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ABSTRACT
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor
exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to
trigger various intracellular signaling cascades, and termination of signaling by internalization of the
receptor. It is now accepted that many GPCRs continue to signal after internalization in the
endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s,
several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs,
many of whom contain putative nuclear localization signals, remain poorly understood to date.
Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras
superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we
highlight several recent studies which suggest novel roles of small GTPases, importins and sorting
nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken
together with increasing evidence for in vivo functionality of the nuclear GPCRs, better
understanding of their trafficking will provide valuable clues in cell biology.
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Introduction

Nuclear envelope (NE) is made up of 2 bilayered phos-
pholipid membranes, named outer (ONM) and inner
(INM) nuclear membranes. The NE is pierced by multi-
protein assemblies, nuclear pore complexes (NPCs),
which control trafficking of biomolecules (greater than
»40 kDa) in and out of the nucleus.1 The ONM is con-
tiguous with outer membrane of endoplasmic reticulum
(ER) and the space between 2 nuclear membranes is con-
nected to ER lumen.1 The basic structure of NPC com-
prises »30 nucleoporins forming a ring-shaped central
channel with 8 identical subunits.2 The ultrastructural
analysis of NPC reveals that it is made up of distinct clas-
ses of nucleoporins; each with specific localization and
function. Interestingly, several scaffold nucleoporins,
which form the NPC framework, share structural simi-
larities with constituents of COP-II vesicles which are
part of endomembrane trafficking pathway.3 ONM and
INM are known to inhabit different transmembrane
(TM) proteins, including receptors, ion channels, and

linker proteins.4 The recent evidence suggests that vari-
ous protein and non-protein components of the NE play
diverse roles in regulation of gene expression.5 The
proteomic analysis also shows that the composition of
NE varies among tissues.6

G-protein coupled receptors (GPCRs), which form the
largest family of TM proteins with more than 800 members
in the human genome,7 were believed to be exclusively func-
tional at the plasma membrane (PM). Typically, the hetero-
trimeric G-proteins act as links between the GPCR at PM
and its intracellular second messengers.8 GPCRs are also
well-known to signal via G-protein-independent pathways.9

Many components of both signaling pathways are found or
are translocated at the NE or within the nucleus.10,11 To
date, more than 30 different GPCRs have been localized at
the cell nuclei.11 In addition to GPCRs, TM proteins of the
receptor tyrosine kinase (RTK) family have also been
detected at the nucleus.12 The phospholipids in nucleo-
plasm13 and the intranuclear invaginations of NE14 could
harbor lipophilic TM domains of these receptors. The
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interactions between various nuclear receptors, including
cross-talk between their second messengers, might play a
role in the regulation of nuclear signaling cascades.

The origin of nuclear GPCRs

The process of exit of GPCRs from ER requires passing
quality control mechanisms and may involve specific
motifs present within GPCRs as well as the action of Rab
GTPases.15,16 Because ONM is contiguous with ER mem-
brane, it has been proposed that some resident NE pro-
teins could travel by lateral diffusion.17,18 However,
GPCRs often undergo post-translational modifications
in both ER and trans-golgi network (TGN), including
glycosylation, which has been implicated in trafficking of
various GPCRs to the PM via vesicular transport.15 The
anterograde transport of GPCRs from TGN is also regu-
lated by Rab and Arf GTPases.19 Based on the immuno-
blot evidence, PM and nuclear GPCRs have similar
molecular weights which is an indirect proof for glyco-
sylation of nuclear GPCRs. This, however, does not rule
out presence of an alternative pathway of glycosylation
at the nucleus. It has been proposed that synthesis of NE
proteins could take place at the nucleus itself.20 As dis-
cussed below, some GPCRs undergo ligand-induced
nuclear translocation from PM via importin-regulated
trafficking.21,22 More research is needed to delineate
between transport pathways of nuclear GPCRs originat-
ing from TGN or PM from those translated locally.

