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Abstract

Background—Diagnostic delays are common for multiple sclerosis (MS) since diagnosis 

typically depends on the presentation of nonspecific clinical symptoms together with 

radiologically-determined central nervous system (CNS) lesions. It is important to reduce 

diagnostic delays as earlier initiation of disease modifying therapies mitigates long-term disability. 

Developing a metabolomic blood-based MS biomarker is attractive, but prior efforts have largely 

focused on specific subsets of metabolite classes or analytical platforms. Thus, there are 

opportunities to interrogate metabolite profiles using more expansive and comprehensive 

approaches for developing MS biomarkers and for advancing our understanding of MS 

pathogenesis.

Methods—To identify putative blood-based MS biomarkers, we comprehensively interrogated 

the metabolite profiles in 12 non-Hispanic white, non-smoking, male MS cases who were drug 

naïve for 3 months prior to biospecimen collection and 13 non-Hispanic white, non-smoking male 

controls who were frequency matched to cases by age and BMI. We performed untargeted two-

dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS) and 

targeted lipidomic and amino acid analysis on serum. 325 metabolites met quality control and 
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supervised machine learning was used to identify metabolites most informative for MS status. The 

discrimination potential of these select metabolites were assessed using receiver operator 

characteristic curves based on logistic models; top candidate metabolites were defined as having 

area under the curves (AUC) >80%. The associations between whole-genome expression data and 

the top candidate metabolites were examined, followed by pathway enrichment analyses. Similar 

associations were examined for 175 putative MS risk variants and the top candidate metabolites.

Results—12 metabolites were determined to be informative for MS status, of which 6 had AUCs 

>80%: pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide, and 2 

phosphatidylcholines (PC ae 40:5, PC ae 42:5). These metabolites participate in glutathione 

metabolism, fatty acid metabolism/oxidation, cellular membrane composition, and transient 

receptor potential channel signaling. Pathway analyses based on the gene expression association 

for each metabolite suggested enrichment for pathways associated with apoptosis and 

mitochondrial dysfunction. Interestingly, the predominant MS genetic risk allele HLA-
DRB1*15:01 was associated with one of the 6 top metabolites.

Conclusion—Our analysis represents the most comprehensive description of metabolic changes 

associated with MS to date with the inclusion of genomic and genetic information. We identified 

atypical metabolic processes that differed between MS patients and controls, which may lead to 

the development of biological targets for diagnosis and treatment.
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Introduction

Multiple sclerosis (MS) is an idiopathic autoimmune disease typified by inflammatory 

events in the central nervous system that trigger demyelination, exacerbating remyelination 

failure, and subsequent neurodegeneration. Most affected individuals will steadily accrue 

irreversible neurological disability over the disease course, but there is mounting evidence 

that earlier initiation of disease modifying therapies (DMTs) may mitigate long-term 

disability outcomes.1 Unfortunately, MS currently requires a clinical diagnosis that largely 

depends on neurological symptoms and/or radiologic lesions that are disseminating in time 

and/or space. As a result, the initiation of DMTs may be delayed. Therefore, there is a need 

to develop non-invasive diagnostic tools to accelerate MS diagnosis. There is also significant 

need to further elucidate the patho-etiological mechanisms contributing to MS onset and 

accrual of disability in order to advance the development of novel therapeutics.

Multiple efforts to identify biological markers (biomarkers) for MS have been made, but 

most of these potential biomarkers are not MS-specific and many are only discriminatory in 

cerebrospinal fluid (CSF).2, 3 While CSF is among the most pertinent biological samples for 

the study of MS, the invasiveness and inherent risk of lumbar punctures makes CSF 

collection impractical for recurrent testing.4 Instead, biomarkers readily detected in the 

blood would be ideal for diagnostic and prognostic evaluation. While there are promising 

candidates for diagnosis, such as neurofilament light protein, the only clinically useful blood 
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biomarkers for MS are antibodies against natalizumab and interferon β drugs; these inform 

drug efficacy and risk for adverse side-effects.5-7

Increasingly, metabolomic assays are being used to develop disease biomarkers and to 

identify patho-etiologic processes. Improvements in instrumentation, analytical sensitivity, 

and consistency have advanced metabolomics-based biomarker development for diseases 

such as Type II diabetes and cardiovascular disease.8, 9 Most prior metabolomics work in 

MS has relied on a single assay/platform or had a scope limited to a particular metabolite 

class.10-18 Only one prior study applied a global untargeted metabolomic approach (ultra-

high performance liquid chromatography-tandem mass spectrometry) to MS, which allowed 

for interrogating a much larger number of metabolites.19 Therefore, by combining targeted 

and untargeted approaches there are opportunities to conduct more expansive and 

comprehensive metabolomic investigation in MS, particularly within the multiomic 

framework.

