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Abstract

A general catalytic method for asymmetric C-alkylation of nitroalkanes using nickel catalysis is 

described. This method enables the formation of highly enantioenriched β-nitroamides from 

readily available α-bromoamides using mild reaction conditions that are compatible with a wide 

range of functional groups. When combined with subsequent reactions, this method allows access 

to highly enantioenriched products with nitrogen-bearing fully substituted carbon centers.

Graphical Abstract

Nitroalkanes are broadly useful building blocks in organic synthesis.1 Not only can the nitro 

group be converted into a range of other functional groups, but nitroalkanes also participate 

in a variety of C–C bond-forming reactions, including Michael, Henry, nitro-Mannich, and 

palladium-catalyzed allylation and arylation reactions. However, despite this great synthetic 

versatility, for many years the simple C-alkylation of nitroalkanes – a potentially important 

reaction for converting simple nitroalkanes into more complex nitroalkanes –remained 
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challenging due to the dominance of O-alkylation, which ultimately yields aldehydes instead 

of the desired nitroalkane products.2

Over the past several years, our group has begun to address this gap by developing transition 

metal-catalyzed alkylation reactions of nitroalkanes.3 By using a transition metal catalyst, 

we were able to change from the inherent two-electron chemistry of nitroalkanes to single-

electron manifolds, thus changing the preference for C- vs. Oalkylation. With these new 

protocols, alkylation with a variety of alkyl halides, including aliphatic alkyl halides, is now 

possible.

Despite these advances in the ability to control the site-selectivity of the alkylation reactions, 

control of stereoselectivity has remained elusive. This is particularly noteworthy, because 

asymmetric variants of many other C–C bond-forming reactions of nitroalkanes have been 

described, and those reactions now constitute important ways to install nitrogencontaining 

stereocenters.4 The seeming inability to render nitroalkane alkylation asymmetric stems not 

only from that fact that the previously identified optimal ligands are not easily rendered 

chiral, but more significantly from the fact that all prior mechanistic data suggested that the 

reactions are proceeding via a radical pathway involving an outersphere C–C bond-forming 

step that does not directly involve the metal catalyst or ligand.3a, 3c, 3d Thus, prior data 

strongly suggested that asymmetric nitroalkane alkylation would not be possible using 

current catalytic methods, and the asymmetric alkylation of nitroalkanes has remained an 

open challenge.

Recently, while exploring copper-catalyzed reactions, we observed modest, ligand-

dependent changes in diastereoselection in nitroalkane alkylation.5 Those experiments 

suggested a role for the ligand in C–C bond formation, prompting us to reevaluate an outer-

sphere pathway and opening the possibility of asymmetric induction. Herein we report the 

nickel-catalyzed asymmetric alkylation of nitroalkanes using abromoamides (Scheme 1),6 

which is the first example of an asymmetric nitroalkane alkylation using an alkyl halide 

electrophile. We show that alkylation of nitroalkanes with racemic α-bromoamides leads to 

highly enantioselective formation of α-substituted, β-nitroamides with good levels of 

diastereocontrol.7 We demonstrate that these products can be utilized to prepare asymmetric 

β-aminoamides with fully substituted bcarbons with outstanding levels of enantioselectivity. 

Moreover, these observations also cast new light onto transition metal-catalyzed nitroalkane 

alkylations, and suggest a more complex mechanism than previously understood.

Our investigation began with reaction of commercially available racemic N-benzyl-2-bromo-

N-phenylpropionamide with 1-nitropropane to make β-nitroamide 1 (Table 1). Using 
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conditions similar to our prior non-stereocontrolled nickel-catalyzed alkylation reactions (10 

mol% Ni(COD)2, slight excess of NaOMe),3d we began to systematically investigate a 

variety of chiral ligands. Although many classes of ligands provided either no 

enantioinduction or yield of product, we were pleased to find that use of commercially 

available bis(oxazoline) ligand 2 provided desired product 1 with a measurable 12% ee, 

albeit in 30% yield and no measurable diastereoselectivity (entry 1). Eventually we found 

that the C2 symmetric chiral 1,2-diamine 3 provided considerably higher levels of 

enantioselectivity (72% ee) and good diastereoselectivity (92:8, favoring the syn-isomer),8 

