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Abstract

The antitumor drugs doxorubicin and etoposide, a phodophyllotoxin derivative, are clinically 

active for the treatment of human malignancies. Because of their extreme effectiveness in the 

clinic, their modes of actions have been the subject of intense research for over several decades 

both in the laboratory and in the clinic. It has been found that both doxorubicin and etoposide 

(VP-16) act on topoisomerase II, induce DNA cleavage, and form double-strand breaks, causing 

tumor cell death. However, both of these drugs also undergo extensive metabolism in tumor cells 

and in vivo to various reactive intermediates that bind covalently to cellular DNA and proteins. 

Moreover, both drugs are metabolized to reactive free radicals that induce lipid peroxidation and 

DNA damage. However, the role of drug activation in the mechanism of cytotoxicity remains 

poorly defined. In this review, we critically evaluate the significance of metabolic activation of 

doxorubicin and etoposide in the mechanism of tumor cytotoxicity.

INTRODUCTION

The clinically active anticancer drugs doxorubicin (also known as adriamycin) and etoposide 

are used for the treatment of a wide variety of cancers [1]. Doxorubicin and etoposide 

(VP-16) act as topoisomerase II (Topo II) poisons and induce accumulations of enzyme-

linked, double-strand breaks, which are highly cytotoxic to cells [2, 3]. Topoisomerases (I 

and II) are an important class of nuclear enzymes that are responsible for maintaining the 

topology of DNA; they are involved in DNA repair, transcription, replication and 

segregation of chromosomes [4–6]. Inhibition and/or interference with topoisomerase 

functions leads to cell death. In vivo, the mechanism(s) of tumor cell killing by doxorubicin 

and VP-16 are extremely complicated in spite of their known action as topo II poisons, and 

various other mechanisms have been proposed. Cytotoxicity of these drugs could also 

depend upon other factors, e.g., metabolic activation, as they undergo enzymatic activation 

to reactive species that either bind to or induce damage to cellular macromolecules. This 

review examines mechanisms of action based on metabolic activation (bioactivation) of 

these two anticancer drugs that may be important for their modes of action.
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DOXORUBICIN

Doxorubicin was first discovered in early 1970 and has become one of the most important 

and widely used anticancer drugs for the treatment of both solid and hematological 

malignancies [1, 7, 8]. It contains an anthraquinone chromophore (Figure 1) and an 

aminoglycoside. Because of the anthraquinone structure, which contains a quinone-

hydroquinone moiety, it is readily reduced by a variety of enzyme systems [9–12], most 

notably, cytochrome P450-reductase, via one-electron reduction, forming a semiquinone 

radical (Figure 1). The semiquinone radical of doxorubicin is extremely unstable in the 

presence of molecular oxygen and undergoes a futile oxidation-reduction cycle forming 

superoxide radical and, ultimately a highly reactive oxidant, the hydroxyl radical (Figure 2) 

[9–16]. The formation and reaction of the reactive oxygen radicals with cellular 

macromolecules is the basis for many of the known toxicological and cytotoxicological 

effects of doxorubicin. Other enzymatic systems are also known to activate doxorubicin, 

e.g., xanthine oxidase, DT-diophorase and nitric oxide synthase, to form reactive oxygen 

species. However, it is believed that the cytochrome P450 reductase system is the main 

enzymatic reductive pathway for the activation of doxorubicin [10]. There are two main 

consequences of this reductive activation of doxorubicin: a) generation of covalent binding 

species and b) formation of free radical species.

COVALENT BINDING

Enzymatic activation of the anthraquinone moiety of doxorubicin results in the formation of 

highly reactive alkylating species. Moore [17] proposed that the anticancer drugs mitomycin 

and anthracyclines can be bioreductively activated to reactive species capable of alkylating 

cellular macromolecules. We were the first to unequivocally show that doxorubicin and its 

related analog, daunomycin, alkylate DNA and cellular proteins in vitro and in vivo [18–22]. 

