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Abstract

Regulatory variants are often context-specific, modulating gene expression in a subset of possible 

cellular states. Although these genetic effects can play important roles in disease, the molecular 

mechanisms underlying context-specificity are poorly understood. Here, we identify shared 

quantitative trait loci (QTLs) for chromatin accessibility and gene expression in human 

macrophages exposed to IFNγ, Salmonella and IFNγ + Salmonella. We observe that ~60% of 

stimulus-specific eQTLs with a detectable effect on chromatin alter chromatin accessibility in 

naive cells, suggesting they perturb enhancer priming. We show that such variants probably 

influence the binding of cell type specific transcription factors (TFs), such as PU.1, which can then 

indirectly alter the binding of stimulus-specific TFs, such as NF-κB or STAT2. Thus, although 

chromatin accessibility assays are powerful for fine mapping causal regulatory variants, detecting 

their downstream impact on gene expression will be challenging, requiring profiling of large 

numbers of stimulated cellular states and timepoints.
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Introduction

Genetic differences between individuals can profoundly alter how their immune cells 

respond to environmental stimuli1. At the molecular level, these differences manifest as 

expression quantitative trait loci (eQTLs) that alter the magnitude of gene expression change 

after stimulation (response eQTLs)2–7. Although response eQTLs have been implicated in 

modulating risk for complex immune-mediated disorders8,9, the molecular mechanisms that 

give rise to these context specific effects are poorly understood. The majority of eQTLs also 

alter chromatin accessibility, presumably reflecting disruption of transcription factor (TF) 

binding10. Because cellular response to external stimuli is regulated by stimulus-specific 

transcription factors (TFs), response eQTLs might directly disrupt their binding (Fig. 1a). In 

support of this model, a number of studies have observed that response eQTLs are enriched 

at the binding sites of stimulation-specific TFs such as NF-κB and STAT25–7. However, a 

single stimulus or a developmental cue can upregulate alternate sets of genes in different cell 

types, even when the activated signalling pathways and TFs remain the same11. To explain 

these observations, multiple studies have proposed a hierarchical enhancer activation 

model11–14, under which cell type specific TFs bind to a subset of enhancers without a 

direct effect on target gene expression. This enhancer ‘priming’ can facilitate their 

subsequent activation by signal specific TFs, producing a cell type specific response (Fig. 

1b). Thus, genetic variants could modulate stimulus specific effects on gene expression 

indirectly, by altering the binding of a cell type specific TF, for example PU.1 in 

macrophages, that regulate chromatin accessibility (Fig. 1b). However, the genome-wide 

prevalence of enhancer priming is currently unclear because directed genome editing studies 

have been limited to handful of loci15,16. Previous studies have highlighted that profiling 

chromatin accessibility is a good proxy for measuring TF binding without necessarily 

identifying the underlying TFs involved10,17,18. Furthermore, TF binding can be predicted 

with high accuracy from chromatin accessibility data19,20. Thus, shared genetic 

associations at chromatin and gene expression level provide a powerful alternative to probe 

the relationships between enhancer accessibility, TF binding and gene transcription.

Results

Genetics of gene expression and chromatin accessibility

We focussed on enhancer priming in the context of human macrophage immune response. 

To ensure sufficient numbers of cells, we differentiated macrophages from a panel of 123 

human induced pluripotent cell lines (iPSCs) obtained from the HipSci project21,22. We 

profiled gene expression (RNA-seq) and chromatin accessibility (ATAC-seq23) in a subset 

of 86 successfully differentiated lines (Supplementary Fig. 1, Supplementary Table 1) in 

four experimental conditions: naive (N), 18 hours IFNγ stimulation (I), 5 hours Salmonella 
enterica serovar Typhimurium (Salmonella) infection (S), and IFNγ stimulation followed by 

Salmonella infection (I+S) (Fig. 1c). We chose these stimuli because they activate distinct, 

well characterised signalling pathways (Fig. 1d, Supplementary Fig. 2) and pre-stimulating 

macrophages with IFNγ prior to bacterial infection is known to lead to enhanced microbial 

killing and stronger activation of the inflammatory response24,25.
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We identified common genetic variants that were associated with either gene expression 

(eQTLs) or chromatin accessibility (caQTLs). Using an allele-specific method implemented 

in RASQUAL26, we detected at least one QTL for up to 3,431 genes and 20,788 chromatin 

regions (caQTL regions) in each condition (10% FDR) (Supplementary Fig. 3, 

Supplementary Fig. 4), 50-75% of which were shared between conditions (Supplementary 

Fig. 3). Consistent with a previous report10, we found that caQTLs were associated with 

allele-specific TF binding (Supplementary Fig. 5). Furthermore, only 8% of the caQTL 

regions overlapped annotated promoters and 42% overlapped regions marked with H3K27ac 

histone modifications25 in macrophages (Supplementary Note). Next, using a statistical 

interaction test followed by filtering on effect size, we identified 387 response eQTLs and 

2247 response caQTLs with a small or undetectable effect (fold change < 1.5) in the naive 

state that increased at least 1.5 fold after stimulation (see Methods). The use of an 

interaction test meant that our analysis should be robust to false positive response QTLs that 

could arise due to, for example, weak, undetected QTLs in the naive cell state. We verified 

this by down-sampling from a larger Fairfax et al3 monocyte response eQTL dataset 

(Supplementary Tables 2 and 3, Supplementary Fig. 6). These genetic effects displayed a 

variety of activity patterns (Fig. 2a, Supplementary Fig. 7a). Strikingly, 18% of the response 

eQTLs appeared only after the cells were exposed to both stimuli (cluster 1), exceeding the 

number that appeared after IFNγ stimulation alone (clusters 5 and 6). Response caQTL 

regions harboured closed chromatin in the naive cells (median transcripts per million (TPM) 

= 0.49) and became 3.8-fold more accessible only after the relevant stimulus 

(Supplementary Fig. 7b). Furthermore, response caQTLs were enriched for disrupting 

stimulus-specific TF motifs (Supplementary Fig. 7c), suggesting that they are largely driven 

by TFs that bind to DNA only after stimulation.

