBio data has a precision of 98.3% and a recall of
99.3%, MarginPhase on Nanopore data has a precision of
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Fig. 2 Reach of short read and long read technologies. The callable and mappable regions for NA12878 spanning various repetitive or duplicated
sequences on GRCh38 are shown. Feature locations are determined based on BED tracks downloaded from the UCSC Genome Browser [48]. Other
than the Gencode regions [49, 50], all features are subsets of the Repeat Masker [51] track. Four coverage statistics for long reads (shades of red) and
three for short reads (shades of blue) are shown. The labels “PacBio Mappable” and “Nanopore Mappable” describe areas where at least one primary
read with GQ ≥ 30 has mapped, and “Long Read Mappable” describes where this is true for at least one of the long read technologies. “Long Read
Callable” describes areas where both read technologies have coverage of at least 20 and less than twice the median coverage. “GIAB High
Confidence,” “GATK Callable,” and “Short Read Mappable” are the regions associated with the evaluation callsets. For the feature-specific plots, the
numbers on the right detail coverage over the feature and coverage over the whole genome (parenthesized)

99.3% and a recall of 84.5%. For heterozygous variants,
WhatsHap on PacBio data has a precision of 96.8% and a
recall of 93.8%; MarginPhase on Nanopore data has a pre-
cision of 66.5% and a recall of 78.6%. The high error rate
of long reads contributes to the discrepancy in the per-
formance between homozygous and heterozygous variant
detection, making it more difficult to distinguish the read
errors from the alternate allele for heterozygous variants.
In Section 5 of Additional file 1, we further discuss the
precision and recall as a function of read depth, and
we report more performance based on variant type in
Section 6.
Long reads have the ability to access regions of the

genome inaccessible to short reads (“Long read cover-
age” section). To explore the potential of our approach

to contribute to extending gold standard sets, such as
the one produced by the GIAB effort, we produced a
combined set of variants which occur in both the calls
made by WhatsHap on the PacBio reads and Margin-
Phase on the Nanopore data, where both tools report
the same genotype. This improves the precision inside
the GIAB high confidence regions to 99.7% with a recall
of 78.7%. In further analysis, we refer to this combined
variant set as Long Read Variants. It reflects a high
precision subset of variants validated independently by
both sequencing technologies. While data from both
technologies are usually not available for the same sam-
ple in routine settings, such a call set can be valuable
for curating variants on well-studied individuals such as
NA12878.
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Fig. 3 Precision and recall of MarginPhase on Nanopore and
WhatsHap on PacBio datasets in GIAB high confidence regions.
Genotype concordance (bottom) (wrt. GIAB high confidence calls) of
MarginPhase (mp, top) on Nanopore and WhatsHap (wh, middle) on
PacBio (PB). Furthermore, genotype concordance for the intersection
of the calls made by WhatsHap on the PacBio and MarginPhase on
the Nanopore reads is shown (bottom)

Genotyping
In order to further analyze the quality of the genotype
predictions of our methods (heterozygous or homozy-
gous), we computed the genotype concordance (defined
in the “Data preparation and evaluation” section) of our
callsets with respect to the GIAB ground truth inside of
the high confidence regions. Figure 3 (bottom) shows the
results. On the PacBio data,WhatsHap obtains a genotype
concordance of 99.79. On the Nanopore data, Margin-
Phase obtains a genotype concordance of 98.02. Consid-
ering the intersection of the WhatsHap calls on PacBio,
and MarginPhase calls on Nanopore data (i.e., the Long
Read Variants set), we obtain a genotype concordance of
99.99%.We detail the genotype performances for different
thresholds on the genotype quality scores that ourmethods
report for each variant call (Additional file 1: Section 7).

Phasing
In addition to genotyping variants, MarginPhase and
WhatsHap can also phase them. We evaluated the results
of both methods by computing switch error rates (defined
in thr “Data preparation and evaluation” section) inside
the GIAB high-confidence regions for correctly located
and genotyped GIAB truth set variants. We computed the

switch error rate of MarginPhase on Nanopore andWhat-
sHap on PacBio reads. For both datasets, we achieved
a low switch error rate of 0.17%. In Additional file 1:
Table S1, corresponding per-chromosome switch error
rates are given.