We proposed that following one-electron reduction of doxorubicin, various reactive 

intermediates are formed (Figure 1) that could alkylate cellular macromolecules [18, 19]. As 

both reduced glutathione and ethylxanthate inhibited this covalent binding, we proposed that 

a quinone methide, formed at C7 of the doxorubicin (Figure 1) molecule, was most likely 

the reactive species that alkylated DNA and proteins [19, 21]. The formation of quinone 

methide was proposed to result from a two-electron reduction of the quinone function of the 

doxorubicin. In addition to the one-electron reductases, DT-diophorase, which reduces 

quinones via a two-electron reduction, also formed this reactive intermediate [21]. In 

addition, we proposed a C7 radical intermediate that is also generated from the one-electron 

reduction intermediate, the doxorubicin semiquinone radical [18, 19, 21]. Various 

investigators have now confirmed our earlier observations on the covalent binding of 

doxorubicin and daunomycin with DNA [23–27]. The structure of this adduct has also been 

elucidated [28].

Doxorubicin-DNA adducts are biologically active and have been shown to form at the gpc 

sites in DNA in vitro or in tumor cells [23, 29]. More interestingly, these doxorubicin-DNA 

adducts inhibit binding of the transcription factors and DNA polymerase, which may have 

significant implications for the mechanism of doxorubicin cytotoxicity for tumor cells [30]. 

Culeen and Phillips [23] also found that DNA adduct formation was significantly enhanced 

Sinha and Mason Page 2

J Drug Metab Toxicol. Author manuscript; available in PMC 2019 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the presence of Fe2+ ions and suggested the intermediacy of Fe3+-doxorubicin complexes 

in DNA-doxorubicin adduct formation. Skladanowski and Konopa [31, 32] have shown that 

doxorubicin and other related anthracyclines form interstrand DNA crosslinks at 

physiological concentrations and are found to have a close relationship with growth 

inhibition in a number of tumor cell lines. It is of interest to note that adducts were found to 

be active in doxorubicin-resistant cells [32], suggesting that the doxorubicin DNA-adducts, 

once formed, may not be a substrate for p-glycoprotein.

Koch and his collaborators have reported that formaldehyde was a key intermediate in the 

formation of certain doxorubicin-DNA adducts [33, 34]; these were found to be specific at 

the gpc sites of DNA and were similar to those observed by Luce et al. [35]. Koch et al. [33, 

36] showed that formaldehyde-doxorubicin-DNA adducts are also formed in breast tumor 

cells. Formation of formaldehyde required induction of oxidative stress, i.e., reductive 

activation of doxorubicin in the presence of molecular oxygen and peroxidation of cellular 

membrane [34, 36]. The most important finding for this type of adduct is that they are 

formed at pharmacological concentrations of doxorubicin and are cytotoxic to tumor cells 

[34, 37]. Furthermore, preformed adducts (i.e., synthesized in vitro) are taken up and 

retained in the nuclei of tumor cells by both sensitive and resistant cells more efficiently than 

the parent drugs [36, 37]. The significance of covalent binding and cross-link formation of 

doxorubicin and related drugs in cytotoxicity has been reviewed [26].

FREE RADICAL FORMATION

It is well established that doxorubicin (and most anthracyclines) forms a semiquinone 

radical following its reductive activation both in vitro and in biological systems (Figure 2) 

[9–12, 16]. The semiquinone radical is reasonably stable under anaerobic conditions and can 

be detected by electron spin resonance [38, 39]. However, it reacts rapidly with molecular 

oxygen, generating superoxide anion, hydrogen peroxide, and ultimately hydroxyl radicals 

in the presence of transition metal ions [13, 15, 16, 38]. Superoxide and hydroxyl radicals 

are easily detected with EPR using DMPO as a spin- trapping agent [16, 38]. Free radicals, 

in particular reactive hydroxyl radical, have been shown to induce DNA damage. In addition, 

hydroxyl radical initiates significant peroxidation of membrane lipids, forming toxic 

metabolites that alkylate DNA and proteins [40–42]. However, the role of free radical 

intermediates in the mechanism of cytotoxicity of doxorubicin remains controversial [40, 

43–45]. This controversy is due to several factors: First, doxorubicin is effective in vivo at 

nanomolar concentration (10−7-10−8 M), while the detection of free radicals requires 

significantly higher (micromolar) concentrations. Second, the formation of hydroxyl radicals 

requires the presence of free iron (or iron complexed with doxorubicin), and it is believed 

that there is very little free Fe3+ in vivo (as most of the iron is bound to proteins)

While these are valid arguments against the role of free radicals in doxorubicin cytotoxicity, 

they can be easily explained on the basis of recent significant supporting information. 

