
RESEARCH ARTICLE

Split4Blank: Maintaining consistency while

improving efficiency of loading RDF data with

blank nodes

Atsuko YamaguchiID*, Yasunori Yamamoto

Database Center for Life Science (DBCLS), Research Organization of Information and Systems, Kashiwa,

Chiba, Japan

* atsuko@dbcls.rois.ac.jp

Abstract

In life sciences, accompanied by the rapid growth of sequencing technology and the

advancement of research, vast amounts of data are being generated. It is known that as the

size of Resource Description Framework (RDF) datasets increases, the more efficient load-

ing to triple stores is crucial. For example, UniProt’s RDF version contains 44 billion triples

as of December 2018. PubChem also has an RDF dataset with 137 billion triples. As data

sizes become extremely large, loading them to a triple store consumes time. To improve the

efficiency of this task, parallel loading has been recommended for several stores. However,

with parallel loading, dataset consistency must be considered if the dataset contains blank

nodes. By definition, blank nodes do not have global identifiers; thus, pairs of identical blank

nodes in the original dataset are recognized as different if they reside in separate files after

the dataset is split for parallel loading. To address this issue, we propose the Split4Blank

tool, which splits a dataset into multiple files under the condition that identical blank nodes

are not separated. The proposed tool uses connected component and multiprocessor

scheduling algorithms and satisfies the above condition. Furthermore, to confirm the effec-

tiveness of the proposed approach, we applied Split4Blank to two life sciences RDF data-

sets. In addition, we generated synthetic RDF datasets to evaluate scalability based on the

properties of various graphs, such as a scale-free and random graph.

Introduction

Recently, partly due to the rapid advancement of experimental equipment and data analysis

environments, such as high-throughput sequencers, functional magnetic resonance imaging

[1], and high performance computing clusters [2, 3], data driven approaches, i.e., data-inten-

sive science, have become increasingly popular in life sciences. In such research studies, diverse

types of data are produced, e.g., genome sequences and images. To understand functions in

biological phenomena, we must interpret various types of large amounts of data in an inte-

grated manner. Several public institutions, such as National Center for Biotechnology Infor-

mation (NCBI) [4], the European Bioinformatics Institute (EBI) [5], and DNA Data Bank of

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Yamaguchi A, Yamamoto Y (2019)

Split4Blank: Maintaining consistency while

improving efficiency of loading RDF data with blank

nodes. PLoS ONE 14(6): e0217852. https://doi.org/

10.1371/journal.pone.0217852

Editor: Frederique Lisacek, Swiss Institute of

Bioinformatics, SWITZERLAND

Received: December 12, 2018

Accepted: May 19, 2019

Published: June 4, 2019

Copyright: © 2019 Yamaguchi, Yamamoto. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Allie and Nikkaji RDF

are downloadable from The Biosciences Database

Center (NBDC) as follows: Allie RDF: ftp://ftp.dbcls.

jp/allie/allie_rdf/2016/allie_rdf_nt_160308.gz;

Nikkaji RDF: ftp://ftp.biosciencedbc.jp/archive/

nikkaji/20150529/NBDC_NikkajiRDF_main.zip.

Funding: NBDC (https://biosciencedbc.jp/en/)

financially supported our work and there is no

grant number. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

http://orcid.org/0000-0001-7538-5337
https://doi.org/10.1371/journal.pone.0217852
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0217852&domain=pdf&date_stamp=2019-06-04
https://doi.org/10.1371/journal.pone.0217852
https://doi.org/10.1371/journal.pone.0217852
http://creativecommons.org/licenses/by/4.0/
ftp://ftp.dbcls.jp/allie/allie_rdf/2016/allie_rdf_nt_160308.gz
ftp://ftp.dbcls.jp/allie/allie_rdf/2016/allie_rdf_nt_160308.gz
ftp://ftp.biosciencedbc.jp/archive/nikkaji/20150529/NBDC_NikkajiRDF_main.zip
ftp://ftp.biosciencedbc.jp/archive/nikkaji/20150529/NBDC_NikkajiRDF_main.zip
https://biosciencedbc.jp/en/

Japan (DDBJ) [6] store such data in publicly available databases. However, such databases typi-

cally have unique formats and access methods. Therefore, researchers must understand these

formats and access methods to obtain target data. In this situation, adopting the Resource

Description Framework (RDF) [7] to represent these datasets has attracted the attention of

database developers and users [8, 9]. The specification of RDF has become a World Wide Web

Consortium (W3C) Recommendation. In the specification, Internationalized Resource Identi-

fier (IRI) is used for globally identifiable naming schema for target objects, such as genes and

proteins. In addition, the specification recommends an explicit representation of the proper-

ties of such target objects. Therefore, researchers can easily combine different datasets and

focus on analyzing datasets for their research purposes.