Enhancer priming in macrophage immune response

To quantify the extent of enhancer priming in macrophage immune response, we next 

focussed on how response eQTLs manifest on the chromatin level. We grouped response 

eQTLs (Fig. 2a) by the condition in which they had the largest effect size (I, S or I+S). We 

then used linkage disequilibrium (LD) (R2 > 0.8) between the lead variants to identify 145 

caQTL-eQTL pairs that were likely to be driven by the same causal variant (Online 

Methods). For example, we identified a QTL upstream of GP1BA that had no effect in naive 

cells, but became simultaneously associated with chromatin accessibility and gene 

expression after IFNγ + Salmonella stimulation (Fig. 2d). The lead caQTL variant 

(rs4486968) was predicted to disrupt NF-κB binding motif (Supplementary Fig. 8), 

illustrating how a caQTL can directly affect stimulus-specific TF binding and gene 

expression. In contrast, a genetic variant in an intron of NXPH2 modulated the accessibility 

of a regulatory element both in naive and stimulated cells, but only became associated with 

gene expression after IFNγ stimulation (Fig. 2e). Genome-wide, we found that for 

approximately half of the response eQTLs with a linked caQTL, the caQTL was present in 

naive cells prior to stimulation (caQTL fold change > 1.5), suggesting that many response 

eQTLs regulate gene expression indirectly by first modulating the extent of enhancer 

priming in naive cells (Fig. 2b). One potential issue with our analysis is that using LD to 

identify eQTL-caQTL pairs will sometimes lead to false positives where two independent 

causal variants, one altering gene expression, the other chromatin accessibility, that are in 
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strong LD with one another are mistaken for a single shared causal variant. We therefore 

performed a reverse analysis where we asked how often response caQTLs were linked to 

eQTLs that were present in the naive state, reasoning that these are likely to be false 

positives. Using the same fold change threshold as above, we estimated our false positive 

rate to be 15% (Fig. 2c). Consistent with this estimate, we found that 117/145 caQTLs-

eQTL pairs (81%) showed concordant direction of effect in the stimulated cells (Fig. 2b). 

Furthermore, the difference in the number of eQTLs and caQTLs did not seem to bias our 

results (Supplementary Fig. 9). With a more stringent fold change threshold of two the false 

positive rate decreased further to 4% (Supplementary Fig. 9) while concordance in effect 

size direction increased to 90%. Finally, we performed the same analysis on a set of 26 

caQTL-eQTL pairs that colocalised with each other and were able to confirm that most 

response eQTLs manifested as caQTLs in unstimulated cells (Supplementary Fig. 10).

Multiple TFs such as PU.1, AP-1 and CEBPα/β have been implicated in regulating enhancer 

priming in macrophages11–13. We speculated that response eQTLs that alter enhancer 

priming should be enriched for disrupting the motifs of those TFs. To test this, we focussed 

on the 145 eQTL-caQTL pairs (137 unique caQTLs) identified above (Fig. 2b). We found 

that 9/78 caQTLs present in the naive cells disrupted PU.1 motifs compared to none of the 

59 caQTLs that appeared together with the response eQTL (Fisher’s exact test, p = 0.01). 

For example, the rs7594476 variant in the NXPH2 enhancer disrupted PU.1 binding in a 

direction consistent with the caQTL effect (Fig. 3a). Although the PU.1 enrichment is only 

nominally significant and does not survive multiple testing correction for other TFs we 

tested, our observation is consistent with the established role of PU.1 in defining the 

accessible chromatin landscape in macrophages that subsequently directs stimulation-

specific TF binding11–13.

Genetic effects on multiple chromatin regions

Recent evidence suggests that single genetic variants can modulate the activity of multiple 

regulatory elements within topologically associated domains (TADs)26–29. One plausible 

mechanism for these broad associations is that a single causal variant may directly regulate 

the accessibility of a “master” region, which subsequently influences neighbouring 

“dependent” regions26. We used caQTL summary statistics to heuristically identify likely 

master and dependent regions, assuming that the causal variant should reside within the 

master region itself, and this affects accessibility in dependent regions (Fig. 3b) (see 

Methods). We found a striking example of such a relationship at the NXPH2 locus, where a 

putative causal variant in the master region was also associated with the accessibility of 

neighbouring dependent region after IFNγ stimulation (Fig. 3b). Using this approach, we 

identified 2,934 dependent regions that belonged to 1,921 unique master regions (Fig. 3b). 