Detection of free radical species requires a higher concentration of doxorubicin due to the 

limited sensitivity of EPR detection. When reactive free radicals are generated in cells and 

tissues, most of them are rapidly destroyed due to reactions with high concentrations of 

reduced glutathione and other sulfhydryl compounds present in cells and tissues. There are a 
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number of publications that have shown the formation of doxorubicin-GSH conjugates in 

cells as well as increased formation of oxidized glutathione following doxorubicin treatment. 

Moreover, in most cellular systems there are significant amounts of superoxide dismutase, 

catalase and glutathione peroxidase, which eliminate superoxide, hydrogen peroxide and 

hydroperoxides, respectively, decreasing the possibility of detecting any free radicals. It is 

not surprising, then, that depletion of glutathione by BSO in most tumor cells, including 

doxorubicin-resistant tumor cells, significantly enhances hydroxyl radical formation and 

doxorubicin cytotoxicity, thus implicating free radicals in the mechanism of doxorubicin 

antitumor activities [46, 47].

Doxorubicin requires reductive activation to generate free radical species. It is possible that 

certain tumor cells and tissues may not have sufficient amounts of the cytochrome P450-

reductase to activate doxorubicin to the semiquinone radical as we found, for example, in 

human breast tumor cells selected for doxorubicin resistance [48, 49]. Moreover, the 

activities of the detoxifying enzymes glutathione peroxidase and glutathione transferase are 

also significantly increased in these resistant cell lines and in nude mouse xenografts [49, 

50]. Consequently, significantly fewer doxorubicin-dependent free radicals are detected [16, 

49]. In another study, in tumor cells selected for low levels of resistance to doxorubicin, 

hydroxyl radical formation was found to be similar to that of the sensitive cells; however, a 

significant decrease in hydroxyl radical formation was observed in the highly resistant 

variants [51]. These observations, i.e., detectable levels of free radical formed in 

doxorubicin-sensitive cells but not in resistant cells, support the notion that free radicals do 

play a role in drug cytotoxicity. Recent advances in florescence detection have further 

increased sensitivity for the detection of H2O2 in tumor cells and tissues, and now one can 

easily detect H2O2 formed from sub-micromolar concentrations of doxorubicin [52]. 

However, interference resulting from high florescence quenching by DNA-bound 

doxorubicin remains a problem.

Further support for the free radical-mediated cytotoxicity of doxorubicin has come from the 

very interesting work of Oberley and coworkers, who were the first to show that 

overexpression of MnSOD, which catalyzes the conversion of superoxide anion radical 

(O2
.-) to hydrogen peroxide, inhibits the growth of tumor cells [53]. When combined with 

doxorubicin or ionizing radiation, MnSOD enhanced tumor cell killing by both doxorubicin 

and ionizing radiation [54, 55] and was further enhanced by BCNU, an inhibitor of 

glutathione reductase. These observations clearly indicate that H2O2 formed from 

superoxide anion radical is the key intermediate for tumor cell killing by doxorubicin and 

ionizing radiation [56]. Furthermore, Mimnaugh et al. [57] have reported that the 

doxorubicin-sensitive human breast MCF-7 cells were significantly more sensitive to H2O2 

than the corresponding doxorubicin-resistant MCF-7/ADRR cells, implicating a free radical 

mechanism in doxorubicin cytotoxicity.