We profiled serum metabolites in MS cases and controls using untargeted two-dimensional 

gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS) with targeted 

metabolomic approaches (i.e. lipid and amino acid profiles). GCxGC-TOFMS has been 

shown to discriminate and identify up to three times more serum metabolites than one-

dimensional GC-TOFMS.20, 21 We then identified metabolites predictive of MS status using 

supervised machine learning and multivariable logistic regression. To explore possible 

etiologic processes, we integrated whole-genome expression data and genetic data for alleles 

encoded by human leukocyte antigen (HLA) genes (HLA-DRB1*15:01, HLA-A*02) and 

175 putative MS risk single nucleotide polymorphisms (SNPs) outside the major 

histocompatibility complex (MHC).22 We identified 6 metabolites predictive of MS status 

and found evidence that pathways involved in apoptosis and mitochondrial dysfunction may 

be contributing to the altered metabolic profile in MS.

Materials and Methods

Study subjects

The Duke University Measurement to Understand the Reclassification of Disease of 

Cabarrus/Kannapolis (MURDOCK) longitudinal health study recruitment has been 

previously described.23 MS cases (n=12) were participants in both the MURDOCK Study 

Community Registry and Biorepository (Pro00011196) and MURDOCK MS Cohort Study 

(Pro00023791), while controls (n=13) were drawn from the MURDOCK Study Community 

Registry and Biorepository (Supplementary Table 1). Participant recruitment and sample 

collection protocols were approved by the Duke University Institutional Review Board; 

written informed consent was obtained from all participants. The study population for the 

current analysis was non-Hispanic white, non-smoking males. MS cases were drug naïve for 

at least three months prior to biospecimen collection, and medical records were used to 

confirm a diagnosis of MS and disease-modifying therapy (DMT) history. Controls were age 

and body mass index (BMI) frequency matched to cases.
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Sample collection and storage

The MURDOCK Study collected samples for extraction of serum, RNA, and DNA using 

standard collection criteria implemented by the MURDOCK Study.23 Serum samples were 

stored at −80 °C by LabCorp and/or BioStorage Technologies until use in this project. Total 

RNA was extracted from PAXgene tubes using Qiagen PAXgene Blood RNA Kit (#762164) 

and stored at −80 °C. Genomic DNA was extracted from whole blood using QIAGEN 

Gentra Puregene Blood Kits (#158445) and stored at −20 °C.

Sample preparation and data generation

Metabolomic data—For GCxGC-TOFMS, serum aliquots were extracted with methanol/

chloroform containing heptadecanoic acid and norleucine as internal standards, as 

previously described.21 Equal sample aliquots were pooled to create for quality control (QC) 

samples. Samples were dried under N2, derivatized with methoxyamine in pyridine and then 

N-Methyl-N-(trimethylsilyl) trifluoroacetamide with 1% trimethylchlorosilane. The samples 

were analyzed on a LECO Pegasus 4D GCxGC-TOFMS in electron ionization mode. An 

Agilent (Agilent Technologies, Santa Clara, CA) DB-5ms UI GC column was the primary 

column and an Agilent DB-17ms was the secondary column. Pooled QC samples were 

analyzed after every nine samples to assess overall reproducibility and to correct for any 

observed variations. An alkane retention index standard (C10 – C40) was run at the 

beginning, middle and end of sample runs. GCxGC-TOFMS Peak lists were generated with 

LECO ChromaTOF software version 4.50.8.0 (LECO Corporation, St. Joseph, MI) using 

vendor-recommended parameters. NIST/EPA/NIH Mass Spectral Library 2011 (NIST11), 

LECO/Fiehn Metabolomics Library, and an in-house library were used as reference libraries 

for compound identification. MetPP software was used for peak merging and peak list 

alignment, and retention index (RI) matching was performed using iMatch algorithms with 

p-value threshold ≤ 0.001.20, 21

For the targeted assay, we used the Biocrates AbsoluteIDQ p150 kit (Biocrates Life Sciences 

AG, Austria) which profiles specific amino acids, acylcarnitines, hexoses, and phospho- and 

sphingolipids. For the Biocrates kit, 10 μl serum aliquots were processed and analyzed using 

the Biocrates AbsoluteIDQ p150 kit protocol.

Gene expression data—Whole-genome expression data were generated from three 

Illumina HumanHT-12 v4.0 Gene Expression BeadChips for 24 of the 25 study participants 

(Supplementary Table 1). Biotin-labeled cDNA were generated and hybridized following the 

Illumina Whole Genome Gene Expression Direct Hybridization Assay. Case and control 

samples were randomized and sample duplicates included as assay replicate controls. Arrays 

were scanned with the Illumina iScan Microarray Scanner system. Sample replicates (1 per 

chip) and array assay controls (1 per assay) confirmed assay integrity and ruled out 

contamination with identical calls and predicted genotypes.