RDF datasets are generally stored in triple stores. Life science-related RDF datasets tend to

be extremely large and the number of such sets is increasing; therefore, it is important to

obtain an efficient method to load such datasets to a triple store. For example, UniProt [10]

has approximately 44 billion triples and is updated monthly. In addition, PubChemRDF

V1.6.1 beta [11] has more than 137 billion triples, and the RDF platform of EBI contains

almost 4 billion triples. Triple stores that are capable of parallel loadings, such as Virtuoso [12]

and Stardog [13], are preferable for efficient data loading.

Although we can load split files of an RDF dataset into a triple store in parallel, a significant

issue arises when a dataset that includes blank nodes is separated. By definition, blank nodes

do not have global identifiers, and pairs of identical blank nodes in the original file are recog-

nized as different if they reside in separate files after the file has been split for parallel loading.

Thus, we require a method to split a file into multiple files without losing the consistency of

blank nodes. However, this task is nontrivial if there are triples whose subject and object are

both blank nodes. For example, the RDF platform of EBI had 3157280 such triples as of

December 2018. Similarly, NBDC NikkajiRDF [14] has 25857876 such triples and Allie [15]

has 5541602 such triples. In addition, to increase load speed, the split files should be approxi-

mately the same size. Some implementations handle the problem of blank nodes by assigning

special internal identifiers to blank nodes [16] or by using custom software that allows users to

assign their own identifiers [17]. However, there is no general solution for splitting an RDF file

for parallel loading to a triple store.

To address this issue, we propose a Split4Blank tool. This tool uses connected component

and multiprocessor scheduling algorithm to satisfy the condition that identical blank nodes

are not separated. Thus, Split4Blank makes the largest split file as small as possible and the pro-

cessing time as short as possible. Furthermore, to confirm the effectiveness of the proposed

approach, we applied Split4Blank to two life sciences RDF datasets. In addition, we generated

synthetic RDF graphs to evaluate scalability for two types of scale-free graphs and random

graphs. Split4Blank is available for download at https://github.com/acopom/split4blank.

Materials and methods

Preliminaries

We start with the formal definition for an RDF graph as follows: An RDF triple (s, p, o) is an

element of (I [B) × I × (I [B [L) where I, L and B are a set of IRIs, a set of literals and a set of

blank nodes, which are considered pairwise disjoint. In this paper, an RDF triple is simply

called a triple. For a triple (s, p, o), s is called the subject, p the predicate and o the object. An

RDF graph is defined as a finite set of triples.

An RDF dataset is a finite set of {G} [{(irii, Gi)jirii 2 I, Gi is an RDF graph} where G is an

RDF graph called a default graph. A pair (irii, Gi) is called a named graph. To manage triples in

an RDF dataset, a triple store which stores an RDF dataset as a mutable container is generally

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://github.com/acopom/split4blank
https://doi.org/10.1371/journal.pone.0217852

used. To load an RDF graph into a system of a triple store, a file representing the RDF graph in

a textual format such as RDF/XML [18], Turtle [19] and N-Triples [20] is loaded with IRI as

the name of the RDF graph for a named graph. However, some systems of triple stores support

parallel loading for an RDF graphs with a large number of triples. Thus, the RDF graph can be

loaded efficiently by splitting a set of triples of an RDF graph into smaller sets of triples, and

using parallel loading.

A blank node, an element in B, represents indicating the existence of a thing that does not

have an IRI. If an RDF graph is represented within a file, the same blank nodes appearing in

different triples can be identified using the labels of blank nodes. For example, in Turtle, blank

nodes can be expressed as _: followed by a blank node label as an identifier locally scoped to

the RDF graph. If the labels of blank nodes are same in a file, the nodes are regarded as the

identical nodes. However, due to the fact that a blank node does not have a global identifier

such as IRI, as written in [21–23], the presence of blank nodes in an RDF graph may cause

problems especially for distributed processing. Similarly, due to the fact that a triple store can-

not generally determine whether blank nodes with the same labels in different files come from

the same RDF graph, parallel loading of an RDF graph including blank nodes may cause also a

problem. According to the study in [24], if blank nodes with the same labels come from the dif-

ferent RDF graph, the blank nodes may have to be treated as different nodes.

To avoid the problem of splitting a file of an RDF graph for parallel loading, blank nodes

with the same labels should not be divided. To split a large file into smaller files such that iden-

tical blank nodes are not included in different files, we formally define the RDF split problem

with blank nodes as follows. For an RDF graph G with n triples and a positive integerm repre-

senting the number of files, we findm disjoint sets D1, . . ., Dm of triples in G with minimum

maxi|Di| such that any blank node b 2 Di does not appear in Dj(i 6¼ j) and any triple t 2 G
appears in Di for some i.