Master-dependent region pairs were enriched in TADs (odds ratio 1.5, Fisher’s exact test p = 

1.26x10-6) (Supplementary Note) and in 95% of the cases, the caQTL had the same 

direction of effect on master and dependent regions. While 77% of the master regions had a 

single dependent region only a few kb away (Supplementary Fig. 11), we found many loci 

where master peaks were associated with multiple regions of open chromatin (Fig. 3c). One 

of the largest effect was observed in the NXPH2 locus introduced above, where we detected 

18 dependent regions spanning 100 kilobases of DNA (Fig. 3c), six of which appeared only 
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after IFNγ stimulation (Fig. 3d,f). Notably, the appearance of condition-specific dependent 

regions correlated with the caQTL becoming a response eQTL for both NXPH2 and SPOPL 
(Fig. 3e), suggesting that some of them might be required for gene activation. Using a linear 

model followed by strict filtering (see Online Methods), we found a total of 64 condition-

specific dependent regions genome-wide, two of which are highlighted in Supplementary 

Fig. 12.

Colocalisation with disease associations

Because they can be engineered with high efficiency, iPSC-derived cells are promising 

cellular models of disease. Similarly to previous studies7, we found that macrophage eQTLs 

and caQTLs were enriched for GWAS hits of multiple immune-mediated disorders 

(Supplementary Fig. 13, Supplementary Table 4). However, observing a genome-wide 

enrichment has only limited utility and detailed follow up of a locus is only justified when 

there is evidence for a shared causal mechanism between GWAS and eQTL associations. 

Thus, we used coloc30 to identify cases where the gene expression and trait association 

signals were consistent with a model of a single, shared causal variant. We identified 22 

eQTLs (Supplementary Table 5) that showed evidence of colocalisation (PP3 + PP4 > 0.8, 

PP4/PP3 > 9) with at least one disease (Online Methods). Consistent with our enrichment 

analysis, we found the largest number of overlaps with inflammatory bowel disease31 (IBD) 

and rheumatoid arthritis32 (RA) (Fig. 4a). Interestingly, only 10/22 of the colocalised 

eQTLs were detected in the naive cells and each additional stimulated state increased the 

number of overlaps by approximately 30% (Fig. 4b). However, coloc does not directly test 

condition-specificity of colocalisations and is thus subject to false positives due to limited 

power. To estimate the severity of this issue, we repeated the analysis on the Fairfax dataset3 

and found that 2/3 of the additional overlaps were not detected in unstimulated cells even if 

the sample size was increased 5-fold (Supplementary Fig. 14). For example, we found an 

IFNγ + Salmonella specific response eQTL for TRAF1 that colocalised with an RA GWAS 

hit (Supplementary Fig. 15). Although the same colocalisation was previously reported in 

whole blood33, our data highlights the environmental condition in which the association is 

active. Furthermore, the same associations is specific to 2 hours LPS stimulation in the 

Fairfax dataset and not detected in unstimulated monocytes even with 414 samples 

(Supplementary Fig. 16).

Our analysis of enhancer priming suggested that many disease associations might manifest 

at the level of chromatin without an apparent effect on expression. To explore this further, 

we focussed on colocalisation between caQTLs and GWAS hits. We detected 24 caQTLs 

that colocalised with a GWAS hit (Supplementary Table 6), but only two of these also 

colocalised with an eQTL (PTK2B eQTL with Alzheimer’s disease34 (Supplementary Fig. 

S17) and WFS1 eQTL with type 2 diabetes35). Since genes often have multiple independent 

eQTLs36, we reasoned that some caQTLs might be secondary eQTLs for their target genes. 

To capture these secondary effects, we first identified four additional genes that were 

associated with a caQTL lead variant at FDR < 10%, even though the caQTL and eQTL lead 

variants were not in strong LD (i.e. R2 < 0.8). We repeated the colocalisation analysis on 

these loci and identified two additional overlaps (Supplementary Table 5), including a 

secondary eQTL for CTSB that colocalised with a GWAS hit for systemic lupus 
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erythematosus37 (SLE) (Fig. 4C). Interestingly, although the CTSB eQTL appeared after 

IFNγ + Salmonella stimulation, the caQTL was already present in naive cells. Although 

some caQTL colocalisation with eQTLs might remain undetected due to lack of power, the 

CTSB example suggests that a fraction of disease-associated caQTLs might correspond to 

primed enhancers that regulate gene expression in some other yet unknown conditions. 

Although the majority (22/24) of caQTL overlaps with disease were detected in the naive 

cells (Fig. 4C), this is confounded with a smaller ATAC-seq sample size in Salmonella and 

IFNγ + Salmonella conditions that limited our power to detect colocalisations 

(Supplementary Fig. 14a).

Discussion

Multiple reports have highlighted that, although disease loci from association studies are 

strongly enriched in gene regulatory elements38,39, a relatively small fraction are explained 

by known eQTLs, even those identified in trait-relevant tissues33,40,41. Even recent 

systematic analysis by the GTEx Consortium over 44 tissues from 449 individuals found that 

only 52% of the trait-associated variants colocalised with an eQTL in one or more tissues42. 

Our results suggest that one reason for this apparent contradiction could be that many 

disease risk variants affect chromatin structure in a broad range of cellular states, but their 

impact on expression is highly context-specific. This interpretation is further supported by 

studies of 3D chromatin structure linking GWAS loci to putative target genes but with no 

observable effect on gene expression43, in particular because enhancer-promoter 

interactions are known to precede transcription44,45. We believe our result has important 

implications for future studies of human disease. First, it is likely that a large range of 

cellular states will need to be profiled in order to capture the effects of disease-associated 

variants on expression. Second, overlap of disease variants with open chromatin, while likely 

to be informative regarding the identity of the causal variant, may be less useful predictors of 

the disease relevant cell state.