Current evidence for the involvement of small
GTPases in localization of NE proteins is limited to Ran
GTPase. The vesicular fusion has been a conserved
mechanism necessary for reassembly of NE after mitosis
in various eukaryotes and the activity of Ran GTPase is
required for the process.23,24 Ran lacks CAAX membrane
anchoring motif at its C-terminus, found in other mem-
bers of Ras superfamily and is primarily involved in
nucleocytoplasmic transport along with Karyopherins
(discussed below).25 The Ran GTPase also plays an
important role in regulation of cell cycle26 and in the
trafficking of INM resident proteins. Many INM resident
proteins contain nuclear localization signal (NLS).27

GPCRs and Nuclear localization signal (NLS)

The classical monopartite NLS consists of small cluster
of basic amino acids and was originally discovered in
the simian virus 40 large-T antigen.28 The bipartite
NLS, on the other hand, consists of 2 clusters of basic
amino acids which are separated by 10–12 residues.29

Both NLSs are recognized by heterodimeric nuclear
import receptor, composed of importin a and b. More
recently, additional classes of NLSs, binding to

different regions of importin a, have been identified.30

Some of the earliest evidence for the presence of func-
tional NLS in a GPCR was provided for agonist-
induced internalization of rat angiotensin II type 1
(Agtr1b) receptor (307KKFKK311) in neurons.31 In
2003, Lee and colleagues reported that several GPCRs,
belonging to Rhodopsin-like receptor family, contain
putative NLS which is located just after seventh trans-
membrane domain. An exception is the apelin recep-
tor which contains a functional NLS in its third
intracellular loop.32 Human formyl peptide receptor 2
(FPR2) has been recently reported to contain a NLS
in its 3rd intracellular loop (227KIHKK231) and has
been localized at the nuclei in lung and gastric cancer
cell lines.33 Human cysteinyl leukotriene receptor 1
(CYSLTR1) but not CYSLTR2 contains a functional
bipartite NLS at its C-terminus.34 Our group identified
presence of 2 monopartite NLS motifs (in first and
third intracellular loops, respectively) in human F2R
like trypsin receptor 1 (F2RL1), which is a member of
protease activated receptor sub-family of class-A
GPCRs.21 The mutational disruption of these motifs
revealed that both NLSs are necessary for agonist-
induced nuclear translocation of the receptor from
PM.21 We first reported presence of putative monop-
artite NLS (298KKFRKH302) in the C-terminus of
human platelet-activating factor receptor (PTAFR)35

and recently showed that the NLS is not functional by
its mutational disruption.36 However, internalization
motif between 311 and 330 amino acids, present at
the C-terminus, is essential for nuclear translocation.36

It is interesting to note that some GPCR ligands also
contain NLS [e.g., parathyroid hormone-related pro-
tein].37 Functional NLS has also been identified as
being responsible for nuclear localization of non-
GPCR receptors such as erb-b2 receptor tyrosine
kinase 2 (also known as HER-2).38

NLS and nuclear importins

As described earlier, classical NLSs (monopartite and
bipartite) are recognized by the importin-a.b hetero-
dimer. Both importins are members of Karyopherin
(Kap) family of proteins. Out of 19 human Kapbs, 11
are involved in nuclear import.39 To date, consensus
NLSs have been identified only for importin (Imp) a.b
(classical NLS) and transportin (PY-NLS) pathways.39

The PY-NLS consists of weak consensus motifs and
physical rules such as structural disorder, overall posi-
tive charge, which together identify transportin-medi-
ated nuclear import cargos.40 The role of importins in
nuclear translocation of full-length F2RL1 is further
evidenced by RNAi (small interfering RNA) mediated
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silencing of Impb1 (along with Impa3 and Impa5)
affecting nuclear localization of the receptor.21 On the
other hand, nuclear import of parathyroid hormone
receptor 1 is regulated by its interaction with Impa1
and Impb.41 In case of PTAFR, a novel interaction
between Rab11a GTPase and importin-5 (Imp5) is
essential for nuclear translocation of the receptor.36 To
date, 3 GPCRs, 2 of which belong to chemokine-recep-
tor family (CCR2 and CXCR4 receptors)42,43 and oxy-
tocin receptor (Oxtr)22 have been reported to undergo
transportin 1 mediated nuclear translocation.