but did not improve the yield of the reaction (entry 2). N,N’-Dimethylcyclohexane1,2-

diamine (4) gave slightly lower dr and yield, but provided better enantioselectivity (78% ee, 

entry 3). However, increasing the size of the amino substituents provided much higher yield, 

good diastereoselectivity, and retained enantioselectivity (entry 4). Although increasing the 

size of the aromatic groups with the use of meta-methyl groups (ligand 6) did not provide 

substantially different results (entry 5), placing electron-withdrawing CF3 groups at the same 

position (ligand 7) provided a substantial increase in enantioselectivity and higher 

diastereoselectivity (entry 6). Several rounds of additional optimization led us to find that the 

optimal combination of enantioselectivity, diastereoselectivity, and reactivity was achieved 

by using the NiCl2 complex of this optimal ligand (complex 8), Et2Zn as an in situ 
reductant, and 0 °C as the reaction temperature (entry 7).5 These conditions resulted in high 

enantioselectivity, good diastereoselectivity, and outstanding yields.

With optimized conditions in hand, we investigated the scope of the nitroalkane (Scheme 2). 

A variety of primary nitroalkanes were subjected to the reaction using (±)-N-benzyl-2-

bromo-Nphenylpropionamide as the alkylating reagent. High ee was observed for 1-

nitropropane (1), as well as with a β-branched nitroalkane (9). A variety of functionalized 

nitroalkanes including those with alkene, aryl, aryl ether, acetate, free alcohol, ester, 

unprotected and protected ketone groups, were all alkylated with good to excellent ee (10–
17). In all the above cases, good to excellent levels of dr were also observed. Nitromethane 

can also be alkylated albeit with low yield and ee (18).

The scope with respect to the α-bromoamide is also broad (Scheme 3). Good dr and high ee 

were observed for amides possessing electron-rich, electron-poor and sterically encumbered 

groups (19–21). aBromoamides possessing α-alkyl substituents larger than methyl were 

tolerated well, albeit with lower dr and ee (22, 23). Significantly, several amide backbones, 

including indoline, morpholine, aryl-alkyl, and Weinreb amides, were tolerated and all 

resulted in products with high dr and ee. These reactions were most effective when the 

nitroalkane starting material was β-branched (24–27), but substrates without bbranching also 

proceeded smoothly (28–31). Amides bearing tertiary bromides (32) and secondary 

nitroalkanes (33) could also be utilized in the alkylation reaction. In both cases, lower yields 

and ee were observed. However, these highly congested products would be challenging to 

prepare by other methods.

As shown in Schemes 2 and 3, in most cases the asymmetric nitroalkane alkylation exhibits 

good to excellent levels of diastereoselectivity. In all cases, the major diastereomer was 

formed with higher enantioselectivity, but good enantioselection was also observed for the 

minor isomer. In many cases, the diastereomers can be easily separated by standard flash 
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column chromatography. In two cases (15 and 24), we were able to determine the relative 

and absolute stereochemistry of one of the diastereomers using X-ray crystallography. In 

both cases, the (1R,2S)syn-isomer proved to be the major isomer using the R,R-catalyst.5 

Diagnostic 1H NMR signals supported this relative configuration for the other entries as 

well.9

The ability to prepare enantioenriched β-nitroamides using this method has distinct 

advantages over other methods for construction of amides bearing β-nitrogen atoms (such as 

the Mannich reaction).4h, 10 Specifically, unlike Mannich products, the acidity of the proton 

α to the nitrogen atom allows β-nitroamides to be used in further synthetic transformations.
11 These transformations lead to highly substituted products. For example, use of the 

alkylation products as nucleophiles in C–C bond-forming reactions leads to β-nitroamides 

with fully substituted β-carbons (Scheme 4). In these reactions, the stereocenter α to the 

carbonyl controls facial selection, leading to highly diastereoselective conjugate addition 

(top),11 trifluoromethylation (middle),12 and Tsuji-Trost allylation (bottom) reactions,13 all 

without erosion of ee. Consistent with our earlier studies,11–12 the syndiastereomer is 

observed in all cases, and the nitro groups of the products are readily reduced to the 

corresponding amines (37–39).