One limitation of our study is that we were underpowered to detect caQTLs. Although 

previous studies have estimated that more than 55% of eQTLs are also associated with 

changes in chromatin accessibility10, we were only able to detect a linked caQTL for 

145/387 (37%) of our response eQTLs, limiting the the number of enhancer priming events 

that we could detect. Another possibility is that a subset of the response eQTLs are mediated 

by chromatin-independent mechanisms such as stimulation-specific regulation of mRNA 

stability, which is estimated to be responsible for ~10% of the eQTLs46. Finally, we found 

that current colocalisation methods are not well suited to assess the condition-specificity of 

eQTL-disease overlaps and can lead to a large number (~30%) of false positives.

Although our study suggests that many human disease associated variants impact enhancer 

priming, the functional relevance of this is currently not well understood. First, enhancer 

priming may facilitate cell type specific response to ubiquitous signals11,47,48. Although 

specificity can also be achieved by cooperative binding to newly established enhancers49, 

TFs differ in their intrinsic ability to bind to closed chromatin50. Thus, enhancer priming 

might be a preferred mechanism of cooperation between ‘pioneer’ TFs that can 

independently open up chromatin (e.g. PU.1 in macrophages) and ‘settlers’ (e.g. NF-κB) 
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that predominantly bind to accessible regions20. Alternatively, enhancer priming might 

facilitate rapid response to external stimuli. In support of this model, promoters of 

immediate early response genes are already accessible in naive cells51 and TF binding to 

primed enhancers peaks minutes after stimulation while the activation of de novo enhancers 

can take several hours49. Thus, response eQTLs that appear rapidly after stimulation might 

be enriched for primed enhancers relative to those that appear later. Finally, enhancer 

priming might not be limited to single regulatory elements. Our results (Fig. 3d) together 

with previous reports16,52 suggest that some regulatory elements can act as ‘seed’ 

enhancers that allow other neighbouring enhancers to become active after stimulation and 

lead to upregulation of gene expression. Although we have identified a small number of such 

examples, future caQTL mapping studies in multiple cell types and conditions have a 

potential to systematically identify and characterise these hierarchical relationships between 

enhancers.

In summary, our results illustrate how pre-existing genetic effects on chromatin propagate to 

gene expression during immune activation, and highlights the relevance of these hidden 

genetic effects for deciphering the molecular architecture of disease-associated variants. Our 

study is also the first that we are aware of to utilise iPSC-derived cells to study genetic 

effects in immune response. We believe a major future use of this system will be the 

systematic exploration of gene-environment interactions across large numbers of cell states. 

Furthermore, because iPSCs are readily engineered, the identity of causal variants and their 

downstream consequences can be directly tested in exactly the same cell types and 

conditions where they were discovered.

Online Methods

Donors and cell lines

Human induced pluripotent stem cells (iPSCs) from 123 healthy donors (72 female and 51 

male) (Supplementary Table 1) were obtained from the HipSci project22. Of these lines, 57 

were initially grown in feeder-dependent medium and 66 were grown in feeder-free E8 

medium. The cell lines were screened for mycoplasma by the HipSci project22. All samples 

for the HipSci resource were collected from consented research volunteers recruited from 

the NIHR Cambridge BioResource (http://www.cambridgebioresource.org.uk). Samples 

were collected initially under ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 

04/01/2013), with later samples collected under a revised consent (REC Ref: 09/H0304/77, 

V3 15/03/2013).

Macrophage differentiation outcomes

We performed 138 macrophage differentiation attempts from 123 distinct HipSci iPSC lines 

(Supplementary Note, Supplementary Table 1). We were able to differentiate macrophages 

from 101/123 (82%) of the iPSC lines. For 97/101 lines, we further confirmed the cell 

surface expression of CD14, CD16 and CD206 macrophage markers using flow cytometry 

(Supplementary Fig. 1). However, some of the differentiated lines did not produce enough 

macrophages to perform all of the experimental assays or the differentiated cells were not 

pure enough to be used in stimulation experiments. In total, we obtained high quality RNA-
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seq data from 89 differentiations corresponding to 85 unique donors and ATAC-seq data 

from up to 42 unique donors in up to four experimental conditions (Supplementary Table 1). 

The final sample size was decided based on similar gene expression and chromatin QTL 

mapping studies performed previously2,7,26–28.

RNA-seq preprocessing and quality control

RNA-seq reads were aligned to the GRCh38 reference genome and Ensembl 79 transcript 

annotations using STAR v2.4.0j56. Subsequently, VerifyBamID v1.1.257 was used to detect 

and correct any potential sample swaps and cross-contamination between donors. We did not 

detect any cross-contamination, but we did identify one sample swap between two donors. 