Proposed method

Our proposed method for the RDF split problem primarily comprises two procedures, SPLIT
and COMBINE procedures. The SPLIT procedure splits the triples of an input RDF graph G
into sets of triples that are as small as possible such that the identical blank nodes are not sepa-

rated into different sets. The COMBINE procedure combines small sets of triples intom sets

D1, . . ., Dm such that maxi |Di| is small.

Algorithms 1 and 2 show the SPLIT and COMBINE procedures, respectively. For an input

set T of triples, SPLIT first separates T into three sets Tb1, Tb2, and T0, where Tb2 includes tri-

ples whose subject and object are blank nodes, Tb1 includes triples whose subject or object are

blank nodes not included in Tb2, and T0 includes triples whose subject and object are not

blank nodes. By computing connected components V1, . . ., Vk for a graph constructed by Tb2,

the triples of Tb2 are split into T1, . . ., Tn. Then, each triple t in Tb1 is added to Ti, which shares

the same blank node with t. For each triple t1, . . ., tm in T0, a singleton for ti is then created as

Tk+i≔ {ti}.
Algorithm 1: SPLIT Procedure

Input: a set T of triples.
Output: sets T1, . . ., Tn of triples such that the same blank nodes are
not separated into different sets.
Step 0 Tb1 ≔ ;, Tb2 ≔ ;, T0 ≔ ;.
Step 1: For each triple t = (s, p, o) in T,

if s and o are both blank nodes, Tb2 ≔ Tb2 [{t},
elseif neither s nor o is a blank node, T0 ≔ T0 [{t},
otherwise Tb1 ≔ Tb1 [{t}.

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 3 / 14

https://doi.org/10.1371/journal.pone.0217852

Step 2: Construct a graph G = (V, E) with V ≔ {s|(s, p, o) 2 Tb2} [{o|
(s, p, o) 2 Tb2} and E ≔ {(s, o)|(s, p, o) 2 Tb2}. Compute the con-
nected components V1, . . ., Vk of G.
Step 3: For each triple t = (s, p, o) in Tb2, add the triple to Ti such
that s and o are in Vi.
Step 4: For each triple t = (s, p, o) in Tb1, if s or o is in Vi for
some i(1 � i � k), Ti ≔ Ti [{t}, else Tk+1 ≔ {t}, Vk+1 ≔ {s|s is a
blank node} [{o|o is a blank node}, and k ≔ k + 1.
Step 5: For each triple t = (s, p, o) in T0, Tk+1 ≔ {t}, Vk+1 ≔ ;, and
k ≔ k + 1.
Step 6: Output T1, . . ., Tk.

We can easily prove that the sets T1, . . ., Tn of triples obtained by SPLIT satisfy the following

propositions.

Proposition 1 A blank node b that appears in both Ti and Tj(i 6¼ j) does not exist.
Proof For each blank node b, since V is split into connected components, if b is in V of Step

2, then all nodes from the triples in Tb2 that include b as the subject or object would belong to

the same connected component. Here the connected component is denoted by Vi. Then, all

triples in Tb2 that include b are in Ti. In addition, for each triple t in Tb1 including b, since one

subject or object is b and the other is not a blank node, each triple would belong to Ti. There-

fore, for any blank node b, all triples including b belong to the same set Ti.
Proposition 2 For any division of Ti into Ti1 and Ti2 with Ti1 6¼ ; and Ti2 6¼ ;, there is a

blank node that appears in both Ti1 and Ti2.

Proof Ti created at Step 5 is trivial because Ti is a singleton.

Ti newly created at Step4 is also trivial because all triples in Ti include the same blank node.

For Ti based on a connected component Vi at Step 3, assume there is a division of Ti into

Ti1 and Ti2 with Ti1 6¼ ; and Ti2 6¼ ; such that a blank node that appears in both Ti1 and Ti2
does not exist. First, we consider the case where Ti1 or Ti2 is a subset of Tb1. To simplify the

proof, we assume that Ti1 is a subset of Tb1. Then, for each triple in Ti1 including a blank node

b, there should be a triple including b in Tb2 because Ti is created at Step3. Therefore, a triple

including b should exist in Ti2, which is a contradiction.

If Ti1 or Ti2 is not a subset of Tb1, we consider two nonempty subsets T 0i1 ¼ Ti1 \ Tb2 and

T 0i2 ¼ Ti2 \ Tb2. Here, we assume there is no blank node appearing in both T 0i1 and T 0i2. We con-

sider two blank nodes b1 and b2 with b1 2 T 0i1 and b2 2 T 0i2. From this assumption, b1 6¼ b2.

