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ABSTRACT
The RAF-MAPK signaling pathway regulates several very diverse cellular processes such as
proliferation, differentiation, apoptosis, and transformation. While the canonical function of RAF
kinases within the MAPK pathway is the activation of MEK, our group could demonstrate an
important crosstalk between RAF signaling and the pro-apoptotic mammalian sterile 20-like kinase
(MST2) tumor suppressor pathway in several cancer entities, including head and neck, colon, and
breast. Here, the RAF kinases CRAF and ARAF sequester and inhibit the pro-apoptotic kinase MST2
independently of their own kinase activity. In our recent study, we showed that the ARAF-MST2
complex is regulated by subcellular compartmentalization during epithelial differentiation.
Proliferating cells of the basal cell layer in squamous epithelia and tumor cells express ARAF at the
mitochondria thus allowing for efficient sequestration of MST2. In contrast, non-malignant
squamous epithelia have ARAF localized at the plasma membrane, where the control of MST2-
mediated apoptosis is compromised. This re-distribution is regulated by the scaffold protein kinase
suppressor of Ras 2 (KSR2). Here, we summarize how spatial and temporal regulation of RAF
signaling complexes affect cellular signaling and functions.
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A brief introduction to RAF signaling

ARAF ismember of the RAF family of serine/threonine pro-
tein kinases which also comprises BRAF and CRAF. RAF
kinases are at the apex of the 3-tiered RAF/MEK/ERK path-
way, also referred to as the classic mitogen-activated protein
kinase (MAPK) cascade. Upstream of this pathway, RAS
GTPases activate RAF, which in turn phosphorylates and
activates MEK, and MEK subsequently phosphorylates and
activates ERK.1-3 This well-studied signaling pathway links
receptor activation at the plasma membrane to >150 sub-
strates in the cytosol and nucleus, which in turn regulate
fundamental cellular functions such proliferation, transfor-
mation, metabolism, and apoptosis.

With this functional repertoire and important role in cel-
lular regulation, it comes as no surprise that de-regulation of
the MAPK pathway has major implications for the cell.
BRAF is by far the most frequently mutated RAF isoform in
human cancers.4 The most prevalent oncogenic mutation at
position V600 is located in its kinase domain and results in
increased kinase activity.5 The discovery of this and other
oncogenic BRAF mutations in a variety of human malig-
nancies,6 including a high prevalence of mutations in mela-
noma7 and papillary thyroid carcinoma,8 has put RAF
kinases in the limelight for therapeutic intervention.

RAF kinases are comprised of 3 conserved regions
(CR), where the N-terminal CR1 contains the RAS-bind-
ing domain (RBD) and the cysteine-rich motif (CRD).
CR2 features a short cluster of serine and threonine resi-
dues, and the C-terminal CR3 contains the kinase
domain. In contrast to CRAF and ARAF, BRAF pos-
sesses higher basal kinase activity due to a motif called
the N-region (negative charge regulatory region).9

MEK1 and MEK2 are considered the main bona fide
physiologic RAF substrates.1

The RAF activation and deactivation cycle and spatial
regulation is a highly complex sequence of dynamic pro-
tein modifications and interactions, but despite years of
research is still not completely understood in al details
(recently reviewed in refs. 5, 10).

In quiescent cells, RAF resides in the cytoplasm in an
inactive state. Here, auto-inhibited RAF exists in a closed
conformation with the N-terminal regulatory domain
folding over the catalytic C-terminus, which is stabilized
by the adaptor 14–3–3. Upon stimulation with mitogens,
activated RAS binds RAF via the RBD thereby allowing
for the dephosphorylation of Ser259 (CRFA) by phos-
phatases including PP2A, PP1, and PP5, subsequent
release of 14–3–3 and membrane anchoring. Here,
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membrane bound RAF is phosphorylated by SRC family
kinases (SFKs) and casein kinase 2 (CK2) in the N-
region, which, in combination with RAS nanoclustering,
results in RAF dimerization, activation segment phos-
phorylation, and allosteric RAF transactivation. Active
RAF is able to bind and activate MEK to facilitate signal-
ing down the 3-tiered MAPK module. As part of a nega-
tive feedback loop, activated ERK in turn phosphorylates
RAF inhibitory sites, resulting in the release from acti-
vated RAS and the disruption of active RAF dimers.