We used featureCounts v1.5.058 to count the number of uniquely mapping fragments 

overlapping GENCODE59 basic annotation from Ensembl 79. We excluded short RNAs and 

pseudogenes from the analysis leaving 35,033 unique genes of which 19,796 were protein 

coding. Furthermore, we only used 15,797 genes with mean expression in at least one of the 

conditions greater than 0.5 transcripts per million (TPM)60 in all downstream analyses. We 

quantile-normalised the data and corrected for sample-specific GC content bias using the 

conditional quantile normalisation (cqn)61 R package. To detect hidden confounders in gene 

expression, we applied PEER62 to each condition separately allowing for at most 10 hidden 

factors. We found that the first 3-5 factors explained the most variation in the data and the 

others remained close to zero. Although we performed replicate macrophage differentiations 

and RNA-seq from four iPSC lines, for simplicity we decided to use only one of the 

replicates in downstream analyses. We further excluded samples from one donor (qaqx_1) 

from downstream analysis because they appeared as outliers in principal component analysis 

(PCA). The final dataset consisted of 336 RNA-seq samples from 84 donors.

ATAC-seq data analysis

Read alignment—Illumina Nextera sequencing adapters were trimmed using skewer 

v0.1.12763 in paired end mode. Trimmed reads were aligned to GRCh38 human reference 

genome using bwa mem v0.7.1264. Reads mapping to the mitochondrial genome and 

alternative contigs were excluded from all downstream analysis. Picard 1.134 

MarkDuplicates was used to remove duplicate fragments. We used verifyBamID57 1.1.2 to 

detect and correct potential sample swaps between individuals. Fragment coverage BigWig 

files were constructed using bedtools v2.17.065.

Peak calling—We used MACS266 v2.1.0 with ‘--nomodel --shift -25 --extsize 50 -q 0.01’ 

to identify open chromatin regions (peaks) that were enriched for transposase integration 

sites compared to the background at 1% FDR level. With these parameters we detected 

between 31,658 and 208,330 peaks per sample. We constructed consensus peak sets in each 

condition separately by pooling all of the peak calls from all of the samples. For each peak, 

we first counted the number of samples in which that peak was identified. We then 

calculated the union of all peaks that were detected in at least three samples. Finally, we 

pooled the consensus peaks from all four conditions to obtain the final set of 296,220 unique 

peaks that were used for all downstream analyses. We used featureCounts58 v.1.5.0 to count 

the number of fragments overlapping consensus peak annotations and ASEReadCounter67 

from Genome Analysis Toolkit (GATK) to quantify allele-specific chromatin accessibility.
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Sample quality control—We used the following criteria summarised in Supplementary 

Table 8 to assess the quality of ATAC-seq samples:

• Assigned fragment count - the total number of paired end fragments assigned to 

peaks by featureCounts.

• Mitochondrial fraction - fraction of total fragments aligned to the mitochondrial 

genome.

• Assigned fraction - fraction of non-mitochondrial reads assigned to consensus 

peaks. A measure of signal-to-noise ratio.

• Duplicated fraction - fraction of fragments that were marked as duplicates by 

Picard MarkDuplicates.

• Peak count - number of peaks called by MACS2.

• Length ratio - # of short fragments (< 150 nt) / # long fragments (>= 150 nt). 

This measures if the read length distribution has characteristic ATAC-seq profile 

with clearly visible mono-nucleosomal and di-nucleosomal peaks.

We used these criteria to exclude 5 samples from downstream analysis (Supplementary 

Table 8). One sample was excluded because of very low assigned fraction (~10%) and peak 

count, two more were excluded because of extremely large length ratio (>7) and a fragment 

length distribution uncharacteristic for ATAC-seq library. The final two samples were 

excluded because they appeared to be outliers in the principal component analysis (PCA).

QTL mapping

Preparing genotype data—We obtained imputed genotypes for all of the samples from 

the HipSci22 project. We used CrossMap v0.1.868 to convert variant coordinates from 

GRCh37 reference genome to GRCh38. Subsequently, we filtered the VCF file with bcftools 

v.1.2 to retain only bi-allelic variants (both SNPs and indels) with IMP2 score > 0.4 and 

minor allele frequency (MAF) > 0.05 in our 86 samples. The same VCF file was used for all 

subsequent analyses. The VCF file was imported into R using the SNPRelate69 package.

Quantifying allele-specific expression and chromatin accessibility—We used 

ASEReadCounter67 from the Genome Analysis ToolKit (GATK) to count the number of 

allele-specific fragments overlapping each variant in the RNA-seq and ATAC-seq datasets. 

We used the following flags with ASEReadCounter: ‘-U ALLOW_N_CIGAR_READS -dt 

NONE -- minMappingQuality 10 -rf MateSameStrand’. We removed indels from the VCF 

file prior to quantifying allele-specific expression because they are not supported by the 

RASQUAL model.

Detecting QTLs using RASQUAL—We wrote a collection of python scripts and a 

rasqualTools R package to simplify running RASQUAL on large number of samples and 

work with large RASQUAL output files (see URLs). We used the vcfAddASE.py script to 

add allele-specific counts calculated in the previous step into the VCF file. We ran 

URLs
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RASQUAL26 independently for each experimental condition using sex and first two PEER 

factors as covariates (sex and first 3 PCs for caQTLs). In contrast to standard linear model, 

covariates seemed to have only a minor effect on the number of QTLs detected by 

RASQUAL. We only included variants that were either in the gene body or within +/- 500 

kb from the gene (+/- 50kb from the accessible region). We specified ‘--imputation-quality > 

0.7’. As a result, variants with imputation quality of < 0.7 were used as feature SNPs in 

allele-specific analysis but were not considered as possible causal variants. We also used 

RASQUAL’s GC correction option to correct for sample-specific GC bias in the feature-

level read count data. To correct for multiple testing, we picked one minimal p-value per 

feature, used eigenMT70 to estimate the number of independent tests performed in the cis-

region of each feature and then performed Bonferroni correction to obtain the corrected p-

value. We also ran RASQUAL once with the ‘--random-permutation’ option to obtain 

empirical null p-values from data with permuted sample labels. We performed the same 

eigenMT multiple testing procedure on the permuted p-values and compared the true 

association p-values to the empirical null distribution to identify QTLs with FDR < 10%.