Protein interactions involving Rab GTPases and
Importins

The trafficking of GPCRs between various cellular
membranes is regulated by small GTPases of the Ras
superfamily; especially members of the Rab and Arf
families. These small GTPases control various steps of
vesicular trafficking including cargo selection, vesicular
budding from donor membrane, interaction with cel-
lular motors, and docking of vesicle to the acceptor
membrane.44 Recently, evidence for presence of
vesicles in the NE (in the space between ONM and
INM) was provided for the nuclear export of herpes
viral nucleocaspid45 and it has been suggested that
such a pathway might exist for endogenous TM
nuclear proteins as well.46 Some Rab GTPases link spe-
cific intracellular compartments to nuclear signaling
via their effector proteins.47 Others show direct
nuclear localization. The latter category includes
Rab24 which has been proposed to play a role in NE
assembly and/or transport.48 We found that Rab11a
(along with Imp5) plays a role in agonist-independent
nuclear translocation of PTAFR.36 Rab11 effectors
(known as family of Rab11 interacting proteins or
Rab11 FIPs) are divided into 2 classes based on their
sequence homology.49 class-I FIPs are known to regu-
late endosomal recycling of TM proteins back to PM;
while class-II FIPs participate in the regulation of cell
division. class-II FIPs also interact with Arf6
GTPase.50 Recent evidence suggests that membrane
phosphoinositides are involved in recruiting Rab11
effectors to the intracellular membranes.51 Whether
Rab11a is involved directly or indirectly (via one of its
effectors) in the nuclear translocation of PTAFR is
unknown. Along similar lines, Rab23 has been recently
reported to exist in a complex with transportin 1.52

Finally, several members of Ras and Rho families of
small GTPases contain putative NLS.53 Small GTPases
of RGK family are involved in cell shape remodeling
by nuclear transport but underlying molecular mecha-
nisms are unknown.54

Role of endosomal sorting proteins in nuclear
localization of GPCRs

The sortin nexins (SNXs) form another class of evolu-
tionarily conserved eukaryotic proteins which contain
Bin/Amphiphysin/Rvs (BAR) and phox homology (PX)
domains. These domains are essential for interaction of
SNX proteins with various biologic membranes.55 Recent
in vitro studies suggest that BAR domain proteins play a
role in the regulation of cellular membrane curvature.56

Snx1 is known to associate with C-terminal tails of many
GPCRs.57 The SNXs were first identified regulators of
retromer-dependent endosomal trafficking but current
evidence suggests for more diverse roles.58 Snx6 enhan-
ces localization of Lamin-A at the NE.59 Using confocal
microscopy and subcellular fractionation, Zhu and col-
leagues reported that Snx10 shows nuclear localization
in osteoblasts derived from human peripheral blood
mononuclear cells as well as from RAW 264.7 mouse
cell-line.60 We found that, Snx11, which lacks BAR
domain but contains an extended PX domain and shares
the highest sequence homology with Snx10 among the
sorting nexin family members, regulates endosomal sort-
ing of F2rl1 (along with aforementioned importins) to
the nucleus via trafficking through microtubule net-
work.21 The extended PX domain of Snx11 is essential
for its function in vivo.61 Moreover, it has been proposed
that Snx10 contains the extended PX domain, based on
its sequence alignment with Snx11.61

Arrestins and GPCR trafficking

Roles of b-arrestins in the regulation of endocytic traf-
ficking of agonist-induced phosphorylated GPCRs are
reviewed elsewhere.62 In addition, they can act as effector
molecules in non-canonical GPCR signaling.63 b-arrest-
ins are also known to activate Arf6 GTPase64 and this
process has been shown to control recycling of b2 adren-
ergic receptor.65 Out of the 2 non-visual b-arrestins, only
b-arrestin1 (arrestin2) shows nuclear localization, where
it is involved in histone acetylation and control of gene
transcription.66 b-arrestin2 (arrestin3), on the other
hand, is constitutively exported out of the nucleus as it
contains leucine-rich nuclear export signal.67 We found
that C-terminal truncated F2rl1 fails to go to the nucleus.
However, the mutational disruption of its C-terminal
amino acid residues 363 and 366, which are required for
arrestin interaction,68 does not affect agonist-induced
nuclear localization of F2rl1.21 We speculate that ago-
nist-induced binding of some other protein(s) to the
C-terminus of F2rl1 might result in the receptor’s con-
formational change to expose its aforementioned NLS
motifs. On the other hand, RNAi mediated silencing of
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b-arrestin1/2 in osteoblasts has shown that they are
required for expression of differentiation-inducing genes
in the cells such as osterix (Sp7) and bone sialoprotein
(Ibsp), a function reported to be mediated by nuclear
Oxtr.22 Conversely, mutational disruption of serine-rich
clusters in the C-terminus of Oxtr (a common site of
GPCR phosphorylation and required for arrestin recruit-
ment) partially impairs its nuclear localization, without
affecting the Erk phosphorylation.22 How arrestin2 regu-
lates Oxtr-induced gene expression in osteoblasts
remains to be elucidated. In summary, the role of
arrestin2 in governing localization of GPCRs to the
nucleus varies according to the GPCR and thus entails

additional interacting partners and/or their effect on
conformational changes of the complex.