Cutting and downsampling reads
Our genotyping model incorporates haplotype informa-
tion into the genotyping process by using the property that
long sequencing reads can cover multiple variant posi-
tions. Therefore, one would expect the genotyping results
to improve as the length of the provided sequencing reads
increases.
In order to examine how the genotyping performance

depends on the length of the sequencing reads and
the coverage of the data, the following experiment was
performed using theWhatsHap implementation. The data
was downsampled to average coverages 10×, 20×, 25×,
and 30×. All SNVs inside of the high confidence regions
in the GIAB truth set were re-genotyped from each of
the resulting downsampled read sets, as well as from
the full coverage data sets. Two versions of the geno-
typing algorithm were considered. First, the full-length
reads as given in the BAM files were provided to What-
sHap. Second, in an additional step prior to genotyping,
the aligned sequencing reads were cut into shorter pieces
such that each resulting fragment covered at most two
variants. Additionally, we cut the reads into fragments
covering only one variant position. The genotyping per-
formances of these genotyping procedures were finally
compared by determining the amount of incorrectly geno-
typed variants.
Figure 4 shows the results of this experiment for the

PacBio data. The genotyping error increases as the length
of reads decreases. Especially at lower coverages, the
genotyping algorithm benefits from using the full length
reads, which leads to much lower genotyping errors com-
pared to using the shorter reads that lack information
of neighboring variants. For the Nanopore reads, the
results were very similar (Additional file 1: Figure S2).
In general, the experiment demonstrates that incorporat-
ing haplotype information gained from long reads does
indeed improve the genotyping performance. This is espe-
cially the case at low coverages, since here, the impact
of sequencing errors on the genotyping process is much
higher. Computing genotypes based on bipartitions of
reads that represent possible haplotypes of the individual
helps to reduce the number of genotyping errors, because
it makes it easier to detect sequencing errors in the given
reads.

Callset consensus analysis
Call sets based on long reads might contribute to improv-
ing benchmark sets such as the GIAB truth set. We
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analyze a call set created by taking the intersection of
the variants called by WhatsHap on PacBio reads and
MarginPhase on Nanopore reads, which leaves variants
that were called identically between the two sets. In Fig. 5,
we further dissect the relation of this intersection callset,
which we call Long Read Variants, to the GIAB truth set,
as well as its relation to the callsets from GATK Haplo-
typeCaller and FreeBayes, which both contributed to the
GIAB truth set.
Figure 5a reveals that 404,994 variants in our Long Read

Variants callset were called by both the GATK Haplotype
Caller and FreeBayes, yet are not in the GIAB truth set.
To gather additional support for the quality of these calls,
we consider two established quality metrics: the transi-
tion/transversion ratio (Ti/Tv) and the heterozygous/non-
ref homozygous ratio (Het/Hom) [29]. The Ti/Tv ratio
of these variants is 2.09, and the Het/Hom ratio is 1.31.
These ratios are comparable to those of the GIAB truth
set, which are 2.10 and 1.55, respectively. An examination
of the Platinum Genomes benchmark set [30], an alter-
native to GIAB, reveals 78,493 such long-read validated
variants outside of their existing truth set.
We hypothesized that a callset based on long reads is

particularly valuable in the regions that were previously
difficult to characterize. To investigate this, we separately
examined the intersections of our Long Read Variants
callset with the two short-read callsets both inside the
GIAB high confidence regions and outside of them, see
Fig. 5b and c, respectively. These Venn diagrams clearly
indicate that the concordance of GATK and FreeBayes
was indeed substantially higher in high confidence regions
than outside. An elevated false-positive rate of the short-
read callers outside the high confidence regions is a
plausible explanation for this observation. Interestingly,

Fig. 4 Genotyping errors (with respect to GIAB calls) as a function of
coverage. The full length reads were used for genotyping (blue), and
additionally, reads were cut such as to cover at most two variants
(red) and one variant (yellow)

the fraction of calls concordant between FreeBayes and
GATK for which we gather additional support is consid-
erably lower outside the high confidence regions. This is
again compatible with an increased number of false pos-
itives in the short-read callsets, but we emphasize that
these statistics should be interpreted with care in the
absence of a reliable truth set for these regions.

Candidate novel variants
To demonstrate that our method allows for variant calling
on more regions of the genome than short-read variant
calling pipelines, we have identified 15,498 variants which
lie outside of the Short ReadMappable area, but inside the
Long Read Callable regions. These variants therefore fall
within the regions in which there is a sequencing depth
of at least 10 and not more than 2 times the median
depth for both long-read sequencing technologies, yet the
regions are unmappable by short reads. We determined
that 4.43 Mb of the genome are only mappable by long
reads in this way.
Table 1 provides the counts of all variants found in

each of the regions from Fig. 2, as well as the counts
for candidate novel variants, among the different types
of genomic features described in “Long read coverage”
section. Over two thirds of the candidate variants
occurred in the repetitive or duplicated regions described
in the UCSC Genome Browser’s repeatMasker track.
The transition/transversion ratio (Ti/Tv) of NA12878’s
15,498 candidate variants is 1.64, and the heterozy-
gous/homozygous ratio (Het/Hom) of these variants is
0.31. Given that we observe 1 candidate variant in every
325 haplotype bases of the 4.43 Mb of the genome only
mappable by long reads, compared to 1 variant in every
1151 haplotype bases in the GIAB truth set on the whole
genome, these candidate variants exhibit a 3.6× increase
in the haplotype variation rate.