Genotypic data—Sequenom platform Iplex Gold Reagent Kit multiplexed genotyping 

assays were designed in ~25 SNP pools using the Assay Design Suite (Agena Biosciences) 

for 186 of 200 putative non-MHC MS risk variants.22 Linked discovery SNPs or tagging 

SNPs were substituted for effect SNPs refractory to multiplex design. Samples were spotted 
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to Sequenom SpectroChip(s) and scanned with MALDI-TOFMS. Non-template negative 

controls, sample duplicates and control DNAs were included. HLA-DRB1*15:01 alleles 

were determined via TaqMan genotyping of SNP rs9271366 (assay ID: C__33416976_20). 

HLA-A*02 alleles were determined via TaqMan genotyping of the SNP rs2975033 (assay 

ID: C__15962692_20). Each SNP assay was reviewed for the genotype call quality based on 

PCR/Extension yield, proximity to cluster, and raw mass spectra.

Statistical analyses

There were 400 metabolite variables captured across the GCxGC-TOFMS and Biocrates 

p150 approaches (Supplementary Table 2). 325 metabolites with <30% missing observations 

were retained for analyses implemented in MetaboAnalyst (http://www.metaboanalyst.ca/).
24 ComBat was used to adjust for batch effects (Supplementary Figure 1A), and missing 

values were replaced using the default setting (by half of the minimum positive values 

detected in the data) in MetaboAnalyst.25 Random forests, a supervised machine learning 

(non-parametric) algorithm that is well adapted for prediction and variable importance, fairly 

robust to the setting of tuning parameters, and capable of analyzing data where predictors 

outnumber sample size, was used to identify metabolites important (in contrast to a p-value) 

for MS classification.26 The forest consisted of 5,000 trees and 100 randomly selected 

metabolites were used to determine classification at each node in a tree. A scree plot of the 

ranked variable importance scores was used to identify important (top-ranking) metabolites 

for MS classification (Supplementary Figure 2). Similar results were obtained for quantile 

normalized and pareto scaled metabolomics data (data not shown). Logistic regression 

models were used to assess the relationship between each important metabolite and MS 

status, including a random effect to account for any residual batch effects using the xtlogit 
function in STATA v13.1 (StataCorp, TX). The area under the curve (AUC) and 95% 

Bamber and Hanley confidence intervals were determined by non-parametric receiver 

operating characteristic (ROC) analyses using the roctab function in STATA for each 

metabolite. Metabolites with AUC>80% were considered our top metabolites.

Gene expression data were background subtracted and quantile normalized within 

GenomeStudio Software Gene Expression Module (Illumina). Expression values with 

detection p-values >0.05 and genes with at least 70% of observations were retained; 9067 

genes passed QC. ComBat, as implemented in MetaboAnalyst, was applied to remove any 

chip effects (Supplementary Figure 1B) and data were quantile normalized and pareto 

scaled. The expression of CD19 (B lymphocyte marker); CD14 (monocyte marker); 

FCGR3A and NCAM1 (natural killer cell markers); and CD3E, CD3D, CD4, and CD8A (T 

lymphocyte markers) did not differ between cases and controls via Wilcoxon rank-sum tests, 

indicating no blood cellular composition differences between cases and controls (data not 

shown).27 Therefore, we conducted the following multivariable linear mixed-effects 

regression models: each top metabolite was the outcome and each gene expression value was 

a predictor, as well MS status, and a random effect to capture residual chip effects using the 

xtreg function in STATA. The top 2.5% (p-value ranked) of genes associated with each 

metabolite were analyzed via the Ingenuity Pathway Analysis (IPA) for biological pathway 

enrichment. The Illumina HumanHT-12 v4.0 Gene Expression BeadChip gene set was used 

as the reference set. Interaction networks, including endogenous chemicals, and all node 
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types were included in the analysis (35 molecules per network, 25 networks per analysis). 

Data sources were experimentally observed from mammalian species.

Genetic data were generated along with another 107 samples. QC was applied to the entire 

genetic data set and included removing samples with >50% missing genotypes; SNPs with 

>20% missing genotypes; samples with >10% genotypes; and SNPs with Hardy Weinberg 

Equilibrium p<0.01. After QC, the final genotype dataset included 19 subjects 

(Supplementary Table 1) and 175 putative non-HLA MS risk SNPs (Supplementary Table 

3). Multivariable regression models with the top metabolites at the outcome and each SNP as 

a predictor, adjusting for MS status and a random effect capturing possible plate effects were 

conducted. Two HLA alleles were genotyped in all 25 samples, however genotypes for the 

HLA-DRB1*15:01 and HLA-A*02 tagging SNPs were successfully determined in 22 and 

24 samples respectively. Similar regression models were conducted as described above.

A two-sided alpha<0.05 was considered statistically significant for all statistical 

comparisons.

