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Abstract

Hydrazine derivatives are environmental and food pollutants but are also important because of 

their use in medicine for the treatment of tuberculosis and cancer. However, hydrazines also pose 

significant health risks to humans as they are mutagenic and carcinogenic. This review examines 

various metabolic pathways (enzymatic and non-enzymatic) of hydrazines for the formation of 

reactive species that bind to cellular macromolecules and lead to cellular dysfunction. It is 

believed that this biotransformation is responsible for the pharmacology and pathophysiology of 

hydrazine derivatives.

INTRODUCTION

Many chemicals, either man-made or found in nature, undergo metabolic activation to exert 

their biological effects. Some of these effects are considered desirable because they are 

curative, e.g., affect a disease state and lead to a cure. However, there are many chemicals 

that induce significant undesirable effects (or toxicity) as a result of this metabolic 

biotransformation, resulting in severe organ toxicity, tumor formation, and in some cases, 

death [1]. Hydrazine and its derivatives, which are used as high energy rocket fuel, induce a 

variety of toxic insults, including hypoglycemia, disorders of the CNS, induction of systemic 

lupus erythematosus, and cancer [2–5]. Hydrazines are also found in tobacco and in edible 

mushrooms. Isoniazid and iproniazid, monoamine oxidase inhibitors, are in use for the 

treatment of tuberculosis and, until recently, as an antidepressant, respectively [6, 7]. 

Hydralazine is a potent arterial vasodilator and plays an important role in the management of 

hypertension and congestive heart failure [8]. Hydralazine is toxic and induces DNA 

damage, causes severe forms of systemic lupus erythematosus and has been shown to 

increase the incidence of lung tumors in mice [5, 9, 10]. Procarbazine is a chemotherapeutic 

agent used in the treatment of Hodgkin’s disease, malignant melanoma and brain tumors in 

children [11].

Because of the significance of hydrazine derivatives as environmental pollutants and food 

contaminants as well as their utility in medicine, significant research has been carried out to 

elucidate the mechanisms of toxicity of these compounds [2–13]. It has been suggested that 

metabolic activation of hydrazines leads to their toxicity, and various non-enzymatic and 
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enzymatic systems have been identified [6, 7, 14–17]. Hydrazines undergo acetylation by N-

acetyl transferase, in which an acetyl group is transferred from acetyl coenzyme A; the rate 

of acetylation of hydrazines can be fast or slow depending upon the concentrations of the 

enzyme and an individual’s phenotype [18]. People who are fast acetylators rapidly convert 

hydrazine to its acetyl form, thus either increasing or decreasing toxicity depending upon 

further metabolism of acetylhydrazine to reactive species [6, 7]. Furthermore, cytochrome 

P450 isozymes (1A1, 1A2, 2B1 and 2E2) have been shown to oxidize hydrazines to toxic 

intermediates that bind to cellular macromolecules [6, 7, 19]. This review discusses the 

various aspects of metabolic activations of certain hydrazines, formation of reactive 

intermediates (carbocations and free radicals), and their roles in in vivo toxicity.

HYDRALAZINE:

Hydralazine, a vasodilator, is one of the most interesting hydrazines in current use in 

medicine. It is an important drug for the management of high blood pressure and recently 

has garnered a significant amount of interest for the treatment of cancers, as hydralazine 

inhibits DNA methyltransferase 1 by inhibiting transfer of a methyl group to DNA in several 

cancer-silencing/tumor suppressor genes [9, 20, 21]. Hydralazine has also been found to 

inhibit iron-containing prolyl hydroxylase enzymes, which are important for the induction of 

hypoxia-induced factor (HIFα) and vascular endothelial growth factor [22]. HIFα is also a 

critical target in cancer chemotherapy as it is believed to be involved in tumor progression 

[22]. However, the use of hydralazine in the clinic has been implicated in the development of 

severe forms of systemic lupus erythematosus in patients who have a slow acetylator-

phenotype. Furthermore, hydralazine causes DNA damage, and has been reported to induce 

some incidence of lung tumors in mice [5, 8].

Hydralazine undergoes one-electron oxidation both by metal ions (Cu2+ and Fe3+ ions) and 

enzymatically (horseradish peroxidase and prostaglandin synthase) to form hydralazyl 

radical [14–16] which then further decomposes to form various products or reacts with 

molecular oxygen to generate reactive oxygen-centered radicals (Figure- 1). Hydralazine 

also has been shown to form DNA radicals following its metabolism in the presence of metal 

ions [23, 24]. It has been reported by various investigators that oxygen-centered radicals 

cause DNA strand cleavage and induce oxidative stress [23–29]. Hydralazine has been 

shown to be a direct-acting mutagen, and the mutagenicity was not increased by inclusions 

of microsomes or S9-fractions, indicating that metabolic activation was not required for its 

mutagenicity [8, 30–31]. Direct genotoxicity of hydralazine has also been confirmed in some 

bacterial systems [30, 31]. However, it is important to point out that if precautions to remove 

contaminating Fe and Cu ions are not taken, metabolic activation of hydralazine to reactive 

species may have occurred.