Runtimes
Whole-genome variant detection using WhatsHap took
166 CPU hours on PacBio reads, of which genotyping
took 44 h. Per chromosome, a maximum of 4.2 GB of
memory was required for genotyping, and additionally, at
most 2.6 GB was needed for phasing. The MarginPhase
implementation took 1550 CPU hours on ONT data, bro-
ken down into 330 h for diplotyping and 1220 h for read
realignment (described in the “Allele supports” section).
The MarginPhase workflow breaks the genome into 2-
Mb overlapping windows, and on each of these windows,
MarginPhase required on average 22.6 GB ofmemory, and
a maximum of 30.2 GB.
We found that the time-consuming realignment step

significantly improved the quality of the ONT results
and attribute this as the major cause of the difference
in runtimes. Furthermore, the methods employed to the
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Fig. 5 Confirming short-read variants. We examine all distinct variants found by our method, GIAB high confidence, GATK/HC, and FreeBayes. Raw
variant counts appear on top of each section, and the percentage of total variants is shown at the bottom. a All variants. b Variants in GIAB
high-confidence regions. c Variants outside GIAB high-confidence regions

find candidate sites differ between the implementations.
WhatsHap performs genotyping and phasing in two steps,
whereas MarginPhase handles them simultaneously after
filtering out the sites that are likely homozygous (in
the case of ONT data, this is between 98 and 99% of
sites). The filtration heuristic used during our evaluation
resulted in MarginPhase analyzing roughly 10× the num-
ber of sites than WhatsHap, increasing the runtime and
memory usage.

Discussion
We introduce a novel statistical model to unify the infer-
ence of genotypes and haplotypes from long (but noisy)
third-generation sequencing reads, paving the way for
genotyping at intermediate coverage levels.We emphasize
that our method operates at coverage levels that preclude
the possibility of performing a de novo genome assembly,
which, until now, was the most common use of long-read

Table 1 Distribution of candidate novel variants across different
regions of interest

All variants Novel variant candidates

Total 2,923,556 14,118

Gencode v27 (ALL) 1,483,947 5,093

Gencode v27 exome 92,268 321

Repeat Masker 1,592,193 9,954

LINEs 687,989 4,808

SINEs 335,181 953

Segmental duplications 161,588 4,838

Tandem repeats 104,753 5,944

Centromeres 1,037 28

Telomeres 0 0

All variants refers to the variants in the Long Read Variants set, and Novel Variant
Candidates are those described in “Candidate novel variants” section

data. Furthermore, we note that unlike the approaches
using a haplotype reference panel of a population for sta-
tistical phasing and/or imputation [31], our approach only
uses sequencing data from the individual; hence, its per-
formance does not rely on the allele frequency within a
population.
Our method is based on a hidden Markov model that

partitions long reads into haplotypes, which we found to
improve the quality of variant calling. This is evidenced by
our experiment in cutting and downsampling reads, where
reducing the number of variants spanned by any given
read leads to decreased performance at all levels of read
coverage. Therefore, our method is able to translate the
increased read lengths of third generation platforms into
increased genotyping performance for these noisy long
reads.
Our analysis of the methods against a high confidence

truth set in high confidence regions shows false discovery
rates (corresponding to one minus precision) between 3
and 6% for PacBio and between 24 and 29% for Nanopore.
However, when considering a conservative set of vari-
ants confirmed by both long read technologies, the false
discovery rate drops to around 0.3%, comparable with
contemporary short-read methods in these regions.
In analyzing the area of the genome with high-quality

long-read mappings, we found roughly a half a percent of
the genome (approximately 15 Mb) that is mappable by
long reads but not by short reads. This includes 1% of the
human exome, as well as over 10% of segmental dupli-
cations. Even though some of these areas have low read
counts in our experimental data, the fact that they have
high-quality mappings means that they should be accessi-
ble with sufficient sequencing. We note that this is not the
case for centromeric regions, where Illumina reads were
able to map over twice as much as we found in our PacBio
data. This may be a result of the low quality in long reads
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preventing them from uniquely mapping to these areas
with an appreciable level of certainty.
We demonstrate that our callset has expected biologi-