Detecting QTLs using a linear model—We used linear regression implemented in the 

FastQTL55 software to map cis-QTLs in each experimental condition. We used the ‘--

permute 100 10000’ option to obtain permutation p-values for each association. The size of 

the cis windows was set to +/- 500 kb around each gene and +/- 50kb around each ATAC-seq 

peak. Prior to QTL mapping, the read count data was quantile normalised using the cqn 

package with GC-content of the feature (gene or peak) included as a covariate. For eQTL 

analysis, we used sex and the first six PEER factors as covariates in the model. For caQTL 

analysis we used sex and the first three principal components (PCs) as covariates in the 

model. Although FastQTL reported feature-level permutation p-values, obtaining those was 

computationally not feasible for RASQUAL. Therefore, to be able to faithfully compare the 

number of QTLs detected by FastQTL and RASQUAL, we decided to apply exactly the 

same multiple testing correction procedure (eigenMT + single permutation of sample labels) 

to both methods. We further restricted the comparison to features that were tested by both 

methods. This affected a small number of genes that were tested by FastQTL but filtered out 

by RASQUAL, because the raw read count was exactly zero in all samples.

Detecting response eQTLs—In each condition, we first identified all genes and 

corresponding lead variants that displayed significant association at 10% FDR level from 

RASQUAL. For each gene, we only kept independent lead variants (R2 < 0.8). Finally, we 

used all independent pairs of genes and corresponding lead variants to test if the eQTL effect 

size was significantly different between conditions. This was equivalent to testing the 

significance of the interaction term between condition and lead eQTL variant for each gene. 

Furthermore, to take advantage of the fact that gene expression was profiled in the same 84 

lines in the four conditions, we also included the cell line as a random effect and fitted a 

Data analysis scripts: https://github.com/kauralasoo/macrophage-gxe-study
Processed data: https://zenodo.org/communities/macrophage-gene-expression-genetics/
wiggleplotr: https://bioconductor.org/packages/wiggleplotr/
rasqualTools: https://github.com/kauralasoo/rasqual
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linear mixed model using the lme471 package. Specifically, for each gene and lead variant 

pair we compared the following two models:

H0: expression ~ genotype + condition + covariates + (1|cell_line)

H1: expression ~ genotype + condition + genotype:condition + covariates + (1|cell_line)

where (1|cell_line) denotes the cell line specific random effect. We then calculated empirical 

p-values for the interaction test by permuting the conditions within each individual line 

1,000 times. Subsequently, we used Benjamini-Hochberg FDR correction on the 

permutation p-values to identify 1,950 significant interactions at 10% FDR level. We used 

the same normalised data and covariates for interaction testing that were previously used for 

eQTL mapping in each condition separately.

Detecting response caQTLs—The procedure to identify response caQTLs was almost 

identical to the one used to detect response eQTLs above. However, instead of a linear 

mixed model we decided to use standard linear model without the random effect for cell line 

because not all lines were measured in all conditions. Furthermore, we found that our 

strategy to permute conditions within individual lines was not reliable when the number of 

measured conditions was not the same for each individual. Therefore, we decided to apply 

Benjamini-Hochberg FDR correction to nominal p-values from the linear model and identify 

significant interactions at 10% FDR level. With this approach we identified significant 

interactions for 6,591 caQTL regions.

Filtering and clustering QTLs based on effect size—Next, we focussed on all 

significant response eQTLs and response caQTLs that were detected with the interaction test 

above. We extracted the RASQUAL QTL effect size estimates π for each feature-variant 

pair in each condition and converted them to log2 fold changes between the two 

homozygotes using the formula log2FC = -log2(π/(1-π)). Multiplication with -1 was 

necessary because RASQUAL uses alternative allele dosage to represent genotypes while 

the SNPRelate package that the we used to import genotypes into R uses reference allele 

dosage. For a QTL to be considered condition specific we required the absolute log2FC in 

the naive condition to be less than 0.59 (1.5-fold) and the absolute difference in log2FC 

between naive and any one of the stimulated conditions to be greater than 0.59 (~1.5 fold). 

We further required the absolute log2FC to be greater than 0.59 in at least one condition. To 

demonstrate that our result were not sensitive to the exact fold change threshold used, we 

also repeated the same analysis using log2FC threshold of 1 (= 2-fold) for all three filters. To 

obtain relative log2FC, we divided the log2FC values in each condition by the maximal 

log2FC value observed across conditions. This scaling was necessary to make QTLs with 

different absolute effect size comparable to each other. Finally, we used k-means clustering 

to identify six groups of QTLs that had similar activity patterns across conditions.