Agonist-dependent vs. -independent nuclear
localization of GPCRs

Agonist-dependency for nuclear localization seems to
differ according to GPCRs. Following agonist stimula-
tion at the PM, the C-terminus of Frizzled 2 receptor
gets cleaved and is translocated to the nucleus by impor-
tins (Impb11 and Impa2).69 Multiple full-length GPCRs
with peptide ligands, such as F2rl1 and Oxtr, also need
agonist-induced internalization via one of the endocytic

Figure 1. Subcellular GPCR trafficking occurs via vesicular transport mechanisms which are regulated by members of Ras superfamily of
small GTPases. Upon binding to its ligand at PM, 1) full-length GPCRs (e.g., F2rl1 and oxytocin receptor) can undergo agonist-induced
nuclear translocation by importins and sorting nexins21,22 or 2) can be recycled back by recycling Rabs (e.g., Rab 4, 11) or 3) targeted for
degradation by proteasomes/lysosomes, the process regulated by Rab 7 and sorting nexin 1., 4) In case of the frizzed 2 receptor, its
intracellular C-terminus is cleaved off by the action of cellular proteases and only C-terminus is then translocated to nucleus by impor-
tins and Ran GTPase.69 Lastly, agonist-independent translocation of GPCRs directly from TGN 5) and 6) is controlled by rab/arf GTPases
and (in case of nuclear translocation 6)) importins as well (Rab11a and importin-5 in case of the platelet-activating factor receptor).36

More research is needed to understand trafficking of GPCRs between nuclear membranes and their orientation of at the NE.
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pathways for their nuclear translocation.21,22,31 Valdehita
and colleagues have shown that exogenous vasoactive
intestinal polypeptide increases nuclear localization of
vasoactive intestinal peptide receptor 1 (VIPR1, previ-
ously known as VPAC1) but not VIPR2 in human breast
cancer cell-lines.70 Others such as apelin receptor and

bradykinin receptor B2 have been reported to show ago-
nist-independent nuclear localization.32,71 However,
there have been reports of autocrine apelin signaling in
other cellular systems.72 How endogenous apelin-APJ
pathway might affect nuclear translocation of the recep-
tor is unknown. The GPCRs with bioactive lipids as their

Table 1. Known mechanisms and receptor motifs required for nuclear translocation of GPCRs.

GPCR
Mechanisms of Translocation and GPCR motifs
(if known) required for Nuclear Localization Endogenous Nuclear Localization Reference

Adrenoceptors a 1A and 1B a 1A and 1B receptors contain bipartite and
arginine-rich NLS respectively, both within
their C-termini.

Adult mouse cardiac myocytes 77

Angiotensin II receptor type 1 The C-terminal monopartite NLS is required for
Angiotensin-II induced nuclear translocation
of the type-1 receptor in rat neurons and
human vascular smooth muscle cells.

Primary rat neurons (hypothalamus and
brain stem), human vascular smooth
muscle cells

31,78

Apelin receptor Agonist independent nuclear localization, the
receptor contains monopartite NLS in its 3rd

intracellular loop.

Human cerebellar and hypothalamic
neurons

32

Bradykinin receptor B2 Agonist-independent localization, C-terminal
NLS.

Rat hepatocytes 32,71

Chemokine receptors- C-C
motif chemokine receptor 2
(CCR2) and C-X-C motif
chemokine receptor 4
(CXCR4)

Both receptors undergo transportin 1-mediated
nuclear translocation. CXCR4 contains a
conserved functional NLS “RPRK” between
amino acid residues 146 and 149.

Prostate and renal cancer cell lines
(CXCR4)

42,43,79

Cysteinyl leukotriene receptor
1

Bipartite NLS in its C-terminus between residues
310–324.

Colorectal adenocarcinoma cells 34

Endothelin receptor type A
and type B

Both Type A and Type B endothelin receptors
contain putative NLS in their C-terminus.32

However; functional role of the motifs hasn’t
been tested yet.

Human aortic vascular smooth cells,
human ventricular endocardial
endothelial cells (EECs), rat ventricular
cardiomyocytes

80-82

F2R like trypsin receptor 1 Agonist-induced nuclear localization is governed
by Snx11, Importins b1, a3 and a5. Both NLS
motifs (present in 1st and 3rd intracellular
loops) and C-terminus of the receptor are
required.