cal features, by showing that over our entire set of called
variants, the Ti/Tv and Het/Hom ratios were similar to
those reported by the truth set. The Ti/Tv ratio of 2.18 is
slightly above the 2.10 reported in the GIAB callset, and
the Het/Hom ratio of 1.36 is slightly lower than the 1.55
found in the GIAB variants. In the 15,498 novel variant
candidates produced by our method in regions unmap-
pable by short reads, the Ti/Tv ratio of 1.64 is slightly
lower than that of the truth set. This is not unexpected
as gene-poor regions such as these tend to have more
transversions away from C:G pairs [32]. We also observe
that the Het/Hom ratio dropped to 0.31, which could be
due to the systematic biases in our callset or in the refer-
ence genome. The rate of variation in these regions was
also notably different than in the high confidence regions,
where we find three variants per thousand haplotype
bases (3.6× the rate in high confidence regions). A previ-
ous study analyzing NA12878 [33] also found an elevated
variation rate in the regions where it is challenging to
call variants, such as low-complexity regions and segmen-
tal duplications. The study furthermore found clusters of
variants in these regions, which we also observe.
The high precision of our set containing the intersec-

tion of variants called on Nanopore reads and variants
called on PacBio reads makes it useful as strong evi-
dence for confirming existing variant calls. As shown in
the read coverage analysis, in both the GIAB and Plat-
inum Genomes efforts many regions could not be called
with high confidence. In the regions excluded from GIAB,
we found around 400,000 variants using both Nanopore
and PacBio reads with our methods, which were addition-
ally confirmed by 2 other variant callers, FreeBayes and
GATK/HC, on Illumina reads. Given the extensive sup-
port of these variants frommultiple sequencing technolo-
gies and variant callers, these 400,000 variants are good
candidates for addition to the GIAB truth set. Expansion
of benchmark sets to harder-to-genotype regions of the
human genome is generally important for the develop-
ment of more comprehensive genotyping methods, and
we plan to work with these efforts to use our results.

Conclusions
Variant calling with long reads is difficult because they
are lossy and error-prone, but the diploid nature of the
human genome provides a means to partition reads to
lessen this effect. We exploit the fact that reads spanning
heterozygous sites must share the same haplotype to dif-
ferentiate read errors from true variants. We provide two
implementations of this method in two long-read variant
callers, and while both implementations can be run on
either sequencing technology, we currently recommend

that MarginPhase is used on ONT data and that What-
sHap is used on PacBio data.
One way we anticipate improvement to our method

is by incorporating methylation data. Hidden Markov
models have been used to produce methylation data
for ONT reads using the underlying signal information
[34, 35]. As shown by the read-cutting experiment, the
amount of heterozygous variants spanned by each read
improves our method’s accuracy. We predict that the
inclusion of methylation into the nucleotide alphabet will
increase the amount of observable heterozygosity and
therefore further improve our ability to call variants.
Work has begun to include methylation probabilities into
our method.
The long-read genotyping work done by Luo et al. [18]

using CNNs does not account for haplotype informa-
tion. Partitioning reads into haplotypes as a preprocessing
step (such as our method does) may improve the CNN’s
performance; we think this is an interesting avenue of
exploration.
Further, our method is likely to prove useful for future

combined diplotyping algorithms when both genotype
and phasing is required, for example, as may be used when
constructing phased diploid de novo assemblies [36, 37] or
in future hybrid long/short-read diplotyping approaches.
Therefore, we envision the statistical model introduced
here to become a standard tool for addressing a broad
range of challenges that come with long-read sequencing
of diploid organisms.

Methods
We describe a probabilistic model for diplotype inference,
and in this paper use it, primarily, to find maximum pos-
terior probability genotypes. The approach builds upon
theWhatsHap approach [22] but incorporates a full prob-
abilistic allele inference model into the problem. It has
similarities to that proposed by Kuleshov [38], but we
here frame the problem using Hidden Markov models
(HMMs).

Alignment matrix
Let M be an alignment matrix whose rows represent
sequencing reads and whose columns represent genetic
sites. Let m be the number of rows, let n be the number
of columns, and let Mi,j be the jth element in the ith row.
In each column, let �j ⊂ � represent the set of possible
alleles such thatMi,j ∈ �j ∪ {−}, the “−” gap symbol rep-
resenting a site at which the read provides no information.
We assume no row or column is composed only of gap
symbols, an uninteresting edge case. An example align-
ment matrix is shown in Fig. 6. Throughout the following,
we will be informal and refer to a row i or column j, being
clear from the context whether we are referring to the row
or column itself or the coordinate.
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Fig. 6 Alignment matrix. Here, the alphabet of possible alleles is the
set of DNA nucleotides, i.e., � = {A, C,G, T}

Genotype inference problem overview
A diplotype H = (H1,H2) is a pair of haplotype (seg-
ments); a haplotype (segment) Hk = Hk