The etiology and the mechanisms of hydralazine-induced lupus formation are of significant 

interest. While various mechanisms have been proposed, they remain poorly understood. It 

has been suggested that the metabolism of hydralazine may be involved in the induction of 

lupus as the slow-acetylator phenotype is more at risk than the fast-acetylator [32, 33]. It is 

reasonable, then, that more hydralazine is available for metabolism in slow acetylators. 

Reactive species formed from hydralazine that covalently bind to protein have been detected 
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during microsomal metabolism of hydralazine [33]. Formation of phthalazinone (Figure-1) 

from hydralazine has been implicated in the induction of lupus, and it has been suggested 

that metabolic differences between slow and fast acetylators may be responsible for lupus 

formation [33]. In an in vitro study, Dubroff and Reid [34] have shown that hydralazine 

binds to thymidine and deoxycytidine, forming various modified nucleosides. It is suggested 

that these modified bases are antigenic and are responsible for lupus [34]. Hydralazine has 

been shown to intercalate into DNA [35, 36] and stabilize triplex-DNA in the presence of 

Mg2+ and sperimidine. Interestingly, this triplex-DNA elicited an immunological response, 

and patients contained antibodies that reacted with this unusual form of DNA [36]. 

Therefore, it is suggested that formation of antibodies to such triplex DNA may, in part, be 

responsible for lupus formation. Hydralazine inhibits DNA methyltransferase I, and it has 

been postulated that this inhibition of DNA methylation leads to activation of certain gene(s) 

that induce a lupus type syndrome. However, the identity of the gene(s) is not known at this 

time [37].

ISONIAZID:

Tuberculosis is a major health problem, especially in poor and underdeveloped countries, 

and if untreated, tuberculosis remains an important cause of death. Isoniazid is one of the 

most widely used first-line anti-tuberculosis drugs available today. Unfortunately, isoniazid 

is also toxic, causing severe hepatotoxicity, and may lead to liver cancer. Metabolism of 

isoniazid (Figure 2) has been extensively studied, and covalent binding of reactive 

intermediates to cellular macromolecules has been implicated in its hepatotoxicity [6, 7]. 

Isoniazid is acetylated in vivo to acetylisoniazid, which is rapidly hydrolyzed to 

acetylhydrazine. Further metabolism of acetylhydrazine by cytochrome P450 isozymes leads 

to the formation of reactive acetyl carbocation (CH3CO+), which binds to liver 

macromolecules [6, 7]. It has been shown that the severity of hepatotoxicity parallels the 

covalent binding.

Free radical metabolism, catalyzed by metal ions or myeloperoxidase, also generates 

reactive intermediates from isoniazid [15, 17]. In this scheme, one-electron oxidation of 

isoniazid leads to the formation of isoniazidyl radical which can further decompose to form 

both pyridyl-CO and pyridyl radicals (Figure 2). These radical intermediates are reactive and 

can readily alkylate proteins and/or initiate lipid peroxidation by the abstraction of a 

bisallylic hydrogen atom from an unsaturated fatty acid. Furthermore, when acetylhydrazine 

is formed from the hydrolysis of acetylisoniazid, one-electron oxidation of acetylhydrazine 

would lead to the generation of the acetyl radical, which has been implicated in covalent 

binding to cellular macromolecules [6, 7]. Free radical metabolism would occur irrespective 

of the acetylation status of isoniazid. With slow acetylation, isoniazid would be directly 

converted to isoniazidyl radical, leading to the formation of reactive species, pyridyl-CO and 

pyridyl radicals. In contrast, with fast acetylation of isoniazid, acetylhydrazine would be 

further metabolized either via the free radical pathway or via P450 systems, resulting in 

reactive intermediates in a tissue/organ specific manner. Free radical pathways would be the 

main metabolic activation mechanism of isoniazid in tissues/organs rich in peroxidases, and 

thus, may have implications for the tissue toxicity of isoniazid.
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IPRONIAZID:

Iproniazid, a monoamine oxidase inhibitor, was clinically used as an antidepressant. 

However, it has been withdrawn from clinical use due to its severe hepatotoxicity in humans. 

Iproniazid is readily hydrolyzed in vivo to isopropylhydrazine (Figure 2), and it has been 

reported that isopropylhydrazine is rapidly metabolized by cytochrome P450 with the 

formation of reactive intermediates that covalently bind to proteins [6, 7]. Formation of 

isopropyl radical has been detected from iproniazid [15], and isopropylhydrazine and 

isopropyl radical have been identified as the reactive species that covalently bind to cellular 

proteins [6, 7, 15]. Isopropylhydrazine has also been found to undergo acetylation in vivo 
and to be further metabolized, resulting in alkylation of proteins [5, 6, 38] (Figure 2).