It has been reported that intercalated doxorubicin does not undergo reductive activation and 

generate free radicals, casting more doubts on the role of free radicals in doxorubicin 

cytotoxicity as most of doxorubicin in tumor cells is bound to DNA. It should be pointed out 

that the chromophore of doxorubicin remains intact following covalent binding to DNA (as 

the semiquinone radical does not bind covalently to DNA); thus, DNA-doxorubicin mono-
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adduct could be reductively activated in tumors and generate free radical species. In this 

scenario, any hydroxyl radicals generated would be significantly more damaging to cellular 

DNA, as they would be formed in close proximity to the DNA, leading to cell death. In this 

regard, Dikalov et al. [58] have reported that doxorubicin covalently bound to small 

nucleotides is reductively activated and generates hydroxyl radicals in vitro. While 

formation of doxorubicin covalently bound to small nucleotides needs to be confirmed in 

tumors and in vivo, it definitely opens the possibility that covalently bound doxorubicin 

forms free radicals in vivo and contributes to doxorubicin cytotoxicity.

The role of iron in doxorubicin cytotoxicity is complex; however some conclusions can be 

derived from various observations. While iron concentration in vivo is low, tumors tend to 

contain significantly higher concentrations of copper and iron metal ions [59, 60]. Research 

has shown that cell membranes are not permeable to Fe chelated with doxorubicin; thus, the 

complex cannot generate or reduce peroxide inside tumor cells (near DNA) to form free 

radical species and induce cell death. However, it is well known that Fe ions are constantly 

released from dying cells; these Fe ions could chelate free doxorubicin present in tumor cells 

and cause free radical-mediated toxicity. Furthermore, the semiquinone radical of 

doxorubicin has been shown to induce release of iron from ferritin under anaerobic 

conditions [61], suggesting that doxorubicin-Fe complexes can be formed in tumors and lead 

to the formation of free radical species.

Further support for doxorubicin free radical-mediated tumor cell kill comes from our recent 

studies (Sinha et al.; unpublished observations) where topo II catalytic and cleavage 

activities were inhibited by nitric oxide treatment. In spite of significant inhibition of topo II 

functions, the cytotoxicity of doxorubicin was not compromised in either human breast 

MCF-7 or human colon HT-29 cells. In contrast, under identical conditions of nitric oxide 

treatment, the cytotoxicity and DNA cleavage of VP-16 was significantly reduced in both 

cell lines. This would suggest an alternate mechanism for doxorubicin, not related to topo II, 

must be operative and most likely a free radical-dependent mechanism for tumor cell kill by 

doxorubicin.

ETOPOSIDE (VP-16,213)

VP-16 and its congener, VM-26 (Figure 3), semisynthetic derivatives of epipodophyllotoxin, 

are active against a wide variety of tumors, most significantly against lymphoma and 

testicular tumors [62]. While the molecular mechanism of the drug action is not clear, VP-16 

induces topo II-mediated single- and double-stranded DNA breaks in tumor cells [4, 5, 63]. 

It is believed that this VP-16-induced DNA damage ultimately causes cell death. Unlike 

doxorubicin, VP-16 does not appear to intercalate into DNA. Like doxorubicin, however, 

VP-16 and VM-26 undergo facile metabolism by a number of enzymatic systems in vitro 
and in vivo to form reactive products. We were one of the first groups to show that VP-16 is 

o-demethylated by cytochrome P450, horseradish peroxidase and tyrosinase to o-dihydroxy 

VP-16 (Figure 3) and to highly reactive o-quinone-VP-16 [64–67]. A number of other 

laboratories have also confirmed these observations [68, 69]. Formation of these 

intermediates required one-electron oxidation of the 4-hydroxyl group of VP-16 to form the 

phenoxyl radical of VP-16, which can be easily detected by EPR [14]. Biologically, it is 
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significant to note that the formation of these metabolites required the presence of the 4’-OH 

in VP-16, which is also required for the antitumor activity of VP-16, as the o-methylated 

VP-16 is inactive and does not interact with topo II to induce DNA cleavage [70].

Studies from our laboratory have shown that the DHVP and the VP-16-Q derivatives are less 

cytotoxic to MCF-7 cells and induce less topo II-mediated DNA cleavage than VP-16 [70]. 