Identifying master and dependent regions—For each caQTL region, we defined its 

credible set of causal variants as those with R2 > 0.8 to the lead variant. We then classified 

the focal caQTL region as a master region (i - Fig. 3b), if the credible set overlapped the 

region itself, suggesting that the caQTL is directly caused by a variant within the region 
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disrupting transcription factor binding. Alternatively, if the credible set overlapped some 

other regulated region but not the focal region, then we classified it as a dependent region (ii 

- Fig. 3b). We also excluded ambiguous cases where the credible set overlapped either 

multiple regulated regions (iii - Fig. 3b) or it did not overlap any regulated regions (iv-v - 

Fig. 3b). To estimate the fraction of master-dependent region pairs that had the same 

direction of effect, we limited our analysis to region pairs with nominal p-value of the lead 

master caQTL variant for both master and dependent regions < 10-4. This filtering was 

necessary to ensure that master and dependent caQTLs were both active in the same 

condition.

Motif disruption analysis—We limited motif disruption analysis to caQTL regions that 

did not contain associated indels and had <= 3 overlapping single nucleotide polymorphisms 

(SNPs) in them. For each SNP and peak pair we focussed on the sequence +/- 25 bp from 

the SNP. We constructed both reference and alternative versions of the sequence and used 

TFBSTools v1.10.472 to calculate the relative binding scores for both alleles (expressed as 

percentage from 0-100%). The TF motifs were downloaded from CIS-BP73 database. We 

considered the variant to be motif disrupting if the difference in relative binding score 

between the two alleles was > 3 percentage points. We also required the relative binding 

score for at least one of the alleles to be >= 85% of the theoretical maximum. This filter was 

necessary to exclude potential motif disruption events in very weak motif matches that were 

not likely to correspond to binding in vivo and is similar to the default thresholds 

recommended by TFBSTools. We used Fisher’s exact test to identify motifs that were 

significantly more often disrupted in one of the six condition-specific caQTL clusters 

compared to all caQTLs. For condition-specific caQTLs we further limited the analysis to 

putative master caQTL regions, because they were more likely to harbour the causal caQTL 

variant. We did not use that filter for caQTLs regulating putative primed enhancers, because 

the number of primed enhancers was much smaller.

Identifying condition-specific dependent regions—To identify condition-specific 

dependent regions, we tested if the effect size of the caQTL changed differently for master 

and dependent regions (2,023 unique pairs) between two conditions. This was equivalent to 

testing the significance of a three-way interactions between genotype, region (master or 

dependent) and condition. We implemented this as the comparison of two standard linear 

models in R:

H0: accessibility ~ genotype + region + condition + region*condition + genotype*region + 

genotype*condition + covariates

H1: accessibility ~ genotype + region + condition + region*condition + genotype*region + 

genotype*condition + genotype*condition*region + covariates

Similarly to condition-specific caQTL analysis, we used the first three principal components 

calculated separately for each condition as covariates in the model. For each master and 

dependent region pair we picked the minimal p-value from three tests (naive vs each 

simulated condition) and used Bonferroni correction to correct for multiple testing. We then 

applied the Benjamini-Hochberg FDR correction to the Bonferroni-corrected p-values to 
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identify all master-dependent region pairs that showed significant interaction at 10% FDR. 

We used the log2FC from RASQUAL as the measure of caQTL effect size. To identify true 

condition-specific dependent regions, we further filtered the results by requiring the absolute 

log2FC of the master region to be > 0.59 (1.5-fold) in the naive condition and the change in 

the log2FC for the dependent region between the naive and stimulated condition to be > 

0.59. We also required the change in the log2FC for the master peak to be < 1.

Linking response eQTLs to caQTLs

First, we grouped all response eQTLs into three groups according to the condition in which 

they had the maximal effect size (IFNγ, Salmonella or IFNγ + Salmonella). For each 

response eQTL, we then identified all caQTLs that were in high linkage disequilibrium (LD) 

with it in any of the four conditions (R2 > 0.8 between the lead variants) (Supplementary 

Fig. 18). If there was more than one caQTL in high LD, we picked the one with the smallest 

association p-value to obtain at most one caQTL corresponding to each response eQTL. 

Next, to estimate the prevalence of enhancer priming, we asked how often was the 

corresponding caQTL present already in the naive condition. Since response eQTLs were 

required to have RASQUAL log2FC < 0.59 in the naive condition (see above), we used the 

same threshold to decide if the caQTL was present (log2FC > 0.59) or absent (log2FC < 

0.59) in the naive condition. We also repeated this analysis using a more stringent threshold 

of log2FC > 1. Since there are various reasons why this analysis might lead to false 

positives, we decided to quantify our false positive rate by performing a reverse analysis 

where we started with response caQTLs, identified corresponding eQTLs (R2 > 0.8) and 

asked how often were the eQTLs present already in the naive condition (log2FC > 0.59).

Colocalisation with GWAS hits

We used coloc v2.3-130 to test for colocalisation between molecular QTLs and GWAS hits. 

In the colocalisation analysis we used summary statistics from the linear model (rather than 

RASQUAL), because RASQUAL summary statistics could not be easily converted to 

approximate Bayes factors required by coloc. We ran coloc on a 400kb region centered on 

each lead eQTL and caQTL variant (200kb for the secondary eQTLs) that was less than 

100kb away from at least one GWAS variant with nominal p-value < 10-5. We then applied a 

set of filtering steps to identify a stringent set of eQTLs and caQTL that colocalised with 

GWAS hits. Similarly to a published analysis40, we first removed all cases where PP3 + PP4 

< 0.8, to exclude loci where we were underpowered to detect colocalisation. We then 

required PP4/(PP3+PP4) > 0.9 to only keep loci where coloc strongly prefered the model of 

a single shared causal variant driving both association signals over a model of two distinct 

causal variants. We excluded all colocalisation results from the MHC region (GRCh38: 