Over the last decade, it has become clear that the ini-
tial view of the ERK pathway as a linear pathway is not
accurate, but that its components are rather embedded
in a web of other signaling and metabolic networks.
MAPK components mediate crosstalk with other path-
ways and regulate many different proteins outside the
linear pathway thereby adding positive and negative
feedback mechanisms to the pathway11 A number of
scaffold proteins contribute to this signaling crosstalk,
the temporal and spatial specificity of the pathway, and
fine-tuning of the signaling flux .12 Among those, kinase
suppressor of RAS 1 (KSR1) and KSR2 are among the
best characterized scaffolds of the MAPK pathway.
While both KSRs have overlapping functions by binding
to RAF, MEK, and ERK thereby facilitating their phos-
phorylation and activation, KSR2 was shown to have
functions outside the canonical MAPK pathway. KSR2
controls AMP-activated protein kinase (AMPK),13 which
acts as a fuel sensor and master regulator of energy
homeostasis. KSR2 knockout mice are characterized by
impaired glucose tolerance and high insulin levels, lead-
ing to an obese phenotype, suggesting a clear role and
crosstalk to energy metabolism.

ARAF signaling

Among the 3 mammalian RAF kinases, ARAF is clearly
the “ugly duckling,” with most of the research focusing
on CRAF and BRAF over the last decades. For their
canonical functions, RAF kinases are being regulated in a
similar fashion, however, important differences have
emerged over the years. While binding to active RAS is
sufficient for BRAF activation, CRAF and ARAF require
the presence of both activated RAS and SRC family tyro-
sine kinases.14,15 These are thought to phosphorylate
tyrosine residues 301/302 (ARAF) in the regulatory N-
region upstream of the kinase domain. In BRAF, these
tyrosines are replaced by aspartates, whose negative
charge substitute for N-region phosphorylation activated
by RAS binding. ARAF possesses by far the lowest kinase
activity toward MEK which is due to (i) a substitution of
a critical residue (arginine 22 for lysine) in its RBD, caus-
ing a weaker affinity to RAS, and (ii), a non-conserved

tyrosine 296, whose mutation to glycine induced consti-
tutive kinase activity.16 Recent reports suggest that,
despite its low kinase activity, ARAF still plays a crucial
role in MAPK signaling. Here, ARAF acts as a scaffold
by stabilizing CRAF-BRAF complexes in RAF-inhibited
cells to ensure efficient signaling.17 In addition, ARAF
depletion prevents MEK activation and cell migration in
a cell-type dependent manner, and importantly, dimer-
ization seems to be instrumental for ARAF kinase
activity.18

ARAF regulates the MST2/Hippo pathway

With its low kinase activity toward MEK, physiologic
functions outside the canonical MAPK pathway have
been discussed for ARAF for a long time. Our group
demonstrated that ARAF is able to bind and inhibit the
pro-apoptotic kinase mammalian sterile 20-like kinase
(MST2) independently of its own kinase activity.19 While
sequestration by CRAF is induced by stress and relieved
by mitogens,20,21 ARAF binds constitutively to MST2,
thereby inhibiting MST2 dimerization and activation.

Upstream, the tumor suppressor RASSF1A is able to
inhibit the RAF-MST2 complex and promote pro-apo-
ptotic signaling through activation of downstream
LATS1 and YAP.22 In this context, YAP in turn forms a
complex with p73, leading to transcription and expres-
sion of the pro-apoptotic BH3 gene PUMA and induc-
tion of apoptosis.22

With this anti-apoptotic role, ARAF is able to pro-
mote the survival of cancer cells and elevated levels were
detected in several human malignancies including head
and neck cancers and late stage colon cancers.19,23 The
alternative splice factors HNRNPH23 and HNRNP
A1/A224 were identified to regulate ARAF pre-mRNA
alternative splicing, resulting in 2 functional isoforms,
which we termed ARAFwildtype and ARAFshort. Enhanced
expression of HNRNPH in several malignancies includ-
ing colon, head and neck, and hepatocellular carcinoma
result primarily in the expression of ARAFwildtype, while
low levels of these splice factors are detected in non-
malignant tissues, thereby favoring the expression of the
alternative splice form ARAFshort.