As discussed for isoniazid, the hydrolysis of iproniazid is not a prerequisite for the formation 

of isopropyl radical. In the presence of peroxidases and the prostaglandin synthase system, 

iproniazid is rapidly oxidized to a nitrogen-centered radical (Figure 2), which has been 

reported to undergo a series of rearrangements to form the isopropyl radical. It is also 

possible that once formed, acetylisopropylhydrazine could be readily oxidized by 

peroxidases and prostaglandin synthase to form the carbon-centered radicals CH3CO and 

isopropyl, both of which could alkylate proteins and lead to toxicity. Thus, in addition to 

organs and tissues where cytochrome P450-based metabolism of iproniazid is common, 

organs and tissues rich in peroxidases, e.g., the lung, would be also susceptible to iproniazid 

toxicity.

PROCARBAZINE:

Procarbazine is an anticancer drug used for the treatment of Hodgkin’s lymphoma, 

malignant melanoma and brain tumors in children [39, 40]. Procarbazine has been shown to 

be mutagenic in both bacterial and mammalian systems and has been reported to be 

carcinogenic in mice, rats and monkeys [41, 42]. Procarbazine is a pro-drug and, therefore, 

requires extensive metabolism for its activity. The metabolism of procarbazine is complex; it 

has been shown that the methyl group of procarbazine is essential for its antitumor, 

mutagenic and carcinogenic activities (Figure 3). Procarbazine is rapidly metabolized by 

cytochrome P450 and monoamine oxidase to its azo derivative and, subsequently, to the 

azoxy derivative [43, 44] (Figure 3). It has been postulated that the azoxy derivative of 

procarbazine forms the methyl carbonium ion, which methylates DNA and proteins, 

inhibiting DNA and protein synthesis for its biological activities [45].

Procarbazine is also rapidly oxidized by microsomal P450 systems and peroxidases to free 

radical species [46]. Using spin-trapping techniques, the formation of various free radical 

intermediates has been confirmed [46]. The obligatory intermediate for the formation of 

active methyl and benzyl radicals has been shown to be the formation of a nitrogen-centered 

radical following one-electron oxidation of procarbazine as shown in Figure 3. The nitrogen-

centered radical is postulated to undergo a series of rearrangements to form carbon-centered 

radicals and nitrogen. The formation of nitrogen has been confirmed during the oxidation of 

procarbazine.
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MISCELLENOUS HYDRAZINES:

Substituted hydrazines are present in the edible mushroom Araricus bisporus. Degradation 

of Agaritine, N2-[L-(+)-glutamyl]-4- (hydroxymethyl) phenyl hydrazine, the parent 

hydrazine found in this mushroom, results in the formation of various other substituted 

hydrazines, e.g., N2-carboxyphenyl hydrazine and p-hydroxymethylphenyl hydrazine 

derivatives, which are carcinogenic and lead to the formation of tumors in mice [47–50]. A 

number of studies have clearly shown that these mono-substituted hydrazines undergo 

extensive metabolism, catalyzed by cytochrome P450, peroxidases and oxyhemoglobin, to 

free radical species, resulting in covalent binding with proteins and DNA [51–53]. However, 

there remains some debate in the literature, as substituted hydrazines also form 

alkyldiazonium ions (Figure 3), which are known to directly alkylate cellular 

macromolecules and thus have been implicated in the mutagenic and carcinogenic activity of 

these hydrazines [47–50]. Studies carried out in vitro have also shown that both free radical 

intermediates and diazonium ions induce DNA strand breaks and covalently alkylate adenine 

and guanine bases [49, 50]. One of the most interesting conclusions from such studies has 

been the implication of the formation of both hydroxyl and aryl radicals from the diazonium 

ions [50]. While the role of the diazonium ions in cytotoxicity of hydrazine derivatives in not 

known, it is of interest to note that the formation of aryl radicals from substituted hydrazines 

has been shown to correlate with their cytotoxicity [54]. This would suggest that, 

irrespective of the metabolic pathway (cytochrome P450 or peroxidases), free radicals would 

be generated from the activation of hydrazines, as both pathways would produce free radical 

intermediates, resulting in hydrazine-induced toxicity.