6:28,510,120-33,480,577) because they were likely to be false positives due to complicated 

LD patterns in this region. We only kept results where the minimal GWAS p-value was < 

10-6. Finally, we manually excluded 11 potential eQTL overlaps and 6 potential caQTL 

overlaps where on visual inspection the LD block exceeded the 400kb window that we used 

for colocalisation testing.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regulation of gene expression in macrophage immune response.
(a) Genetic variant has a direct effect on the binding of a stimulation-specific TF (IRF1) and 

target gene activation. (b) Genetic variant in a primed enhancer disrupts the binding of a cell 

type specific TF (e.g. PU.1) that indirectly influences stimulation-specific TF (IRF1) binding 

via modulation of chromatin accessibility. (c) Overview of the experimental design. (d) 

TLR4 recognises lipopolysaccharide (LPS) on Salmonella cell wall and activates NF-κB, 

AP-1 and IRF3 transcription factors (TFs)53. IRF3 stimulates IFNβ production that 

culminates with the activation of STAT1-STAT2-IRF9 complex. IFNγ binds to IFNγ 
receptor and activates STAT1 and IRF1 TFs54.
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Figure 2. Quantifying the extent of enhancer priming in macrophage immune response.
(a) Clustering of response eQTLs by effect size. Response eQTLs appear after IFNγ 
stimulation (clusters 5 and 6), Salmonella infection (clusters 2-4) or only when both of the 

stimuli are present (cluster 1). Relative effect was calculated by dividing the log2 fold 

change values in each condition by the maximal fold change observed across conditions. (b) 
Quantile normalised log2 fold changes of eQTL-caQTL pairs in naive and stimulated 

conditions. The pairs are grouped by the condition in which the eQTL had the largest effect 

(I, S or I+S). The heat maps are sorted by caQTL effect size in the naive condition (first 

column). The solid lines represent the 1.5-fold threshold above which the caQTLs are 

considered to be present in the naive condition. (c) Comparison of our estimated rate of 

enhancer priming (caQTL precedes response eQTL) to a negative control (eQTL precedes a 

response caQTL). (d) Association between rs4486968 variant, chromatin accessibility and 

and gene expression (n = 84 independent donors) in the GP1BA locus. (e) Association 

between rs7594476 variant, chromatin accessibility and gene expression (n = 84 independent 

donors) in the NXPH2 locus. FPM, fragments per million. The - log10 p-values on panels d 
and e were calculated using RASQUAL. The caQTL analysis used n = 42 (N), n = 41 (I) and 
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n = 31 (I+S) independent donors. Box plots show the median (center line) and the 25th and 

75th percentiles (box edges), with whiskers extending to 1.5 times the interquartile range.
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Figure 3. Identifying caQTLs that regulate chromatin accessibility at multiple independent 
regions.
(a) Fine mapping the putative causal variant at the NXPH2 locus. The master caQTL region 

(E1) overlaps a PU.1 ChIP-seq peak. Only one of the two variants (rs7594476) within the E1 

region is predicted to disrupt the PU.1 motif (M6119_1.02). No associated variants overlap 

the IFNγ-specific dependent region E2. (b) Classifying caQTLs into master regions (i), 

dependent regions (ii) and ambiguous cases where the credible set overlaps either multiple 

regulated regions (iii) or does not overlap any regulated regions (iv-v). (c) Histogram of the 

number of associated dependent regions for each master region. (d) Multiple open chromatin 

regions regulated by a single caQTL at the NXPH2 locus. Master caQTL region (E1) and 

two IFNγ-specific dependent regions (E2 and E3) are highlighted by grey shadows. FPM, 

fragments per million. (e) Association between rs7594476 variant and expression of NXPH2 
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and SPOPL genes before and after IFNγ stimulation (n = 84 independent donors). (f) 
Association between rs7594476 variant, master caQTL region (E1) and two dependent 

regions (E2 and E3) before and after IFNγ stimulation (n = 42 and n = 41 independent 

donors, respectively). The -log10 p-values on panels a and d were calculated using 

RASQUAL. Box plots show the median (center line) and the 25th and 75th percentiles (box 

edges), with whiskers extending to 1.5 times the interquartile range.
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Figure 4. Identifying eQTLs and caQTLs that colocalise with complex disease risk loci.
(a) Total number of colocalised GWAS hits identified for each trait across the four 

conditions. (b) Cumulative number of colocalised GWAS hits identified by starting with 

overlaps in the naive condition and sequentially adding IFNγ, Salmonella and IFNγ + 

Salmonella conditions. (c) Colocalisation between an SLE GWAS hit (rs11997338), 

chromatin accessibility and CTSB gene expression (n = 84 independent donors) before and 

after IFNγ + Salmonella stimulation. The caQTL results are based on n = 42 (naive) and n = 

31 (IFNγ + Salmonella) independent donors. FPM, fragments per million. Disease 

acronyms: SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; RA, 

rheumatoid arthritis; SLE, systemic lupus erythematosus; AD, Alzheimer’s disease; SCZ, 

schizophrenia; T2D, type 2 diabetes; NAR, narcolepsy; CEL, celiac disease. The -log10 p-

values on panels c were calculated using FastQTL55. Box plots show the median (center 

line) and the 25th and 75th percentiles (box edges), with whiskers extending to 1.5 times the 

interquartile range.
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