However, when formed in cells or in vivo, the antitumor activities of these metabolites are 

not known at this time, and the difference observed in MCF-7 cells may simply be due to 

their high polarity compared to VP-16. Thus, it is possible that these derivatives are not 

taken up equally by cells or may not reach their critical cellular target(s). In cell-free 

systems, we have shown that DHVP rapidly chelates both copper and iron ions and, in the 

presence of H2O2, generates reactive hydroxyl radicals [71, 72]. Hydroxyl radicals formed 

from DHVP-metal complexes induced significant damage in DNA. Additionally, the DHVP 

derivative undergoes autoxidation in vitro to produce H2O2 and hydroxyl radical. The rate of 

hydroxyl radical formation was significantly enhanced in the presence of metal ions or at 

high pH [14]. In contrast to DHVP, the reactive o-quinone-VP-16 rapidly bound to cellular 

proteins and DNA [65, 66] and formed glutathione conjugates in cells and in vivo [73]. It 

has been shown that the o-quinone metabolite also alkylates topo II and inhibits its functions 

[74–76]. The role of VP-16-Q in drug toxicity is the subject of intense research [74, 76]. It 

has been suggested that secondary leukemia associated with VP-16 treatment is due to 

metabolism of VP-16 to the DHVP and VP-16-Q metabolites by cytochrome P-450 

CYP3A4, as there was a strong correlation with patients with a polymorphism in the 

5’promoter region of CYP3A gene (CYP3A4-W) and secondary leukemia [77, 78]. 

However, in another study of patients with treatment-related acute leukemia, Reling et al. 

[79] found no significant association with VP-16 metabolisms.

VP-16 induces oxidation of glutathione to GSSG both in vitro and in vivo. It has been shown 

that this oxidation results from the reaction of the phenoxy radical of VP-16 with 

glutathione, forming glutathionyl radical [73]. There are a number of important implications 

for these observations: (a) cells become vulnerable to oxidative stress due to increased 

depletion of GSH, which could result in lipid peroxidation and/or oxidation of cellular 

enzymes critical for cell survival, and (b) lipid peroxidation products (e.g., aldehydes) may 

alkylate DNA, causing inhibition of DNA synthesis and ultimately cell death. While VP-16 

is an inhibitor of lipid peroxidation [80], the DHVP metabolite could induce lipid 

peroxidation in the presence of free copper or iron ions. This oxidative stress/glutathione 

depletion caused by the VP-16 radical or VP-16 metabolites may be the basis for the 

synergistic interactions observed with VP-16 and ionizing radiation or photosensitizers in 

tumor cells and in the clinic [81, 82].

Metabolism of VP-16 to its dihydroxy and o-quinone derivatives clearly has significant 

implications for VP-16-dependent toxicity and the induction of secondary leukemia in 

patients undergoing VP-16-based chemotherapy. However, the role of these metabolites in 

the cytotoxicity of VP-16 is not understood. While it is true that the metabolites are also 

capable of forming a topo II-DNA-drug complex, the decreased antitumor activities in tumor 

cells remains poorly resolved. The VP-16-Q, in vitro, is active against topo II, induces 

significant DNA cleavage, and binds irreversibly to topo II; it is thus anticipated to be as 
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active as the parent drug. Due to poor uptake and non-specific binding, the antitumor 

activities of these metabolites cannot be accurately determined in tumor cells. However, it is 

very reasonable to speculate that if these metabolites are formed near the target, e.g., DNA 

in nuclei, they may be more active than VP-16. Since it is possible to modulate the 

metabolic profile of CYP3A-mediated metabolism of VP-16 by using specific inhibitor or 

stimulators, the antitumor activity and/or toxicity of VP-16 can be studied and the roles of 

metabolic activation in VP-16 cytotoxicity can be further defined.