1 ,H
k
2 , . . . ,Hk

n is a
sequence of length n whose elements represents alleles
such that Hk

j ∈ �j. Let B = (B1,B2) be a bipartition of the
rows of M into two parts (sets): B1, the first part, and B2,
the second part. We use bipartitions to represent which
haplotypes the reads came from, of the two in a genome.
By convention, we assume that the first part of B are the
reads arising from H1 and the second part of B are the
reads arising from H2.
The problem we analyze is based upon a probabilistic

model that essentially represents the (weighted) minimum
error correction (MEC) problem [39, 40], while modeling
the evolutionary relationship between the two haplotypes
and so imposing a cost on bipartitions that create differ-
ences between the inferred haplotypes.
For a bipartition B, and making an i.i.d. assumption

between sites in the reads:

P(H|B,M) =
n∏

j=1

∑

Zj∈�j

P
(
H1
j |B1,Zj

)
P

(
H2
j |B2,Zj

)
P(Zj)

Here, P(Zj) is the prior probability of the ancestral allele
Zj of the two haplotypes at column j, by default we can
use a simple flat distribution over ancestral alleles (but see
below). The posterior probability P(Hk

j |Bk ,Zj) =
P

(
Hk
j |Zj

) ∏
{i∈Bk :Mi,j �=−} P

(
Mi,j|Hk

j

)

∑
Yj∈�j P(Yj|Zj)

∏
{i∈Bk :Mi,j �=−} P(Mi,j|Yj)

for k ∈ {1, 2}, where the probability P
(
Hk
j |Zj

)
is the prob-

ability of the haplotype allele Hk
j given the ancestral allele

Zj. For this, we can use a continuous time Markov model
for allele substitutions, such as Jukes and Cantor [41], or
some more sophisticated model that factors the similari-
ties between alleles (see below). Similarly, P

(
Mi,j|Hk

j

)
is

the probability of observing allele Mi,j in a read given the
haplotype allele Hk

j .
The genotype inference problem we consider is finding

for each site:

argmax(
H1
j ,H

2
j

)P
(
H1
j ,H2

j |M
)

= argmax(
H1
j ,H

2
j

)

∑

B
P

(
H1
j ,H2

j |B,M
)

i.e., finding the genotype
(
H1
j ,H2

j

)
with maximum pos-

terior probability for a generative model of the reads
embedded inM.

A graphical representation of read partitions
For column j inM, row i is active if the first non-gap sym-
bol in row i occurs at or before column j and the last
non-gap symbol in row i occurs at or after column j. Let
Aj be the set of active rows of column j. For column j, row
i is terminal if its last non-gap symbol occurs at column j
or j = n. Let A′

j be the set of active, non-terminal rows of
column j.
Let Bj =

(
B1
j ,B2

j

)
be a bipartition of Aj into the first

part B1
j and a second part B2

j . Let Bj be the set of all pos-
sible such bipartitions of the active rows of j. Similarly, let
Cj =

(
C1
j ,C2

j

)
be a bipartition of A′

j and Cj be the set of
all possible such bipartitions of the active, non-terminal
rows of j.
For two bipartitions B = (B1,B2) and C = (C1,C2), B

is compatible with C if the subset of B1 in C1 ∪ C2 is a
subset of C1, and, similarly, the subset of B2 in C1 ∪ C2

is a subset of C2. Note this definition is symmetric and
reflexive, although not transitive.
Let G = (VG,EG) be a directed graph. The vertices VG

are the set of bipartitions of both the active rows and the
active, non-terminal rows for all columns ofM and a spe-
cial start and end vertex, i.e., VG = {start, end} ∪ (

⋃
j Bj ∪

Cj). The edges EG are a subset of compatibility relation-
ships, such that (1) for all j, there is an edge (Bj ∈ Bj,Cj ∈
Cj) if Bj is compatible with Cj; (2) for all 1 ≤ j < n, there
is an edge (Cj ∈ Cj,Bj+1 ∈ Bj+1) if Cj is compatible with
Bj+1; (3) there is an edge from the start vertex to each
member of B1; and (4) there is an edge from each mem-
ber of Bn to the end vertex (note that Cn is empty and so
contributes no vertices to G). Figure 7 shows an example
graph.
The graph G has a large degree of symmetry and the

following properties are easily verified:
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Fig. 7 Example graph. Left—an alignment matrix. Right—the corresponding directed graph representing the bipartitions of active rows and active
non-terminal rows, where the labels of the nodes indicate the partitions, e.g., “1,2 / .” is shorthand for A = ({1, 2}, {}})

• For all j and all Bj ∈ Bj, the indegree and outdegree of
Bj is 1.

• For all j, the indegree of all members of Cj is equal.
• Similarly, for all j, the outdegree of all members of Cj

is equal.