CONCLUSIONS:

It is clear that one of the main metabolic pathways for hydrazine derivatives leads to the 

formation of various free radical species in vitro and in vivo. As discussed with individual 

hydrazines, the metabolism is catalyzed by cytochrome P450, monoamine oxidase and 

various peroxidases, including the prostaglandin/AA system. Oxyhemoglobin [55, 56], 

neutrophils [57] and trace metal ions, e.g., Fe and Cu, are also known to activate hydrazines 

to free radical species and have been shown to induce DNA damage but there remains 

uncertainty about whether this oxidation of hydrazines contributes to hydrazine toxicity in 

humans. This concern is primarily based on the fact that metal ions such as iron and copper 

are not free in vivo. It should be pointed out that bound iron in hemoglobin is a well-known 

oxidant for hydrazines, e.g., phenyl hydrazine and hydralazine, and induces formation of 

reactive intermediates which cause DNA damage. Copper is an essential trace element that is 

widely distributed throughout the body and forms the essential redox–active reaction center 

in a variety of metalloenzymes. Copper concentration is significantly altered in tumors, and 

that serum concentrations are correlated with tumor incidence, progression and recurrence in 

a number of human tumors. Thus, the oxidative metabolism of hydrazines by copper and 

iron and consequent formation of reactive species may contribute significantly to the 

pathophysiology of hydrazines in humans.

It is now well documented that free radical species are very reactive and bind irreversibly to 

cellular macromolecules, causing inhibition of cellular functions and inducing profound 
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cellular damage. Primary free radicals, e.g., alkyl radicals, react with molecular O2, leading 

to the formation of reactive oxygen-derived species, superoxide anion radical (O2
.-), 

hydrogen peroxide (H2O2) and, ultimately, to the highly reactive hydroxyl radical (.OH). 

Alternatively, primary radicals can abstract hydrogen atoms from membrane lipids, inducing 

peroxidation and decomposition of lipid membranes and compromising cellular functions. 

Formation of reactive oxygen species has been shown to induce “oxidative stress” where the 

production of oxidant overwhelms antioxidant defense mechanisms. Oxidative stress is 

known to deplete reduced glutathione in cells, compromising cellular integrity [58, 59]. 

Hydrazine derivatives have been shown to deplete glutathione and cause oxidative stress 

[28]. Thus, formation of free radical species during the biotransformation of hydrazines may 

be very significant in the toxicity and pathophysiology of hydrazines. The formation of 

oxygen radicals and metal/peroxo species from hydralazine has been implicated in DNA 

strand scission, and it has been suggested that these reactive species may also form oxidation 

products of guanosine bases in DNA [24, 60]. The formation of 8-oxo-7,8-dihydroguanine 

has been shown to alter binding of methyltransferase 1 to DNA, resulting in the inhibition of 

this enzyme [61–63]. At this time, however, the role of free radical metabolism of 

hydralazine in the induction of a lupus-type syndrome in patients is not known.

It is noteworthy that Rehse and Shahrouri (64) have reported that certain hydrazine 

derivatives generate nitric oxide (.NO) in the presence of hydrogen peroxide, and this 

formation of nitric oxide parallels their platelet aggregation and antithrombotic effects. It is 

known that nitric oxide formation leads to generation of other reactive species, e.g., 

peroxynitrite and NO2 radicals, which induce DNA damage and cause nitrosylation of 

proteins and enzymes, resulting in compromised cellular functions. This pathway, if 

confirmed with hydrazine derivatives in vivo, would also then contribute to the known 

toxicity of hydrazines in vivo. However, a cautionary note: hydrazines are extremely 

reducing, and any nitric oxide formed might be rapidly reduced by excess hydrazines.

The contributions of various metabolic pathways to hydrazine toxicity are difficult to 

ascertain at this time in humans. It should be pointed out that the metabolism of hydrazines 

by cytochrome P450 in the liver would contribute significantly to the known hepatotoxicity 

of hydrazines. However, this metabolic pathway for hydrazine is also known to lead to 

binding of reactive species to the active site of cytochrome p450 isozymes, leading to their 

inactivation (suicidal inactivation) and inhibiting further metabolism. Under this scenario, 

P450-based metabolism of other drugs which require activation for their biological activity 

would also be severely compromised and could render them ineffective. This could pose a 

significant health risk to humans where a drug is administered in combination with 

hydrazines. Peroxidative metabolism would be similar to the P450-based metabolism of 

hydrazines in that reactive intermediates formed during metabolism would irreversibly bind 

to peroxidases, leading to inactivation of the enzymes. Nevertheless, metabolic activation of 

hydrazines and subsequent binding/damage to cellular biomolecules is clearly the main 

mechanism for hydrazine toxicity in vivo.
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Figure 1: 
Structure of hydralazine and formation of various reactive metabolites, catalyzed either by 

metal ions or enzymes.
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Figure 2: 
Metabolic activation of isoniazid (R = H) and iproniazid (R = - CH(CH3)2) to various 

reactive species.
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Figure 3: 
Metabolic activation of procarbazine to reactive intermediates
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