CONCLUSIONS

It is quite clear from various published data that the mechanisms of cytotoxicity of both 

doxorubicin and VP-16 in tumor cells and in vivo are not clear, but certain conclusions can 

be made. Doxorubicin is indeed metabolized by various enzymes in tumors and in vivo, 

resulting in the formation of the reactive semiquinone radical. Under hypoxic or reduced O2 

concentrations, the semiquinone radical is stable and then decomposes to form very reactive 

species that covalently bind to DNA and proteins. Irrespective of which reactive species are 

formed (a quinone methide or C7 free radical or species derived from formaldehyde), 

covalent binding and cross-linking with cellular DNA will cause a myriad of unwanted 

biological stresses in tumor cells, ultimately causing cell death. This mechanism of tumor 

cell killing is independent of O2, and as most tumor cells (except for hematologically 

derived tumors and lung tumors) are hypoxic in nature, the possibility of formation of the 

covalent binding species is significantly higher. Because doxorubicin accumulates in cellular 

nuclei and mitochondria due to its equilibrium with doxorubicin bound to DNA, the 

concentrations of free doxorubicin will be highest in nuclei and in mitochondria, and it will 

thus be more likely to undergo reductive activation in these cellular compartments. However, 

bioactivation of the drug would be rate limiting based on the presence or absence of the 

activating enzymes. Similar situations are also feasible under aerobic conditions; however, 

the formation of covalently binding species would be significantly limited due to competing 

reactions of the semiquinone radicals with O2. At high O2 concentrations, a pathway 

involving oxygen-derived free radical formation (O2
.- and .OH) would dominate. However, 

formaldehyde- or alkenal-derived covalent binding of doxorubicin with DNA is also 

possible. While DNA-bound doxorubicin is not bioactivated in vitro, free radical species are 

detected in tumor cells. It should be emphasized that incubations for the detection of free 

radicals using EPR methods are carried out at micromolar concentrations for a very brief 

drug exposure time, while the cytotoxicity studies in tumor cells are carried out for days. It 

is not known at this time whether free radicals are continuously generated in tumor cells at 

low concentrations of doxorubicin, causing tumor cell death.

Thus, cellular bioactivation is an important mechanism for tumor cell killing by doxorubicin 

and certainly would depend upon cell type and O2 concentrations. It is suggested that 

because tumor cell death is caused by doxorubicin at low concentrations, other mechanisms 

do not contribute significantly; thus, only one mechanism, the topo II-based mechanism, is 

important for doxorubicin. Furthermore, because oxygen-derived free radical formation 

requires the presence of O2, and in highly hypoxic cells there is very little O2, it is concluded 

that these free radicals are not formed. It should be made very clear here that under highly 

hypoxic conditions, there is little to no tumor cell killing by most drugs, including 
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doxorubicin, irrespective of mechanism. Furthermore, when cells are not dividing, the 

concentration of topo II is low as topo II is completely cell-cycle dependent, and at low topo 

II protein levels, doxorubicin will become inactive or tumors will show resistance to it.

The mechanism of tumor cell killing by VP-16 is certainly not as complicated as that of 

doxorubicin. Unless clear evidence is presented in the future in regard to activation of VP-16 

to achieve cell death, the main mechanism remains one that is dependent upon its 

interactions with topo II and inducing DNA damage. While bioactivation of VP-16 to its 

dihydroxy and o-quinone derivatives is important, they are also topo II-active and quite 

possibly contribute to tumor cell killing. With recent observations, it appears that the 

bioactivation of VP-16 to the o-quinone derivative may contribute towards the known 

VP-16-induced secondary leukemia formation in patients undergoing VP-16-based 

chemotherapy.
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Figure 1: 
Proposed formation of alkylating species following enzymatic activation of doxorubicin. 

Also shown here is the intermediacy of formaldehyde in covalent binding of doxorubicin to 

DNA and possible redox-cycling of the mono-adduct and generation of hydroxyl radical at 

the DNA binding site.
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Figure 2: 
Formation of reactive oxygen species following reductive activation of doxorubicin and their 

implications in DNA damage, lipid peroxidation and protein oxidation.
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Figure 3: 
One-electron oxidation of VP-16 and formation of VP-16 phenoxy radical, o-quinone, and 

dihydroxy-VP-16. The reactive o-quinone derivative alkylates DNA and proteins, including 

topoisomerase II. The dihydroxy-VP-16 chelates metal ions and generates reactive oxygen 

species which induce DNA damage and protein oxidation [71, 72].
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