T 0i1 [T
0
i2 is a connected component wherein all nodes are blank nodes; thus, there should be a

path between b1 and b2. Since b1 2 T 0i1 and b2 2 T 0i2, there should be a triple t = (s, p, o) such

that s belongs to either T 0i1 or T 0i2 and o belongs to the other. Then, if T 0i1 includes t, either s or o
should belong to only T 0i2, which is a contradiction. Similarly, if T 0i2 includes t, this can easily

lead to a contradiction.

By Proposition 1, we see that identical blank nodes belong to the same set of triples. In addi-

tion, by Proposition 2, each Ti is the smallest set satisfying the condition that the identical

blank nodes belong to the same set of triples.

Here, we describe the COMBINE procedure to makem files with as even sizes as possible

using {T1, . . ., Tn}. The COMBINE procedure is based on an approximation algorithm for min-

imum multiprocessor scheduling because the problem of combining sets of triples intom sets

with as even size as possible can be considered a problem of assigning jobs tom independent

processors with minimum makespan by considering the size of a set as the processing time of

a job. The minimum multiprocessor scheduling problem is a well-studied NP-hard optimiza-

tion problem [25–27]. To reduce processing time, we employ the longest processing time algo-

rithm [25] which is very simple and fast but it has been shown that the ratio of an obtained

makespan to the minimum makespan is less than 4/3 − 1/(3m), which is sufficiently close to 1.

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0217852

Algorithm 2 COMBINE Procedure
Input: Sets T1, . . ., Tn of triples, and a positive integer m(� n)
Output: m sets {S1, . . ., Sm} of triples such that, for each Ti, there
exists j(< m) such that Ti � Sj.
Step0 For each i(0 � i � m), Si ≔ ;.
Step1 Sort T1, . . ., Tn into T0

1
; . . . ;T0n in decreasing order.

Step2 For j from 1 to n,
select k such that |Sk| is the smallest among |Si|(0 � i � m), and
Sk ≔ Sk [Tj.

Step3 Output {S1, . . ., Sm}.

The SPLIT procedure runs in O(|T|) time because each step requires O(|T|) time, while the

COMBINE procedure runs in O(n log n) because sorting n items requires O(n log n) time and

placing n items requires O(n) time. Here, n� |T|; thus, Split4Blank runs in O(|T|log|T|) time

in the worst case. However, for example, by processing triples in T0 separately from other tri-

ples, the computation time of Split4Blank can be reduced.

Implementation and availability

Based on the algorithm described above, we developed the Split4Blank tool with Java 1.8. The

source code of the tool is available at https://github.com/acopom/split4blank under the MIT

license. To run the tool, Java 1.8 or later is required. The executable Java ARchive (JAR) file of

Split4Blank is available at Zenodo [28] with DOI:10.5281/zenodo.2652608. To execute the

tool, Java 1.8 or later is required. The file format of an RDF graph should be N-Triples.

The usage is:

% java -jar -Xmx16g -Xms16g Split4Blank.jar [targetfile] [numberOfFiles]

For example,

% java -jar -Xmx16g -Xms16g Split4Blank.jar example.nt 10

Results

From the theoretical analysis in the previous section, we obtained hypotheses that (1) the run

time of Split4Blank does not depend on the number of files, (2) the run time of Split4Blank

depends on the number of files but is less than O(|T|log|T|), where T is the set of the triples in

the original RDF graph, and (3) The RDF graph loaded using an original file and the RDF

graph loaded in parallel using files split by Split4Blank are isomorphic. To demonstrate them,

we conducted two types of experiments. We first applied Split4Blank to real life sciences RDF

datasets. In addition, we applied Split4Blank to synthetic RDF graphs to obtain the result for

various sizes of RDF graphs.

For the first type of experiment, we selected Allie [15] and NikkajiRDF [14] as real RDF

datasets because they include many triples whose subject and object are both blank nodes. The

features of the two datasets related to our experiment are shown in Table 1. # triples, # triples

(b), and # triples(b2) represent the number of triples, the number of triples with blank nodes,

and the number of triples whose subject and object are blank nodes, respectively. # nodes is

the number of distinct resources in the dataset, and # blank nodes is the number of distinct

Table 1. Features of Allie and NikkajiRDF datasets.

Dataset # triples # triples(b) triples(b2) # nodes # blank nodes

Allie 143435311 102898132 5344135 28159813 12660238

NikkajiRDF 90445172 45276720 10441166 48299880 9549560

https://doi.org/10.1371/journal.pone.0217852.t001

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 5 / 14

https://github.com/acopom/split4blank
https://doi.org/10.5281/zenodo.2652608
https://doi.org/10.1371/journal.pone.0217852.t001
https://doi.org/10.1371/journal.pone.0217852

blank nodes in the dataset. Allie and Nikkaji datasets used for experiment are available at ftp://

ftp.dbcls.jp/allie/allie_rdf/ and ftp://ftp.biosciencedbc.jp/archive/nikkaji/, respectively. For

experiments, we used a default graph of each dataset.