23 In contrast to wild-
type ARAF, this splice form retains intronic sequences,
and generates a shortened protein lacking the kinase
domain. While ARAFshort is not able to control and bind
MST2, our group was able to demonstrate a function as
a dominant-negative antagonist by binding and blocking
activated RAS, inhibiting ERK signaling, and cellular
transformation. With decreased levels detected in several
human malignancies, ARAFshort seems to act as a tumor
suppressor. A number of recent studies report activating
as well as inactivating mutations for the ARAF gene in
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several human cancer types, but how these mutations
affect the signaling events described here is currently not
known.

These differential roles of ARAF in MAPK and MST2
signaling lead to an interesting hypothesis for RAF evo-
lution: While BRAF as the oldest family member has the
strongest MEK activity, but very little affinity for MST2,
the youngest member ARAF possesses poor MEK kinase
activity but a strong capacity for MST2/Hippo control.
This inverse control of MST2 signaling might suggest
that during evolution the role of RAF has shifted from
exclusively activating the ERK pathway to regulating
additional cellular processes such as MST2-mediated
apoptosis.

While RAF proteins are generally considered cyto-
plasmatic proteins which can bind to the inner surface of
the plasma membrane, the ARAF-MST2 complex also
localizes to the surface of the mitochondria in tumor cell
lines as well as primary tumors.19 Interaction studies sug-
gest that this localization is mediated by hTOM and
hTIM, 2 proteins involved in the mitochondrial trans-
port system, however, the exact role is not clear so far.25

Spatial control of ARAF during differentiation

In our recent study we demonstrated, that the ARAF-
MST2 complex is regulated by subcellular compartmen-
talization (Fig. 1).26 In highly proliferating cells of the
basal cell layer of non-malignant stratified, non-kerati-
nized squamous epithelia, ARAF controls MST2 in the
cytoplasm and at the mitochondria. In contrast, differen-
tiated cells of these squamous epithelia have ARAF local-
ized at the plasma membrane. Of importance, here,
ARAF is no longer able to keep MST2 function in check
thus rendering cells susceptible to apoptosis. ARAF
expression levels and anti-apoptotic function correlate
with previous reports from our group: While the splice
factor HNRNPH controlling ARAF alternative splicing
is highly expressed in basal cells, hardly any expression is
detectable during epithelial differentiation.19

To study the re-localization of ARAF observed in
head and neck epithelia, we established a constitutive
and an inducible cell system to mimic the re-localiza-
tion system of ARAF to the plasma-membrane. In
both cases, re-localized ARAF loses the ability to effi-
ciently sequester and inactivate MST2, which does not
follow this re-localization. As mentioned above, several
phosphorylations regulate ARAF activity.27 While
phosphorylation of serine 432 was described to be
important for binding to MEK, phosphorylation of
serines 257, 262, and 264 in the so-called Isoform-spe-
cific Hinge (IH) segment are crucial for activation,
but, importantly, also localization. From a structural

point of view, phosphorylation of this IH segment
leads to an accumulation of negative surface charges,
resulting in electrostatic destabilization of ARAF local-
ization at the plasma membrane and release into the
cytoplasm. Whether the full phosphorylation of the IH
segment is involved in localization changes during epi-
thelial differentiation is currently not understood.
Also, membrane-localized ARAF seems to have no
impact on MAPK signaling, as no effect on bulk ERK
signaling or dynamics could be observed.

In addition to the observed ARAF re-localization to
the plasma membrane during epithelial differentiation in
head and neck tissues and growth factor induced differ-
entiation of MCF7 cancer cell lines, ARAF overexpres-
sion also correlates with the increased differentiation in
MCF7 cells. This is in line with a previous report,28

where ARAF overexpression inhibits MST2 signaling
thereby promoting HGF-induced Epithelial-Mesenchy-
mal Transition (EMT). Other groups have reported also
that ARAF expression correlates with adipocyte29 and
myogenic30 differentiation, suggesting a clear role of
ARAF during differentiation.

