Skip to main content
. Author manuscript; available in PMC: 2020 May 1.
Published in final edited form as: IEEE Trans Med Imaging. 2018 Nov 26;38(5):1304–1313. doi: 10.1109/TMI.2018.2883301

TABLE I:

Pixel classification accuracy (averaged over 2-folds) of the proposed and alternative techniques on test images.

Features+classifier Optimal settings F1-score (%)
SSNMF+ArgMax SSNMF: r = 10, λ = 1, Lij = 0.01 55.92
NMF+SVM NMF: r = 10; SVM: RBF kernel, σ=0.2, C=10 62.81
NMF+GNB NMF: r = 10 64.32
NMF+RF NMF: r = 10; Number of trees = 500, Number of variables per split = 5 66.75
NMF+SSHC NMF: r = 10; SSHC: Number of clusters = 24 69.02
SSNMF+SVM SSNMF: r = 10, λ = 1, Lij = 0.01; SVM: RBF kernel, σ=0.2, C=10 64.93
SSNMF+GNB SSNMF: r = 10, λ = 1, Lij = 0.01 65.71
SSNMF+RF SSNMF: r = 10, λ = 1, Lij = 0.01; Number of trees=500, Number of variables per split=5 67.84
SSNMF+SSHC SSNMF: r = 10, λ = 1, Lij = 0.01; SSHC: Number of clusters = 21 71.18