We split a file of each RDF graph into k files where 2� k� 10, k = 100 and 1000 using our

tool and measured the computation time for each k. For each k, we measured the computation

time 12 times, removed the minimum and maximum computation times, and took the average

of ten measurements. Figs 1 and 2 show the run times for splitting triples in the Allie or Nikka-

jiRDF datasets into k (2� k� 10) sets of triples. Here, the x-axis and y-axis correspond to the

number k of files produced by split and the run time, respectively. As can be seen, run time

does not depend on the number of files. Figs 3 and 4 show the run times for splitting triples in

the Allie or NikkajiRDF datasets into k (k = 2, 10, 100, and 1000) sets of triples. From the two

charts, even when the number of files is 1000, the average of run time is almost the same as

that when the number of files is two and we can see that the results were concordant with our

hypothesis (1).

To demonstrate our hypothesis (2), we created synthetic RDF datasets of various sizes in

three ways and measured the computation time required to split the datasets into two files. To

create the synthetic datasets, we generated graphs of various sizes and converted them into

RDF datasets by adding URIs to their nodes and edges. We employed three models to generate

graphs, i.e., a random graph with n nodes and edge probability p = 0.0005, the Watts–Strogatz

Fig 1. Computation time to split the Allie dataset. x-axis and y-axis correspond to the number of files from two to ten and the

average of running time [ms], respectively.

https://doi.org/10.1371/journal.pone.0217852.g001

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 6 / 14

ftp://ftp.dbcls.jp/allie/allie_rdf/
ftp://ftp.dbcls.jp/allie/allie_rdf/
ftp://ftp.biosciencedbc.jp/archive/nikkaji/
https://doi.org/10.1371/journal.pone.0217852.g001
https://doi.org/10.1371/journal.pone.0217852

model with n nodes, initial degree d = 2, and rewriting probability p = 0.5, and the Barabasi–

Albert model with n0 = 2 initial nodes, n additional nodes, and an additional edge parameter

e = 30. We generated graphs using these models where the numbers n of nodes were 10000 to

100000.

We then assigned synthetic resource URLs (http://split4blank.dbcls.jp/experiment/node�)

or blank nodes (_:bnode�) to the nodes and synthetic property URLs (http://split4blank.dbcls.

jp/experiment/property�) to the edges in the generated graphs. The ratio of blank nodes to all

nodes was 0.5. From the labeled graph, we generated RDF datasets for our experiments.

Figs 5, 6 and 7 show the computation time required to split each RDF dataset based on the

random graph, Watts–Strogatz and Barabasi–Albert model, into two files. For all models, the

computation times scaled linearly with the numbers of nodes although Split4Blank theoreti-

cally runs in O(|T|log|T|) time. Therefore, from a practical viewpoint, Split4Blank runs in rela-

tively less than O(|T|log|T|) time and should be suitable for large-scale datasets.

Finally, to test the hypothesis (3), for each experiment described above, we compared two

RDF graphs in a triple store when one graph is loaded using an original file and the other

graph is loaded using files split by Split4Blank. As a triple store for the experiment, we used

Virtuoso Open-Source Edition ver. 07.20.3229 [12]. Ideally, an isomorphism of the two graphs

should be computed to test the hypothesis (3). However, the graph isomorphism problem is

Fig 2. Computation time to split the Nikkaji dataset. x-axis and y-axis correspond to the number of files from two to ten and the

average of running time [ms], respectively.

https://doi.org/10.1371/journal.pone.0217852.g002

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 7 / 14

http://split4blank.dbcls.jp/experiment/node
http://split4blank.dbcls.jp/experiment/property
http://split4blank.dbcls.jp/experiment/property
https://doi.org/10.1371/journal.pone.0217852.g002
https://doi.org/10.1371/journal.pone.0217852

known to be intractable and consumes too much time for a relatively large RDF graph such as

Allie and Nikkaji. Therefore, instead of computing an isomorphism, we counted the number

of triples for each blank node and sorted blank nodes according to the number of triples for

the two RDF graphs using the following two SPARQL queries.