In contrast to spatial regulation of ARAF during dif-
ferentiation, MST2 expression and localization in the
cytoplasm or around the mitochondria seems not to
undergo changes. The MST2 tumor suppressor pathway
regulates fundamental cellular processes including apo-
ptosis, proliferation, and differentiation thereby control-
ling organ size and tissue development.31-33 MST1 and
MST2 are directly involved in several differentiation pro-
cesses and downstream signaling (reviewed in ref. 34)
including embryonic stem cell differentiation,35 tropho-
blast differentiation,36 pancreatic acinar differentiation,37

myoblast differentiation,38 and monocytic differentiation
of myeloid leukemia HL60 cells.39 In addition, both
MST2 and MST1 regulate junction formation in epithe-
lial cells through interaction with members of the angio-
motin (AMOT) family.40,41

For the involvement of ARAF and MST2 during epi-
thelial differentiation, we suggest the following model:
During differentiation of stratified, non-keratinized
squamous epithelia, basal cells withdraw from cell cycle
and differentiate toward the surface of the epithelium.
Within this process, the differentiated cells flatten and
lose their nucleus, before they are finally shed from the
surface. For these processes and terminal differentiation,
apoptotic processes are instrumental controlling caspase
cleavage, enculeation, and internucleosomal DNA cleav-
age.42-44 During differentiation, spatial regulation of
ARAF activates MST2, leading to activation of the core
apoptotic machinery including Caspase 3, PARP, and
transcriptional activation of the apoptotic effector
PUMA.
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Kinase suppressor of Ras 2

Instrumental for the functional regulation of the ARAF-
MST2 complex seems to be the action of Kinase Suppres-
sor of Ras 2 (KSR2), one of the scaffold proteins that
organize RAF and MAPK functions (Fig. 1). These scaf-
folds serve as binding platforms and control the spatial
and temporal aspects of the signaling flux (reviewed in
refs. 1, 45, 46). In our recent work, we demonstrated a
loss of KSR2 expression during epithelial differentiation,
thereby releasing ARAF to the plasma membrane leading
to activation of MST2 and subsequent apoptosis. KSR2
was described recently to interact with ARAF, however
only in response to TNFa47 and not in quiescent cells or
upon stimulation with EGF. Interestingly, KSR2 also
provides a link to energy homeostasis by binding to
AMPK and mediating its stimulatory effects on glucose
uptake and fatty acid oxidation13 How KSR2 expression
levels are regulated during differentiation and how loss
of KSR2 induces ARAF re-localization is currently not
understood. Of note, ARAF also binds and inhibits the
glycolytic enzyme pyruvate kinase M2 (PKM2)48 sug-
gesting further links to both energy and glucose
metabolism.

Taken together, our data and other reports suggest that
ARAF is a central signaling hub regulating very diverse

processes including MAPK signaling (MEK, RAF, KSR2),
apoptosis (MST2, KSR2), energy homeostasis (AMPK),
glycolysis (PKM2), and mitochondrial transport (hTIM,
hTOM) (Fig. 1). How this interesting signaling crosstalk
and these dynamic signaling complexes are fine-tuned is
not understood and warrants further investigation.

Conclusions

In summary, the spatial and temporal regulation of sig-
naling complexes seems instrumental for fine-tuning sig-
naling events and achieving robust cellular functions and
phenotypes. This is orchestrated by post-translational
modifications such as phosphorylations, adjusted expres-
sion levels in normal cells and disease, alternative splice
form selection, and crosstalk with other molecules of the
cell.

The signaling crosstalk described here is a good exam-
ple for the bewildering complexity of cellular signaling.
Despite intensive research on RAF-MAPK signaling for
decades, we still lack a systems-level understanding and,
in particular, should focus on deciphering the composi-
tion of parallel, diverse signaling complexes, and their
dynamic and spatial regulation to regulate specific cell
fate decisions.
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