Significantly, isolation of a single diastereomer of the alkylation product is not required for 

use in these downsteam reactions. As shown at the top of Scheme 4, the conjugate addition 

reaction can be conducted either with a single isolated diastereomer or with the mixture of 

diastereomers obtained from the nickel-catalyzed reaction. In both cases, identical 

diastereoselectivity and nearly identical enantiopurity of product are obtained. These results 

indicate that the diastereomers observed in the alkylation reaction are epimeric at the β-

center, and that the diastereomers converge upon deprotonation of the nitroalkane in the 

subsequent reactions.14 From a practical standpoint, this is highly advantageous when 

utilizing the alkylation products in this way.

Several mechanistic experiments were carried out to probe the nature of the transformation. 

Consistent with our earlier non-stereoselective nitroalkane alkylation reactions, these studies 

indicate a mechanism involving radical intermediates. First, when the reaction was run in the 

presence of 1 equiv TEMPO, a known radical scavenger,15 no alkylation product 1 was 

formed (Scheme 5, top). Second, cyclopropylcarbinyl rearrangement is observed with 

substrate 40, resulting exclusively in ring-opened product 41 (Scheme 5, middle).16 Finally, 

the enantiopurity of the starting α-bromoamide does not affect the stereoselectivity of the 

reaction; both enantiomers of 42 lead to identical dr and ee of products, albeit with slightly 

different yields. Additionally, when starting material was re-isolated from reactions stopped 

at partial conversion, no erosion of ee of the bromoamide was observed (Scheme 5, bottom).
5 This result indicates that activation of the C–Br is irreversible.

Although further studies will be required to fully elucidate the mechanism, at present we 

favor the NiI/NiIII catalytic cycle shown in Scheme 6.17 Initial reduction of the Ni(II) 

precatalyst by Et2Zn results in formation of a Ni(0) complex. Comproportionation with 

excess Ni(II) complex then results in a Ni(I) catalyst.18 This pathway would explain the need 

for excess Ni(II) compared to Et2Zn. Simultaneously, exothermic deprotonation of the acidic 
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nitroalkane by the alkoxide base results in an insoluble (or sparingly soluble) nitronate 

anion, which undergoes anion exchange with the Ni(I) complex resulting in a soluble Ni(I) 

nitronate. This electron-rich Ni(I) complex then reacts with the alkyl bromide via a stepwise 

oxidative addition to form a Ni(III) alkyl nitronate. Reductive elimination then provides the 

observed product and regenerates the catalyst.5

In conclusion, the first Ni-catalyzed asymmetric C-alkylation of nitroalkanes using an alkyl 

halide has been developed. This method enables formation of highly enantioenriched β-

nitroamide from readily available α-bromoamides using mild reaction conditions that are 

compatible with a wide range of functional groups. Significantly, due to both the acidity of 

the β-proton and the ability of the a stereocenter to control subsequent reactions, these 

products can be easily manipulated to access a range of highly substituted β-aminoamides, 

providing distinct advantages over competing technologies. This study also demonstrates 

that the mechanism of transition metal-catalyzed nitroalkane alkylation reactions are more 

complex than earlier believed, and indicate that nickel-catalyzed nitroalkane alkylation 

occurs via metal-mediated C–C bond formation. Current efforts are directed at further 

expanding the scope of asymmetric nitroalkane alkylation reactions and better defining the 

mechanisms by which they proceed.
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Scheme 1. 
General Method for Asymmetric Nitroalkane Alkylation.
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Scheme 2. 
Scope of Nitroalkanes.
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Scheme 3. 
Scope of α-BromoamidesScheme.
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Scheme 4. 
Downstream Functionalization of Alkylated Products.
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Scheme 5. 
Mechanistic Probes.
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Scheme 6. 
Possible Mechanistic Pathway.
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Table 1.

Discovery of the Catalytic System.

Entry Catalyst Additive Yield of 1
a d.r syn/anti %ee

b
 syn

1 Ni(COD)2/2 - 30 50:50 12

2 Ni(COD)2/3 - 27 92:08 72

3 Ni(COD)2/4 - 18 78:22 78

4 Ni(COD)2/5 - 80 82:18 79

5 Ni(COD)2/6 - 80 84:16 82

6 Ni(COD)2/7 - 82 85:15 88

7 8
c Et2Zn 97 79:21 90

a
Determined via 1H NMR against internal standard

b
Determined using chiral HPLC analysis

c
0 °C.
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