Query1:
SELECT ?s (count(�) AS ?count) WHERE {
?s ?p ?o.
FILTER (isBlank(?s))

}GROUP BY ?s ORDER BY DESC(?count)

Query2:
SELECT ?o (count(�) AS ?count) WHERE {
?s ?p ?o.
FILTER (isBlank(?o))

}GROUP BY ?o ORDER BY DESC(?count)

Then, according to the results of these SPARQL queries, we compared the two RDF graphs

and confirmed that the results are exactly the same for the two RDF graphs. Table 2 shows the

top ten rows of the results of Query1 for an RDF graph loaded using an original file of Allie

dataset and the RDF graph loaded using ten files split by Split4Blank. s(original) and count

(original) show the result of Query1 for an RDF graph loaded using an original file. s(split)

Fig 3. Computation time to split the Allie dataset. x-axis and y-axis correspond to the number of files (2, 10, 100, and 1000) and

the average of running time [ms], respectively.

https://doi.org/10.1371/journal.pone.0217852.g003

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 8 / 14

https://doi.org/10.1371/journal.pone.0217852.g003
https://doi.org/10.1371/journal.pone.0217852

and count(split) show the result of Query1 for an RDF graph loaded using files split by

Split4Blank. As can be seen, the numbers of triples for each blank node are exactly the same

between the two RDF graphs. From Proposition 1, the two RDF graphs should be theoretically

isomorphic. Additionally, according to the result of SPARQL queries, we can partly confirm

hypothesis (3) by comparing an RDF graph using an original file and an RDF graph using files

split by Split4Blank for each experiment above.

Discussion

As written in [22], SPARQL engines of triple stores often offer Skolemization scheme for

blank nodes. For example, values of the columns of s (original) and s (split) in Table 2, such as

nodeID://b12672638 and nodeID://b10853750, are blank nodes that undergo Skolemized by

Virtuoso. If there is a standardized Skolemization method of blank nodes in an RDF graph, it

can also be a solution for generating split files without loss of information. However, a large

number of RDF datasets including blank nodes have already been published and are circu-

lated. Therefore, at this time, it is not realistic that all blank nodes in published RDF datasets

are subjected to Skolemization.

Fig 4. Computation time to split the Nikkaji dataset. x-axis and y-axis correspond to the number of files (2, 10, 100, and 1000) and

the average of running time [ms], respectively.

https://doi.org/10.1371/journal.pone.0217852.g004

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0217852.g004
https://doi.org/10.1371/journal.pone.0217852

Apache Jena Elephas (we call Elephas hereafter) [16] splits an RDF graph by generating

internal identifiers from the labels of blank node present in the input file, the Job ID and the

input file path. To develop an Apache Hadoop-based application that processes RDF data, the

identifier is useful for building blocks for programmers However, the method used in Elephas

cannot be applied in splitting an RDF dataset into multiple files to load them to any triple store

in parallel, at which Split4Blank aims. A set of split files generated by Split4Blank can be loaded

to any triple store that supports parallel loading.

As a limitation of our approach, if an input RDF graph includes a very large connected

component of blank nodes, the file including the connected component cannot be smaller

than the size of the component. However, from the practical point of view, we think this may

not be a problem for almost RDF datasets because we could not find such RDF dataset in LOD

although we checked many datasets in LOD for computational experiments in the Result

section.

Some datasets are provided as multiple files in consideration of the above-mentioned blank

node issue. However, we want to split an entire dataset into multiple files at our discretion

based on machine and/or software environments. For example, the latest version (r49) of

Reactome has 55 files, and we want six files in total when using a machine with six processors.

In this situation, Split4Blank can be used without considering the distribution of the blank

nodes.

Fig 5. Computation time required to split the dataset generated using the random graph. x-axis and y-axis correspond to the

number of nodes and the average of running time [ms].

https://doi.org/10.1371/journal.pone.0217852.g005

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 10 / 14

https://doi.org/10.1371/journal.pone.0217852.g005
https://doi.org/10.1371/journal.pone.0217852

From the scalability perspective for very large RDF datasets, our tool must consider

using distributed computing, such as Apache Hadoop [29], although the experimental

result demonstrates that it runs in linear time. As discussed in the Materials and Methods

section, our tool primarily consists of the SPLIT procedure to compute connected compo-

nents and the COMBINE procedure to solve the scheduling problem. Apache Giraph, [30]

which is a graph processing framework in Apache Hadoop, includes a tool to compute

connected components; thus, it may be sufficient to consider a method for solving the

scheduling problem using Apache Hadoop. We employed a greedy algorithm for the prob-

lem; therefore, Map-Reduce methods for greedy algorithms [31, 32] are applicable to our

tool.

Conclusion

In this paper, we proposed a method to split an RDF dataset into several sets of triples such

that identical blank nodes are stored in the same set. Furthermore, we implemented a tool and

evaluated its run time in a computational experiment. In addition, from the experimental

result, we conclude that the number of split files does not affect computation time and compu-

tation time scales linearly with the number of nodes.