Results

Identifying top metabolites associated with MS

Random forests identified 12 metabolites as informative for MS classification (Table 1, 

Supplementary Figure 2). The random forests’ out-of-bag error for classifying the 25 

samples by MS status was 0.32 (0.42 for cases and 0.23 for controls; Supplementary Figure 

3). Eight of these metabolites were associated with MS in logistic regression models 

(p<0.05), and 6 of them had an AUC >80% (Supplementary Figure 4). The top 6 were two 

glycerophospholipids, two metabolites associated with fatty acid metabolism, an amino acid, 

and a biothiol scavenger. All had higher levels in MS cases than controls (Figure 1).

Gene expression associations with top metabolites

We explored the relationships between expression for 9,067 genes and each of the top 

metabolites (Supplementary Table 4). Among MS-related genes, HLA-DRB1 was not 

associated with any metabolite, however the expression of several other HLA genes were 

associated with acylcarnitine C14:1 including HLA-DMA, HLA-DMB, HLA-DOA, HLA-
DPA1, HLA-DPB1, HLA-DRA, HLA-DRB3, and HLA-DRB6. The expression of multiple 

genes proximal (+/− 25 kilobases) to the 200 putative non-MHC MS risk variants were 

associated with the metabolites (Supplementary Table 5).22 Of note are the associations for 

KPNB1, CLEC16A, PIK3R2, IKZF1, TXK and PHGDH, which were associated with at 

least three of the 6 metabolites (p<0.1; Supplementary Table 5).

Pathway enrichment analyses of the top 2.5% p-value ranked genes associated with each 

metabolite, after adjustment for MS status, were conducted and multiple pathways were 

enriched for each metabolite (Supplementary Table 6). The top-ranked pathways included 

iron homeostasis signaling (pyroglutamate), ceramide degradation (pyroglutamate), antigen 

presentation (acylcarnitine C14:1), vitamin D biosynthesis (PC ae 42:5), and mitochondrial 

dysfunction (PC ae 40:5 and N-Methylmaleimide) (Table 2). We cross-referenced all 

metabolite-associated enriched pathways with pathways enriched among genes associated 

Andersen et al. Page 6

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with the putative 200 non-MHC risk variants by the International MS Genetics Consortium 

(Supplementary Table 6).22 A third of the metabolite-associated enriched pathways 

overlapped with the MS-related pathways. There were also several pathways enriched 

among the associated genes across metabolites (Supplementary Table 7), specifically 

apoptosis related processes (death receptor signaling, calcium-induced T lymphocyte 

apoptosis, lymphotoxin β receptor signaling, and TNFR1 signaling) and altered 

mitochondrial function (mitochondrial dysfunction, oxidative phosphorylation, and sirtuin 

signaling pathway).

MS risk alleles associations with top metabolites

We assessed the relationship between genetic risk and MS-predictive metabolite levels. 

While no association was observed for HLA-A*02, we identified an association between 

HLA-DRB1*15:01 and acylcarnitine C14:1 (Table 3; Figure 2). We also observed multiple 

associations between metabolite levels and the 175 putative non-MHC risk variants that we 

genotyped (Table 4). Of note were five SNPs associated with both phosphatidylcholines PC 

ae 40:5 and PC ae 42:5, four of which were genic variants within ETS1, IL2RA and AFF1.

Discussion

We combined exploratory open platform metabolomics with transcriptomics and risk variant 

genotyping to gain a multifaceted multiomic perspective on metabolic changes associated 

with MS. Our analyses identified 6 metabolites as promising MS predictive candidates 

involved in glutathione metabolism (pyroglutamate), fatty acid metabolism/oxidation 

(laurate, C14:1 acylcarnitine), cellular membrane composition (glycerophospholipids PC ae 

42:5 and PC ae 40:5), and a transient receptor potential A1 (TRPA1) channel agonism (N-

Methylmaleimide). Two of these metabolites have been previously associated with MS 

(pyroglutamate, laurate), while the remaining four have strong biologically plausible 

relevance.16, 17, 19, 28, 29 Integrated analyses with genomic and genetic data suggest distinct 

yet overlapping biological processes may be contributing to elevated levels of these 

metabolites in MS, including apoptotic processes and mitochondrial dysfunction.

Pyroglutamate (also known as 5-oxoproline) was the most important metabolite identified by 

random forest analysis. A natural cyclized derivative of glutamate that is generated during 

biosynthesis of the antioxidant glutathione, it has previously been associated with MS in 

other untargeted metabolomic analyses of CSF and plasma.16, 17, 19 Elevated pyroglutamate, 

as detected in our MS cohort, is associated with several rare metabolic disorders, including 

glutathione synthetase deficiency and 5-oxoprolinase deficiency. These disorders manifest 

neurological symptoms, including intellectual deficiency, microcephaly, and seizures. 

