Skip to main content
. 2019 Jan 16;28(12):2093–2106. doi: 10.1093/hmg/ddz018

Table 5.

Previous models for red hair prediction

Publication Year Phenotype N P MC1R variants Other variants AUROC Other metric
Grimes et al. (18) 2001 Red and auburn 197 0.274 14 NA NA 20.960
Branicki et al. (34) 2007 Red and blonde-red 184 0.410 32 NA NA 20.975
Branicki et al. (35) 2007 Red 390 0.240 43 NA NA 20.960
Sulem et al. (75) 2007 Red 56918 0.055 32 NA NA 60.700
Walsh et al. (56) 2013 Red, blonde-red and auburn 1551 0.088 74 811 NA 90.800
Branicki et al. (37) 2011 Red, blonde-red and auburn 385 0.249 102 1111 0.90 12
Walsh et al. (6) 2014 Red, blonde-red and auburn 1601 0.085 1311 144 0.92 NA
Sochtig et al. (41) 2015 Red, blonde-red and auburn 605 0.14 155 167 0.94 17
Caliebe et al. (39) 2016 Red tint 400 0.31 3 NA 0.75 18
Siewierska-Gorska et al. (42) 2017 Red and blonde-red 186 0.24 3 19 0.84 20
Hysi et al. (40) 2018 Red 2115 015 22 238 24268 250.87; 260.84 270.35

N, sample size; P, red hair prevalence in the sample.

1rs312262906, rs555179612, rs1805006, rs11547464

2Precision for variant homozygous or compound heterozygous redheads

3rs1805007, rs1805008

4rs1805007, rs1805008, rs11547464

55704 Icelanders and 1214 Dutch

6Precision at 0.50 classification threshold

7rs201326893, rs312262906, rs1805006, rs11547464

8rs1042602 (TYR), rs4959270 (EXOC2), rs28777 (SLC45A2), rs683 (TYRP1), rs2402130 (SLC24A4), rs12821256 (KITLG), rs2378249 (ASIP), rs12913832 (HERC2), rs1800407 (OCA2), rs16891982 (SLC45A2), rs12203592 (IRF4)

9Multiple linear regression highest probability hair colour category + a model for binary hair colour shade (light/dark) prediction; these two models used to make the final prediction, red-hair prediction accuracy, reported here.

10Combined minor allele count (max. 2) at any of the high-penetrance ‘R’ variants (rs201326893, rs312262906, rs1805006, rs11547464, rs1805007, rs1805008, rs1805009) or low-penetrance ‘r’ variants (rs1805005, rs2228479, rs1110400, rs885479)

11rs12913832 (HERC2), rs12203592 (IRF4), rs1042602 (TYR), rs4959270 (EXOC2), rs28777 (SLC45A2), rs683 (TYRP1), rs1800407 (OCA2), rs2402130 (SLC24A4), rs12821256 (KITLG), rs16891982 (SLC45A2), rs2378249 (ASIP)

12Sensitivity 0.78, specificity 0.95, precision 0.84, negative predictive value 0.93; 0.86 AUC for LASSO model

13rs201326893, rs312262906, rs1805006, rs11547464, rs1805007, rs1805008, rs1805009, rs1805005, rs2228479, rs1110400, rs885479

14rs1042602 (TYR), rs4959270 (EXOC2), rs28777 (SLC45A2), rs683 (TYRP1)

15rs11547464, rs1805006, rs1805007, rs1805008, rs1805009

16rs28777 (SLC45A2), rs35264875 (TPCN2), rs1129038, rs12913832 (HERC2), rs4778138, rs7495174 (OCA2), rs12931267 (FANCA)

17Bayes classification

18Sensitivity 0.19; specificity 0.09; accuracy 0.74; heritability for rs1805007 0.14 and for rs1805008 0.07

19rs16891982 (SLC45A2), rs12913832 (HERC2), rs1800401 (OCA2))

20Sensitivity 0.67; specificity 0.93; accuracy 0.87; positive predictive value (PPV) 0.74; negative predictive value (NPV) 0.90

217291 QIMR (Brisbane Twin Nevus Study, Australian Twin Registry, and Tasmanian Eye Study) and 7724 RS (Rotterdam Study)

22QIMR 0.054, RS 0.031, UKBB 0.047

23rs1805006, rs11547464, rs1805007, rs1805008, rs1805009, rs1805005, rs2228479, rs1110400

24(6,36) + 251 non-redundant variants in (40,56,64), Supplementary Material, Table 9

25QIMR

26RS

27Heritability