Future work includes an investigation into the scalability of the proposed method. In this

study, we used Allie and NikkajiRDF as realistic datasets and created graphs based on the

random graph, Watts–Strogatz and Barabasi–Albert models. We would like to perform

Fig 6. Computation time required to split the dataset generated using the Watts–Strogatz model. x-axis and y-axis correspond

to the number of nodes and the average of running time [ms].

https://doi.org/10.1371/journal.pone.0217852.g006

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 11 / 14

https://doi.org/10.1371/journal.pone.0217852.g006
https://doi.org/10.1371/journal.pone.0217852

experiments that include more real datasets and ones based on other graph models. In particu-

lar, to adopt synthetic datasets to actual datasets, analysis of RDF datasets as graphs, such as

degree distributions, is required. In addition, as discussed previously, implementing the pro-

posed tool using Hadoop will be a focus of future work.

Fig 7. Computation time required to split the dataset generated using the Barabasi–Albert model. x-axis and y-axis correspond

to the number of nodes and the average of running time [ms].

https://doi.org/10.1371/journal.pone.0217852.g007

Table 2. The top ten rows of the results using Query1 for Allie dataset.

s (original) count (original) s (split) count (split)

nodeID://b12672638 119292 nodeID://b10853750 119292

nodeID://b14420485 107999 nodeID://b8083572 107999

nodeID://b16163841 67143 nodeID://b10892334 67143

nodeID://b17913577 62619 nodeID://b10840032 62619

nodeID://b19662898 57546 nodeID://b8953824 57546

nodeID://b21404984 53633 nodeID://b11717248 53633

nodeID://b23152987 49065 nodeID://b10885370 49065

nodeID://b26646948 47950 nodeID://b11157944 47950

nodeID://b24897331 46809 nodeID://b11563642 46809

nodeID://b28394316 43445 nodeID://b8821258 43445

https://doi.org/10.1371/journal.pone.0217852.t002

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 12 / 14

https://doi.org/10.1371/journal.pone.0217852.g007
https://doi.org/10.1371/journal.pone.0217852.t002
https://doi.org/10.1371/journal.pone.0217852

Acknowledgments

This work was supported by the National Bioscience Database Center (NBDC) of the Japan

Science and Technology Agency (JST).

Author Contributions

Conceptualization: Yasunori Yamamoto.

Formal analysis: Atsuko Yamaguchi.

Investigation: Atsuko Yamaguchi.

Methodology: Atsuko Yamaguchi.

Software: Atsuko Yamaguchi.

Validation: Atsuko Yamaguchi.

Writing – original draft: Atsuko Yamaguchi.

Writing – review & editing: Yasunori Yamamoto.

References

1. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of rest-

ing state networks in the human brain. Proc Natl Acad Sci U S A. 2007 7; 104(32): 13170–13175.

https://doi.org/10.1073/pnas.0700668104 PMID: 17670949

2. O’Driscoll A, Belogrudov V, Carroll J, Kropp K, Walsh P, Ghazal P, et al. HBLAST: Parallelised

sequence similarity–A Hadoop MapReducable basic local alignment search tool. J Biomed Inform.

2015 54:58–64. https://doi.org/10.1016/j.jbi.2015.01.008 PMID: 25625550

3. Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft

Research, Washington, 2009.

4. The National Center for Biotechnology Information. URL: https://www.ncbi.nlm.nih.gov/.

5. The European Bioinformatics Institute. URL: https://www.ebi.ac.uk/.

6. DNA Data Bank of Japan. URL: https://www.ddbj.nig.ac.jp/.

7. Cyganiak R, Wood D, Lanthaler M. RDF 1.1 Concepts and Abstract Syntax. URL: https://www.w3.org/

TR/rdf11-concepts/.

8. Cheung KH, Yip KY, Smith A, Deknikker R, Masiar A, Gerstein M. YeastHub: a semantic web use case

for integrating data in the life sciences domain. Bioinformatics. 2005 Jun 21(Suppl. 1):i85–i96. https://

doi.org/10.1093/bioinformatics/bti1026 PMID: 15961502

9. Lam HY, Marenco L, Clark T, Gao Y, Kinoshita J, Shepherd G, et al. AlzPharm: integration of neurode-

generation data using RDF. BMC Bioinformatics. 2007 9; 8 Suppl 3:S4. https://doi.org/10.1186/1471-

2105-8-S3-S4 PMID: 17493287

10. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43(Database

issue):D204–12. https://doi.org/10.1093/nar/gku989 PMID: 25348405

11. PubChemRDF. URL: https://pubchem.ncbi.nlm.nih.gov/rdf/.

12. OpenLink Virtuoso. URL: https://virtuoso.openlinksw.com/.

13. Stardog. URL: https://www.stardog.com/.

14. NBDC NikkajiRDF. URL: http://dbarchive.biosciencedbc.jp/en/nikkaji/desc.html.

15. Yamamoto Y, Yamaguchi A, Bono H, Takagi T. Allie: a database and a search service of abbreviations

and long forms. Database (Oxford). 2011; 2011:bar013. https://doi.org/10.1093/database/bar013

16. Apache Jena Elephas. URL: https://jena.apache.org/documentation/hadoop/.

17. Loading large files in the Sesame Native Store. URL: http://www.rivuli-development.com/further-

reading/sesame-cookbook/loading-large-file-in-sesame-native/.