Murine experiments suggest that pyroglutamate may directly contribute to neurological 

symptoms, with peripheral pyroglutamate capable of crossing the blood brain barrier and 

triggering oxidative damage.30, 31 Pyroglutamate also stimulates sodium-dependent 

abluminal transport of amino acids across the blood brain barrier.32 As a marker of changes 

to glutathione metabolism and a source of oxidative damage, pyroglutamate may be both a 

marker of, and a contributor to, the environment of increased oxidative stress in MS.33 

Among the top-ranked pathways enriched among genes associated with this glutathione 
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intermediate were glutathione biosynthesis, iron hemostasis signaling, and ceramide/

sphigosine metabolism. The latter two pathways both contribute to apoptosis. Perturbed iron 

levels promote neuronal death, and abnormal iron deposition in the brain may facilitate 

neurodegeneration.34 Interestingly, elevated ceramide levels have been observed near MS 

plaques, and sphingosine metabolism, which is essential for myelin synthesis and 

maintenance, has been reported to be abnormal in the MS brain.35

The second most important metabolite identified by random forests was laurate (lauric acid), 

a medium-chain fatty acid that is elevated in the “Western Diet”.6 There is evidence 

supporting a role for this saturated fatty acid in MS pathology. In vitro treatment of mouse 

CD4+ T cells with laurate stimulated Th1 and Th17 differentiation and decreased Treg 

differentiation, while treatment of human CD4+ T cells promoted CD4+interferon-γ+ 

differentiation.28, 29 In a study of experimental autoimmune encephalomyelitis mice (a 

murine model of MS), increased dietary laurate promoted differentiation of Th1 and Th17 

cells, which contributed to more severe disease.29 Multiple pathways were associated with 

laurate, including Tec kinase signaling (essential for B and T cell development and 

activation), lymphotoxin β receptor signaling (apoptotic trigger that can result in the release 

of interleukin 8 [IL-8], and IL-8 contributes to Th17 development37), IL-8 signaling, 

sphigosine-1-phosphate signaling, and axonal guidance (Supplementary Table 6).

Two phosphatidylcholines, the primary components of cellular membranes and myelin, were 

predictive of MS status: PC ae 40:5 and PC ae 42:5. The partial hydrolysis of 

phosphatidylcholines by phospholipase A2 enzymes generates an array of bioactive 

products, including eicosanoid pro-inflammatory signaling molecules and myelin-damaging 

lysophophatidylcholines. In our data, increased expression of a group IV phospholipase A2 

enzyme, PLA2G4C, was significantly associated with increased PC ae 40:5 and PC ae 42:5 

levels (Supplementary Table 4). PLA2G4C is one of the least well-characterized enzymes in 

the family, though it is important for mitochondrial function and genetic variants have been 

associated with schizophrenia and autism spectrum disorder.38, 39 PLA2G4C is expressed 

throughout the brain and protein levels are highest in nervous system tissues.404142 There is 

evidence PLA2G4C facilitates macrophage differentiation and polarization and CD4+ T cell 

transcripts have been found to be restricted to only PLA2G4A and PLA2G4C members of 

the family, suggesting this PLA2 enzyme may have particular importance in MS-relevant 

immune cells 4344.

There was little overlap in the pathways enriched among the genes whose expression was 

associated with either phosphatidylcholine, though MS risk variants in IL2RA, ETS1, and 

AFF1 were associated with both metabolites. ETS1 is a transcription factor that influences a 

wide array of cellular processes; interestingly, it is predicted to regulate PLA2G4C based on 

the presence of core consensus sequences in the promoter.45 In our data, EST1 expression 

was associated with PC ae 42:5 levels (p=0.007; Supplementary Table 5). AFF1 is a core 

member of the transcription factor positive transcription elongation factor b (P-TEFb), 

which regulates RNA polymerase II-mediated transcription.46 In our data, AFF1 expression 

was associated with PC ae 40:5 levels (p=0.017; Supplementary Table 5). Of note, variants 

near or within AFF1 have been associated with circulating lipid levels in genome-wide 
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association studies, which supports an as yet uncharacterized role for AFF1 in lipid 

metabolism.47-50

The fourth lipid-related metabolite predictive of MS in our analyses was acylcarnitine 

C14:1, an intermediate of fatty acid oxidation and a marker for the rare genetic metabolic 

disorder VCLAD (very long-chain acyl-dehydrogenase deficiency). In general, 

acylcarnitines are indicative of mitochondrial function and energy metabolism, which are 

both relevant to, and perturbed by, MS pathogenesis.51, 52 The sirtuin signaling pathway, 

which is associated with longevity and mitochondrial efficiency, was enriched among genes 

associated with acylcarnitine C14:1; it was also enriched among genes associated with PC ae 

40:5 and N-methylmaleide (Supplementary Table 7).53 Also enriched in association with 

C14:1 were genes involved with antigen presentation, including the expression of multiple 

class II HLA genes: HLA-DMA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DPB1, HLA-
DRA, HLA-DRB3, and HLA-DRB6 (Supplementary Table 4). Carriage of HLA-
DRB1*15:01 risk alleles was also associated with C14:1, though not HLA-DRB1 expression 

(Table 3, Figure 2). The presentation of antigens by antigen presenting cells activates CD4+ 

helper T cells, which in turn triggers a switch in metabolic programming from fatty acid 

oxidation to glycolysis.54 We hypothesize that a change in acylcarnitine levels paired with a 

change in class II HLA gene expression may reflect an activated immune environment 

promoting a transition in immune cell energy metabolism.