Retinal ganglion neurons (RGC) 21

Formyl peptide receptor 2 Human FPR2 contains a functional NLS in its 3rd

intracellular loop between residues 227 and
231.

Lung and gastric cancer cell lines 33

Frizzled receptor 2 C-terminus of drosophila Frizzled 2 receptor gets
cleaved after ligand stimulation at PM and is
translocated to the nucleus by Impb11 and
Impa2.

Drosophila muscle cells 69,83

Lysophosphatidic acid receptor
1

Agonist-independent. Nuclear localization is
regulated by integrin signaling and requires
action Rho kinase in PC12 cells.

Piglet brain microvascular endothelial
cells, PC12, human bronchial epithelial
cells

73,74

Melanocortin 2 receptor
(MC2R)

MC2R directly interacts with nucleoporin 50
(NUP50) and Nup50-MC2R complex
undergoes agonist-induced nuclear
translocation from the PM.

Human adrenocortical epithelial cell-line
(H295R)

84

Oxytocin receptor Agonist-induced nuclear translocation is
regulated by transportin 1 and b arrestins.

Primary mouse osteoblasts and MC3T3.E1
preosteoclastic cells

22

Parathyroid hormone receptor
1

The nucleocytoplasmic shuttling is governed by
Importins a1 and b.

Rat (ROS 17/2.8) and human (SaOS-2)
osteosarcoma cell-lines, mouse pre-
osteoblast cell-line (MC3T3-E1)

41

Platelet-activating factor
receptor

Nuclear localization is regulated by Rab11a and
Importin5. Internalization motif between 311
and 330 residues in C-terminus of the
receptor is required. Exogenous stimulation
or endogenous agonist production are not
needed.

Piglet brain microvascular endothelial cells
and human retinal microvascular
endothelial cells

35,36

Sphingosine-1-phosphate
receptor 1

Agonist-induced translocation Human umbilical vein endothelial cells 74

VIP and PACAP receptor 1 Exogenous agonist (VIP) stimulation increases
nuclear localization VIPR1 but not VIPR2.

Human breast cancer cell-lines (T47D and
MDA-MB-468)

70

Glutamate metabotropic
receptor 5 (GRM5, previous
symbol- mGlu5)

The C-terminus contains a novel NLS between
amino acid residues 852 and 876.

Primary rat striatal neurons 87
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ligands, like PTAFR and Lysophosphatidic acid receptor
1 seem to show their nuclear localization is not depen-
dent of agonist stimulation.35,73 Along these lines, our
latest work indicates that exogenous or endogenous
ligand (platelet-activating factor) stimulation is not
required for nuclear translocation of PTAFR in primary
human retinal microvascular endothelial cells.36 In PC12
cell line, endogenous nuclear localization of lysophos-
phatidic acid receptor 1 (Lpar1) is regulated by integrin
signaling and this has been attributed to the action of
Rho family of small GTPases.74 Whereas sphingosine-1-
phosphate receptor 1 (S1PR1) is reported to undergo
agonist-induced nuclear translocation in human umbili-
cal vein endothelial cells,75 issue is further complicated
by the fact that most phospholipid ligands can be synthe-
sized locally at the nuclear membranes and these ligands
are capable of transversing biomembranes. In case of the
PTAFR, its ligand is mainly retained intracellularly in
several cell types after synthesis.76 Current understand-
ing of possible mechanisms of nuclear translocation of
GPCRs is summarized in Fig. 1 and Table 1.

Future perspectives

GPCRs are prominent drug targets. It is of critical
importance to know the origin and trafficking of nuclear
receptors to be able to develop successful pharmacologic
strategies to target them. It is improtant to note that in
recent years, functional GPCRs have been localized at
other intracellular compartments, such as endosomes
and mitochondria.85,86 The charateristic subcellular dis-
tribution of small GTPases makes them attractive tools
to modify intracellular GPCR trafficking and signaling.
Moreover, studying spatio-temporal disctribution and
interactions of proteins involved in the GPCR transloca-
tion will help to unravel their physiologic roles. These
mechanisms appear to be depedent on the type of recep-
tor as well as the cell-type.11,36 The trafficking of nuclear
GPCRs is only part of the puzzle. The recent studies also
indicate that nuclear GPCRs perform functions which
differ from their plasma membrane counterparts, both in
vitro and in vivo.21,22,36 New subcellular delivery systems
such as nanoparticles might help to better understand
the physiologic significance of nuclear GPCRs.11
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