Let the maximum coverage, denoted maxCov, be
the maximum cardinality of a set Aj over all j. By
definition, maxCov ≤ m. Using the above proper-
ties it is easily verified that (1) the cardinality of G
(number of vertices) is bounded by this maximum
coverage, being less than or equal to 2 + (2n −
1)2maxCov and (2) the size of G (number of edges) is at
most 2n2maxCov.
Let a directed path from the start vertex to the

end vertex be called a diploid path, D = (D1 =
start,D2, . . . ,D2n+1 = end). The graph is naturally orga-
nized by the columns of M, so that D2j =

(
B1
j ,B2

j

)
∈ Bj

and D2j+1 =
(
C1
j+1,C

2
j+1

)
∈ Cj for all 0 < j ≤ n. Let

BD = (
B1
D,B2

D
)
denote a pair of sets, where B1

D is the union
of the first parts of the vertices of D2, . . . ,D2n+1 and, sim-
ilarly, B2

D is the union of second parts of the vertices of
D2, . . . ,D2n+1.
B1
D and B2

D are disjoint because otherwise there must
exist a pair of vertices within D that are incompatible,
which is easily verified to be impossible. Further, because
D visits a vertex for every column ofM, it follows that the
sum of the cardinalities of these two sets ism. BD is there-
fore a bipartition of the rows ofM which we call a diploid
path bipartition.

Lemma 1 The set of diploid path bipartitions is the set of
bipartitions of the rows ofM and each diploid path defines
a unique diploid path bipartition.

Proof We first prove that each diploid path defines a
unique bipartition of the rows of M. For each column
j of M, each vertex Bj ∈ Bj is a different bipartition
of the same set of active rows. Bj is by definition

compatible with a diploid path bipartition of a diploid
path that contains it and incompatible with every other
member of Bj. It follows that for each column j, two
diploid paths with the same diploid path bipartition must
visit the same node in Bj, and, by identical logic, the
same node in Cj, but then two such diploid paths are
therefore equal.
There are 2m partitions of the rows of M. It remains

to prove that there are 2m diploid paths. By the structure
of the graph, the set of diploid paths can be enumerated
backwards by traversing right-to-left from the end vertex
by depth-first search and exploring each incoming edge
for all encountered nodes. As stated previously, the only
vertices with indegree greater than one are for all j the
members ofCj, and eachmember ofCj has the same inde-
gree. For all j, the indegree of Cj is clearly 2|Cj|−|Bj|: two
to the power of the number of number of active, termi-
nal rows at column j. The number of possible paths must
therefore be

∏n
j=1 2|Cj|−|Bj|. As each row is active and ter-

minal in exactly one column, we obtainm = ∑
j |Cj|− |Bj|

and therefore:

2m =
n∏

j=1
2|Cj|−|Bj|

A hidden Markov model for genotype and diplotype
inference
In order to infer diplotypes, we define a hidden Markov
model which is based on G but additionally represents all
possible genotypes at each genomic site (i.e., in each B col-
umn). To this end, we define the set of states Bj ×�j ×�j,
which contains a state for each bipartition of the active
rows at position j and all possible assignments of alleles in
�j to the two partitions. Additionally, the HMM contains
a hidden state for each bipartition in Cj, exactly as defined
for G above. Transitions between states are defined by the
compatibility relationships of the corresponding bipar-
titions as before. This HMM construction is illustrated
in Fig. 8.
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Fig. 8 Genotyping HMM. Colored states correspond to bipartitions of reads and allele assignments at that position. States in C1 and C2 correspond
to bipartitions of reads covering positions 1 and 2 or 2 and 3, respectively. In order to compute genotype likelihoods after running the
forward-backward algorithm, states of the same color have to be summed up in each column

For all j and all Cj ∈ Cj, each outgoing edge has tran-
sition probability P(a1, a2) = ∑

Zj P(a1|Zj)P(a2|Zj)P(Zj),
where (Bj, a1, a2) ∈ Bj × �j × �j is the state being
transitioned to. Similarly, each outgoing edge of the start
node has transition probability P(a1, a2). The outdegree
of all remaining nodes is 1, so these edges have transition
probability 1.
The start node, the end node, and the members ofCj for

all j are silent states and hence do not emit symbols. For
all j, members of Bj × �j × �j output the entries in the
jth column of M that are different from “–.” We assume
every matrix entry to be associated with an error prob-
ability, which we can compute from P(Mij|Hk

j ) defined
previously. Based on this, the probability of observing a
specific output column ofM can be easily calculated.