18. Gandon F, Schreiber G. RDF 1.1 XML Syntax. URL: https://www.w3.org/TR/rdf-syntax-grammar/.

19. Beckett D, Berners-Lee T, Prud’hommeaux P, Carothers G. RDF 1.1 Turtle. URL: https://www.w3.org/

TR/turtle/.

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 13 / 14

https://doi.org/10.1073/pnas.0700668104
http://www.ncbi.nlm.nih.gov/pubmed/17670949
https://doi.org/10.1016/j.jbi.2015.01.008
http://www.ncbi.nlm.nih.gov/pubmed/25625550
https://www.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/
https://www.ddbj.nig.ac.jp/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1093/bioinformatics/bti1026
https://doi.org/10.1093/bioinformatics/bti1026
http://www.ncbi.nlm.nih.gov/pubmed/15961502
https://doi.org/10.1186/1471-2105-8-S3-S4
https://doi.org/10.1186/1471-2105-8-S3-S4
http://www.ncbi.nlm.nih.gov/pubmed/17493287
https://doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
https://pubchem.ncbi.nlm.nih.gov/rdf/
https://virtuoso.openlinksw.com/
https://www.stardog.com/
http://dbarchive.biosciencedbc.jp/en/nikkaji/desc.html
https://doi.org/10.1093/database/bar013
https://jena.apache.org/documentation/hadoop/
http://www.rivuli-development.com/further-reading/sesame-cookbook/loading-large-file-in-sesame-native/
http://www.rivuli-development.com/further-reading/sesame-cookbook/loading-large-file-in-sesame-native/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://doi.org/10.1371/journal.pone.0217852

20. Beckett D. RDF 1.1 N-Triples. URL: https://www.w3.org/TR/n-triples/.

21. Hogan A, Arenas M, Mallea A, Polleres A. Everything you always wanted to know about blank nodes.

Web Semantics: Science, Services and Agents on the World Wide Web. 2014; 27(1):42–69. https://

doi.org/10.1016/j.websem.2014.06.004

22. Mallea A, Arenas M, Hogan A, Polleres A. On blank nodes. In International Semantic Web Conference

(Lecture Notes in Computer Science 7031). 2011; 421–437

23. Stolpe A, Halvorsen J. Distributed query processing in the presence of blank nodes. Semantic Web.

2017; 8(6):1001–1021 https://doi.org/10.3233/SW-160250

24. Hayes PJ, Patel-Schneider PF. RDF 1.1 Semantics. URL: https://www.w3.org/TR/rdf11-mt/.

25. Graham RL. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied Mathematics

1969 17(2):416–429. https://doi.org/10.1137/0117039

26. Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of Np-Completeness. W.

H. Freeman and Company, New York, 1979.

27. Hochbaum DS, Shmoys DB. Using dual approximation algorithms for scheduling problems theoretical

and practical results. Journal of the ACM 34(1): 144–162. https://doi.org/10.1145/7531.7535

28. Zenodo. URL: https://zenodo.org/.

29. Apache Hadoop. URL: http://hadoop.apache.org/.

30. Apache Giraph. URL: http://giraph.apache.org/.

31. Kumar R, Moseley B, Vassilvitskii S, Vattani A. Fast greedy algorithms in MapReduce and streaming.

Journal ACM Transactions on Parallel Computing 2015 Oct; 2(3):Article No. 14

32. Chen R, Zeng WH, Fan KJ. Research on Hadoop Greedy Scheduler Based on the Fair. Applied

Mechanics and Materials 2011 Dec 145:460–464. https://doi.org/10.4028/www.scientific.net/AMM.

145.460

Split4Blank: Splitting RDF data with blank nodes

PLOS ONE | https://doi.org/10.1371/journal.pone.0217852 June 4, 2019 14 / 14

https://www.w3.org/TR/n-triples/
https://doi.org/10.1016/j.websem.2014.06.004
https://doi.org/10.1016/j.websem.2014.06.004
https://doi.org/10.3233/SW-160250
https://www.w3.org/TR/rdf11-mt/
https://doi.org/10.1137/0117039
https://doi.org/10.1145/7531.7535
https://zenodo.org/
http://hadoop.apache.org/
http://giraph.apache.org/
https://doi.org/10.4028/www.scientific.net/AMM.145.460
https://doi.org/10.4028/www.scientific.net/AMM.145.460
https://doi.org/10.1371/journal.pone.0217852