The final metabolite important for predicting MS status in these data was N-

methylmaleimide, a transient receptor potential ankyrin 1 (TRPA1) channel agonist. TRPA1 

is a nonselective membrane cation channel predominantly expressed in nociceptive sensory 

neurons but also astrocytes and other non-neuronal cells.55-57 TRPA1 is activated by 

numerous endogenous and exogenous agonists and participates in hyperalgesia and 

neurogenic inflammation.56-58 In mice with cuprizone-induced demyelination (a murine MS 

model that circumvents an autoimmune response), TRPA1 deficiency significantly reduced 

non-immune mediated demyelination by reducing apoptosis of mature oligodendrocyte.59, 60 

As for N-methylmaleimide, little else is known about this electron deficient thiol-blocking 

agent. We did, however, associate this metabolite with an enrichment for pathways involved 

in mitochondrial functioning (mitochondrial dysfunction, oxidative phosphorylation, sirtuin 

signaling), cholesterol/steroid synthesis (mevalonate pathway 1), and apoptosis (Table 2, 

Supplementary Tables 6 and 7).

There are several strengths to this exploratory investigation of altered metabolic profiles in 

MS. First, we combined untargeted and targeted metabolomics approaches to sera from a 

homogeneous cohort of non-Hispanic white, non-smoking males with and without MS, who 

were frequency matched for age and BMI. Second, we focused on cases who were drug 

naïve for at least 3 months; thus, we are confident the metabolic signal is not modulated by 

drug activity. Third, we applied robust non-parametric methods to discern metabolites 

important for MS status, then used parametric models to determine metabolites most 

predictive of MS status. And lastly, we integrated multiomic data (transcriptomic and 

genetic) to explore possible patho-etiologic relationships contributing to variation in the 

metabolites of interest.
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There are a few limitations we must acknowledge. First is the absence of a replication data 

set. Second, the use of prevalent and not incident MS cases was not ideal; as a result, the 

identified metabolites may not reflect processes conferring risk but ongoing 

pathophysiological processes. For example, we identified two phosphatidylcholines which 

are common components of myelin. Third, our cohort was relatively homogenous for sex, 

disease type, smoking status, BMI (most are overweight/obese), and disease duration 

(Supplementary Table 1) – while this was a strength in reducing confounding, it precluded 

us from investigating associations for these traits in this sample.

In conclusion, we applied targeted and untargeted discovery metabolomics approaches to 

identify 6 metabolites with elevated levels in MS cases compared with controls. Two of 

these MS-predictive metabolites have prior evidence for a role in MS, and there is a strong 

biological rationale for the remaining four peripheral blood metabolites being relevant to MS 

pathology.

Our integrated analyses suggested that perturbations in mitochondrial functioning, apoptosis, 

and energy metabolism contributed to the altered MS metabolic profiles. This study has 

generated a wealth of information that may lead to the development of new metabolic targets 

for improved MS diagnosis and treatment. Further research is warranted, particularly larger 

studies including diverse patient populations with considerations for sex, race and MS 

subtype. It would also be of great interest to investigate the relationships between the 

metabolites and MS progression (i.e. laurate was associated with disease severity in a murine 

MS model). And lastly, it would be important to determine if the metabolomics associations 

are specific to MS or represent inflammatory or neurodegenerative process that may be 

shared with other autoimmune and neurological disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Six metabolites were predictive for MS in males

• Results support lipidomic changes in MS

• Several MS risk variants were associated with the top predictive metabolites

• Pathways analyses suggest processes involved in MS pathology

Andersen et al. Page 15

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Box plots of the top metabolites by MS status.
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Figure 2. 
Box plot of C14:1 Tetradecemoyl-L-carnitine by HLA*DRB1*15:01 genotype.
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Table 2.

Top 5 pathways enriched per metabolite based on gene expression analyses.