Computing genotype likelihoods
The goal is to compute the genotype likelihoods for the
possible genotypes for each variant position using the
HMM defined above. Performing the forward-backward
algorithm returns forward and backward probabilities of
all hidden states. Using those, the posterior distribution of
a state (B, a1, a2) ∈ Bj×�j×�j, corresponding to biparti-
tion B and assigned alleles a1 and a2, can be computed as:

P((B, a1, a2)|M)= αj(B, a1, a2) · βj(B, a1, a2)∑
B′∈B(Aj)

∑

a′
1,a

′
2∈�j

αj
(
B′, a′

1, a′
2
) · βj

(
B′, a′

1, a′
2
) (1)

where αj(B, a1, a2) and βj(B, a1, a2) denote forward and
backward probabilities of the state (B, a1, a2) and B(Aj),

the set of all bipartitions of Aj. The above term represents
the probability for a bipartition B = (B1,B2) of the reads
in Aj and alleles a1 and a2 assigned to these partitions.
In order to finally compute the likelihood for a certain
genotype, one can marginalize over all bipartitions of a
column and all allele assignments corresponding to that
genotype.

Example 1 In order to compute genotype likelihoods
for each column of the alignment matrix, posterior state
probabilities corresponding to states of the same color
in Fig. 8 need to be summed up. For the first column,
adding up the red probabilities gives the genotype likeli-
hood of genotype T/T, blue of genotype G/T, and yellow
of G/G.

Implementations
We created two independent software implementations
of this model, one based upon WhatsHap and one from
scratch, which we call MarginPhase. Each uses different
optimizations and heuristics that we briefly describe.

WhatsHap implementation
We extended the implementation of WhatsHap ([22],
https://bitbucket.org/whatshap/whatshap) to enable hap-
lotype aware genotyping of bi-allelic variants based on
the above model. WhatsHap focuses on re-genotyping
variants, i.e., it assumes SNV positions to be given.
In order to detect variants, a simple SNV calling
pipeline was developed. It is based on samtools
mpileup [42] which provides information about the

https://bitbucket.org/whatshap/whatshap
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bases supported by each read covering a genomic posi-
tion. A set of SNV candidates is generated by selecting
genomic positions at which the frequency of a non-
reference allele is above a fixed threshold (0.25 for PacBio
data, 0.4 for Nanopore data), and the absolute num-
ber of reads supporting the non-reference allele is at
least 3. These SNV positions are then genotyped using
WhatsHap.

Allele detection
In order to construct the alignment matrix, a crucial step
is to determine whether each read supports the refer-
ence or the alternative allele at each of n given genomic
positions. In WhatsHap, this is done based on re-aligning
sections of the reads [16]. Given an existing read align-
ment from the provided BAM file, its sequence in a
window around the variant is extracted. It is aligned to
the corresponding region of the reference sequence and,
additionally, to the alternative sequence, which is artifi-
cially produced by inserting the alternative allele into the
reference. The alignment cost is computed by using affine
gap costs. Phred scores representing the probabilities for
opening and extending a gap and for a mismatch in the
alignment can be estimated from the given BAM file. The
allele leading to a lower alignment cost is assumed to
be supported by the read and is reported in the align-
ment matrix. If both alleles lead to the same cost, the
corresponding matrix entry is “–.” The absolute differ-
ence of both alignment scores is assigned as a weight
to the corresponding entry in the alignment matrix. It
can be interpreted as a phred scaled probability for the
allele being wrong and is utilized for the computation
of output probabilities.

Read selection
Our algorithm enumerates all bipartitions of reads cover-
ing a variant position and thus has a runtime exponential
in the maximum coverage of the data. To ensure that this
quantity is bounded, the same read selection step imple-
mented previously in theWhatsHap software is run before
constructing the HMM and computing genotype likeli-
hoods. Briefly, a heuristic approach described in [43] is
applied, which selects phase informative reads iteratively
taking into account the number of heterozygous variants
covered by the read and its quality.

Transitions
Defining separate states for each allele assignment in Bj
enables easy incorporation of prior genotype likelihoods
by weighting transitions between states in Cj−1 and Bj ×
�j ×�j. Since there are two states corresponding to a het-
erozygous genotype in the bi-allelic case (0|1 and 1|0), the
prior probability for the heterozygous genotype is equally
spread between these states.

In order to compute such genotype priors, the same
likelihood function underlying the approaches described
in [44] and [45] was utilized. For each SNV position,
the model computes a likelihood for each SNV to be
absent, heterozygous, or homozygous based on all reads
that cover a particular site. Each read contributes a prob-
ability term to the likelihood function, which is com-
puted based on whether it supports the reference or
the alternative allele [44]. Furthermore, the approach
accounts for statistical uncertainties arising from read
mapping and has a runtime linear in the number of vari-
ants to be genotyped [45]. Prior genotype likelihoods
are computed before read selection. In this way, infor-
mation of all input reads covering a position can be
incorporated.