Metabolite Biological Pathways P-value Genes

Pyroglutamate

Iron homeostasis signaling pathway 1.3E-04 HBZ, FTL, HSCB, CIAO1, BMP6, CUL1, 
SLC48A1

Ceramide Degradation 1.5E-03 ACER3, NAAA

Sphingosine and Sphingosine-1-phosphate 
Metabolism 2.6E-03 ACER3, NAAA

Biotin-carboxyl Carrier Protein Assembly 2.6E-02 ACACB

Glutathione Biosynthesis 2.6E-02 GCLM

Laurate

Ephrin B Signaling 7.2E-04 HNRNPK, GNB1, PXN, RAC2, EPHB1

Inflammasome pathway 9.1E-04 MYD88, NLRP1, PYCARD

Germ Cell-Sertoli Cell Junction Signaling 1.3E-03 IQGAP1, PAK2, PIK3CD, RHOB, PXN, 
TUBA4A, RAC2

Melanocyte Development and Pigmentation 
Signaling 2.6E-03 PIK3CD, PLCG1, RPS6KA4, RPS6KC1, 

PRKAR1A

SAPK/JNK Signaling 2.7E-03 PIK3CD, MAP4K2, HNRNPK, GNB1, 
RAC2

Phosphatidylcholine PC ae C42:5

Asparagine Biosynthesis I 1.1E-02 ASNS

Role of Oct4 in Mammalian Embryonic Stem 
Cell Pluripotency 1.4E-02 FAM208A, IGF2BP1, NR2F6

Dolichol and Dolichyl Phosphate Biosynthesis 2.2E-02 DOLK

1,25-dihydroxyvitamin D3 Biosynthesis 3.3E-02 CYP2R1

S-adenosyl-L-methionine Biosynthesis 3.3E-02 MAT2A

Phosphatidylcholine PC ae C40:5

Oxidative Phosphorylation 2.8E-05 NDUFB6, COX17, NDUFA7, NDUFB7, 
ATP5PF, COX5B, VPS9D1

Mitochondrial Dysfunction 1.1E-04 CYB5R3, NDUFB6, COX17, NDUFA7, 
NDUFB7, ATP5PF, COX5B, VPS9D1

Sirtuin Signaling Pathway 1.3E-03
NDUFB6, PARP1, NDUFA7, NDUFB7, 
ATP5PF, GADD45A, POLR1C, SLC2A1, 
ATG16L2

Death Receptor Signaling 1.9E-03 PARP12, PARP1, DFFA, PARP14, BIRC3

Calcium-induced T Lymphocyte Apoptosis 1.9E-03 HLA-DQB1, EP300, CD4, PPP3CC

Tetradecenoyl-L-carnitine (C14:1)

Antigen Presentation Pathway 4.3E-08 HLA-DPB1, HLA-DOA, HLA-DMA, HLA-
DPA1, HLA-DMB, HLA-DRA, CIITA

Allograft Rejection Signaling 1.5E-06 HLA-DPB1, HLA-DOA, HLA-DMA, HLA-
DPA1, HLA-DMB, HLA-DRA

OX40 Signaling Pathway 6.6E-06 HLA-DPB1, HLA-DOA, HLA-DMA, HLA-
DPA1, HLA-DMB, HLA-DRA

Cdc42 Signaling 1.9E-05
HLA-DPB1, HLA-DOA, HLA-DMA, HLA-
DPA1, HLA-DMB, HLA-DRA, ARPC1A, 
VAV2

B Cell Development 7.8E-05 HLA-DOA, HLA-DMA, HLA-DMB, HLA-
DRA

N-Methylmaleimide

Oxidative Phosphorylation 6.0E-06 ATP5S, NDUFA4, COX7B, NDUFA9, 
NDUFA6, ATP5F1C, UQCRB, NDUFAB1

Sirtuin Signaling Pathway 7.6E-06
NFKB1, GOT2, CLOCK, SP1, NDUFAB1, 
RELA, NDUFA4, PARP1, ATG3, NDUFA9, 
NDUFA6, ATP5F1C, GTF3C2

Superpathway of Geranylgeranyldiphosphate 
Biosynthesis I (via Mevalonate) 2.0E-05 IDI1, HMGCR, FNTB, ACAT1

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Andersen et al. Page 20

Metabolite Biological Pathways P-value Genes

Mitochondrial Dysfunction 3.6E-05
ATP5S, NDUFA4, COX7B, NDUFA9, 
NDUFA6, CASP3, ATP5F1C, UQCRB, 
NDUFAB1

Mevalonate Pathway I 2.4E-04 IDI1, HMGCR, ACAT1
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Table 3.

Genetic associations between HLA variants and top metabolites.

Metabolite
HLA-DRB1*15:01 HLA-A*02

Effect Direction P-value Effect Direction P-value

Pyroglutamate − 0.66 − 0.31

Laurate − 0.31 + 0.79

Phosphatidylcholine PC ae C42:5 + 0.80 + 0.68

Phosphatidylcholine PC ae C40:5 − 0.53 + 0.21

C14:1 (Tetradecenoyl-L-carnitine) − 0.02 + 0.75

N-Methylmaleimide − 0.10 + 0.29
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Table 4.