MarginPhase implementation
MarginPhase (https://github.com/benedictpaten/margin
Phase) is an experimental, open source implementation
of the described HMM written in C. It differs from
the WhatsHap implementation in the method it uses to
explore bipartitions and the method to generate allele
support probabilities from the reads.

Read bipartitions
The described HMM scales exponentially in terms of
increasing read coverage. For typical 20–60× sequencing
coverage (i.e., average number of active rows per col-
umn), it is impractical to store all possible bipartitions
of the rows of the matrix. MarginPhase implements a
simple, greedy pruning and merging heuristic outlined in
recursive pseudocode in Algorithm 1.
The procedure computePrunedHMM takes an align-

ment matrix and returns a connected subgraph of the

Algorithm 1
procedure COMPUTEPRUNEDHMM(M)

ifmaxCov ≥ t then
DivideM in half to create two matrices,M1
andM2, such thatM1 is the first n

2 rows ofM
andM2 is the remaining rows ofM.

HMM1 ← computePrunedHMM(M1)
HMM2 ← computePrunedHMM(M2)
HMM ← mergeHMMs(HMM1,HMM2)

else
LetHMM be the read partitioning HMM for
M.

return subgraph ofHMM including visited states
and transitions each with posterior probability
of being visited ≥ v, and which are on a path
from the start to end nodes.

https://github.com/benedictpaten/marginPhase
https://github.com/benedictpaten/marginPhase
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HMM for M that can be used for inference, choosing
to divide the input alignment matrix into two if the
number of rows (termed maxCov) exceeds a threshold t,
recursively.
The sub-procedure mergeHMMs takes two pruned

HMMs for two disjoint alignment matrices with the same
number of columns and joins them together in the natu-
ral way such that if at each site i there are

∣∣B1
i
∣∣ states in

HMM1 and
∣∣B2

i
∣∣ in HMM2, then the resulting HMM will

have
∣∣B1

i
∣∣ × ∣∣B2

i
∣∣ states. This is illustrated in Fig. 9. In the

experiments used here t = 8 and v = 0.01.

Allele supports
In MarginPhase, the alignment matrix initially has a site
for each base in the reference genome. To generate the
allele support for each reference base from the reads for
each read, we calculate the posterior probability of each
allele (reference base) using the implementation of the
banded forward-backward pairwise alignment described
in [46]. The result is that for each reference base, for
each read that overlaps (according to an initial guide
alignment extracted from the SAM/BAM file) the ref-
erence base, we calculate the probability of each pos-
sible nucleotide (i.e., { ‘A’, ‘C’, ‘G’, ‘T’ }). The gaps are
ignored and treated as missing data. This approach allows

summation over all alignments within the band. Given
the supports for each reference base, we then prune
the set of reference bases considered to those with
greater than (by default) three expected non-reference
alleles. This expectation is merely the sum of non-
reference allele base probabilities over the reads. This
reduces the number of considered sites by approximately
two orders of magnitude, greatly accelerating the HMM
computation.

Substitution probabilities
We set the read error substitution probabilities, i.e.,
P

(
Mi,j|Hk

j

)
, empirically and iteratively. Starting from

a 1% flat substitution probability, we generate a ML
read bipartition and pair of haplotypes, we then re-
estimate the read error probabilities from the differ-
ences between the reads and the haplotypes. We then
rerun the model and repeat the process to derive the
final probabilities. For the haplotype substitution prob-
abilities, i.e., P

(
Hk
j |Zj

)
, we use substitution probabili-

ties of 0.1% for transversions and 0.4% for transitions,
reflecting the facts that transitions are twice as likely
empirically but that there are twice as many possible
transversions.

Fig. 9 The merger of two read partitioning HMMs with the same number of columns. Top and middle: two HMMs to be merged; bottom: the
merged HMM. Transition and emission probabilities not shown
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Phase blocks
MarginPhase divides the read partitioning HMMs into
phase sets based on the number of reads which span
adjacent likely heterozygous sites. The bipartitioning is
performed on each of these phase sets individually.
MarginPhase’s output includes a BAM which encodes the
phasing of each read, including which phase set it is in,
which haplotype it belongs to, and what of the aligned por-
tion falls into each phase set. Reads which span a phase set
boundary have information for both encoded in them.

Additional files

Additional file 1: We provide precision, recall, and genotype
concordance of MarginPhase on PacBio and WhatsHap on Nanopore
reads. Furthermore, we give the results of cutting and downsampling
Nanopore reads. We also provide more detailed phasing statistics and
report results on re-typing the GIAB indels. Additionally, we show how
precision, recall, and F-measure of our callsets behave as a function of read
depth and analyze homozygous and heterozygous calls separately. We also
provide figures that show the genotyping performance of our methods for
different thresholds on the reported genotype qualities. (PDF 695 kb)
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