Genic non-MHC MS risk variant associations with the top metabolites.

Metabolite Associated SNPs Location
(GRCh38/hg38)

Minor
Allele

Effect
Direction P-value SNP Proximal Genes

Pyroglutamate

rs531612 chr11:65937961 C − 0.013 DRAP1, TSGA10IP

rs10230723 chr7:50200284 T + 0.019 C7orf72, IKZF1

rs2150879 chr17:59781849 A − 0.024 VMP1

rs34681760 chr5:6712721 T + 0.033 LOC100505625, PAPD7

rs9282641 chr3:122077921 A + 0.047 CD86

Laurate

rs4766578 chr12:111466567 T − 0.017 SH2B3

rs2317231 chr1:157716547 T + 0.019 FCRL3, FCRL2

rs9913257 chr17:75324812 C + 0.023 GRB2

rs6032662 chr20:46105671 C + 0.027 CD40, NCOA5

rs2269434 chr11:47338861 C + 0.034 MYBPC3

rs12925972 chr16:79077400 T − 0.043 WWOX

rs17780429 chr6:137901451 A + 0.045 LOC100130476

Phosphatidylcholine PC ae 42:5

rs4262739 chr11:128551280 A − 0.003 ETS1

rs12373588 chr2:111708688 G + 0.007 ANAPC1, MIR4435-1HG

rs12622670 chr2:68419404 C + 0.014 FBXO48, PLEK

rs2705616 chr4:86941244 G + 0.018 AFF1

rs2705618 chr4:86916393 T + 0.018 AFF1

rs62013236 chr15:78955140 T + 0.020 CTSH, RASGRF1

rs6589939 chr11:122647817 G − 0.020 MIR100HG, UBASH3B

rs116899835 chr14:88057144 T + 0.021 LINC01146

rs6738544 chr2:191124630 A − 0.029 STAT4

rs12722559 chr10:6028310 A + 0.033 IL2RA

rs2269434 chr11:47338861 C − 0.035 MYBPC3

rs9913257 chr17:75324812 C − 0.047 GRB2

rs6952809 chr7:2408858 T + 0.048 CHST12

Phosphatidylcholine PC ae 40:5

rs1076928 chr6:36380912 C + 0.001 ETV7

rs4262739 chr11:128551280 A − 0.004 ETS1

rs12373588 chr2:111708688 G + 0.007 ANAPC1, MIR4435-1HG

rs1534422 chr2:12500615 A − 0.016 LOC100506457

rs883871 chr17:40096407 A − 0.026 NR1D1

rs719219 chr20:49818871 A − 0.028 B4GALT5, SLC9A8

rs12722559 chr10:6028310 A + 0.034 IL2RA

rs11852059 chr14:51839373 C + 0.035 FRMD6, GNG2

rs137956 chr22:39897459 C + 0.036 ENTHD1, GRAP2

rs9878602 chr3:71486187 G + 0.038 FOXP1

rs140522 chr22:50532837 T − 0.041 ODF3B

rs9992763 chr4:108137562 T − 0.042 LEF1

rs2705616 chr4:86941244 G + 0.044 AFF1

rs2705618 chr4:86916393 T + 0.044 AFF1

Mult Scler Relat Disord. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Andersen et al. Page 23

Metabolite Associated SNPs Location
(GRCh38/hg38)

Minor
Allele

Effect
Direction P-value SNP Proximal Genes

rs34695601 chr14:75547955 C + 0.047 BATF

Acylcarnitine C14:1 rs2705616 chr4:86941244 G − 0.001 AFF1

rs2705618 chr4:86916393 T − 0.001 AFF1

rs12614091 chr2:203768138 T + 0.006 CD28, CTLA4

rs1177228 chr2:61015275 A + 0.016 PUS10

rs2269434 chr11:47338861 C + 0.02 MYBPC3

rs9909593 chr17:39813896 G − 0.025 IKZF3

rs2331964 chr3:121824051 T − 0.035 IQCB1

rs983494 chr1:160734175 A + 0.045 CD48, SLAMF7

N-methylmaleimide

rs28703878 chr8:78504987 G + 0.001 LOC102724874, PKIA

rs3923387 chr8:143912625 T + 0.002 EPPK1, PLEC

rs12708716 chr16:11086016 G − 0.004 CLEC16A

rs11852059 chr14:51839373 C − 0.005 FRMD6, GNG2

rs6837324 chr4:48125245 G + 0.007 TXK

rs10245867 chr7:28102567 T + 0.012 JAZF1

rs719316 chr6:16672529 C − 0.015 ATXN1

rs438613 chr3:28030595 C + 0.026 CMC1, EOMES

rs35716097 chr5:177379635 T + 0.031 RGS14

rs483180 chr1:119724882 G + 0.032 PHGDH

rs12614091 chr2:203768138 T − 0.041 CD28, CTLA4
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