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Abstract

A long-standing goal in neuroscience has been to bring together neuronal recordings and neural 

network modeling to understand brain function. Neuronal recordings can inform the development 

of network models, and network models can in turn provide predictions for subsequent 

experiments. Traditionally, neuronal recordings and network models have been related using 

single-neuron and pairwise spike train statistics. We review here recent studies that have begun to 

relate neuronal recordings and network models based on the multi-dimensional structure of 

neuronal population activity, as identified using dimensionality reduction. This approach has been 

used to study working memory, decision making, motor control, and more. Dimensionality 

reduction has provided common ground for incisive comparisons and tight interplay between 

neuronal recordings and network models.

Introduction

For decades, the fields of experimental neuroscience and neural network modeling 

proceeded largely in parallel. Whereas experimental neuroscience focused on understanding 

how the activities of individual neurons relate to sensory stimuli and behavior, the modeling 

community sought to understand theoretically how neural networks can give rise to brain 

function. In recent years, developments in neuronal recording technology have enabled the 

simultaneous recording of hundreds of neurons or more [1]. Concurrently, increases in 
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computational power have enabled the simulation of large neural networks [2]. Together, 

these developments should enable experimental data to more stringently constrain network 

model design and network models to better predict neuronal activity for subsequent 

experiments [3,4].

A key question is how to relate large-scale neuronal recordings with large-scale network 

models. Network models typically do not attempt to replicate the precise anatomical 

connectivity of the biological network from which the neurons are recorded, since the 

underlying anatomical connectivity is usually unknown (although technological 

developments are making this possible [5]). In such settings, there is not a one-to-one 

correspondence of each recorded neuron with a model neuron. To date, comparisons 

between recordings and models have primarily relied on aggregate spike train statistics 

based on single neurons (e.g., distribution of firing rates [6], distribution of tuning 

preferences [7], Fano factor [8]) and pairs of neurons (e.g., spike time [9] and spike count 

correlations [10,11]), as well as single-neuron activity time courses [12,13]. To go beyond 

single-neuron and pairwise statistics, recent studies have examined the multi-dimensional 

structure of neuronal population activity to uncover important insights into mechanisms 

underlying neuronal computation (e.g., [14–24]). This has motivated the inquiry of whether 

network models reproduce such population activity structure, in addition to single-neuron 

and pairwise statistics, raising the bar on what constitutes an agreement between a network 

model and neuronal recordings [3].

Population activity structure can be characterized using dimensionality reduction [25–27], 

which provides a concise summary (i.e., a low-dimensional representation) of how a 

population of neurons covaries and how their activities unfold over time. Several 

dimensionality reduction methods have been applied to neuronal population activity, 

including principal component analysis (e.g., [14,15,20,28,29]), demixed principal 

component analysis [30], factor analysis [16,19,31], Gaussian-process factor analysis [32], 

latent factor analysis via dynamical systems [33], tensor component analysis [34], and more 

(see [25] for a review). The low-dimensional representation describes a neuronal process 

being carried out by the larger circuit from which the neurons were recorded [32,35]. The 

same dimensionality reduction method can be applied to the recorded activity and to the 

network model activity, resulting in population activity structures that can be directly 

compared (Fig. 1). This benefit is also true of related methods for comparing neuronal 

recordings and network models involving neuronal decoding, population response similarity, 

and predicting the activity of one neuron from a population of other neurons [3].

Dimensionality reduction has been adopted by recent studies to relate neuronal recordings 

and network models to study working memory, decision making, motor control, and more. 

Although many studies have separately employed large-scale neuronal recordings, large-

scale network models, and dimensionality reduction, this review focuses on studies that 

incorporate all three components. Below we describe these studies, organized by the aspect 

of population activity structure used to relate neuronal recordings and network models: 

population activity time courses, functionally-defined neuronal subspaces, and population-

wide neuronal variability. These were chosen first because they represent the key ways in 

which dimensionality reduction has been used in the literature to relate population 
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recordings and network models. More importantly, these three categories represent 

fundamental aspects of population activity structure – how it unfolds over time, how 

different types of information can be encoded in different subspaces, and how it varies from 

trial to trial.

Population activity time courses

Dynamical structures, such as point attractors, line attractors, and limit cycles, arising from 

network models have long been hypothesized to underlie the computational ability of 

biological networks of neurons [36–38]. Such dynamical structures have been implicated in 

decision making [39,40], memory [41–43], oculomotor integration [44,45], motor control 

[46], olfaction [47], and more. A fundamental question in systems neuroscience is whether 

these dynamical structures are actually used by the brain. Although single-neuron and 

pairwise metrics can be informative [42,45], analyzing the activity of a population of 

neurons together has enabled deeper connections. In particular, the time course of the 

activity of a population of neurons can be summarized by low-dimensional neuronal 

trajectories [25], as identified by dimensionality reduction. These neuronal trajectories can 

provide a signature of a particular dynamical structure. For example, a point attractor shows 

convergent trajectories. The neuronal trajectories extracted from the recorded activity can 

then be compared with those extracted from the network model activity. Such a comparison 

does not require a one-to-one correspondence between each recorded neuron and a model 

neuron, but instead relies on a summary of the population activity time courses.

This approach was recently used to study how the brain flexibly controls the timing of 

behavior [48,49]. By applying dimensionality reduction to neuronal activity recorded from 

medial frontal cortex, Wang et al. found that population activity time courses for different 

time intervals followed a stereotypical path, but traversed that path at different speeds (Fig. 

2A, top). To understand how a network of neurons can accomplish this, the authors trained a 

recurrent network model with 200 neurons to produce only the appropriate stimulus-

behavior relationships. Wang et al. then applied dimensionality reduction to the activity from 

the network model. They surprisingly observed that the neuronal trajectories of the network 

model also followed a stereotypical path, even though the network model was not trained to 

reproduce the recorded activity (Fig. 2A, bottom). This population-level correspondence 

enabled by dimensionality reduction laid the foundation for them to then dissect the network 

model to understand the core neuronal mechanisms [50]. They found that the input to the 

network drove the network activity from one fixed point to another, where the transition 

speed was determined by the depth of the energy basin created by the input (Fig. 2A, 

bottom).

Other studies have also used this approach to understand how the time course of neuronal 

activity relates to computations underlying motor control [12,51–53] decision making 

[17,54–56], and working memory [13,57]. In each of these studies, a network model was 

constructed without referencing the recorded activity. Dimensionality reduction was applied 

to extract neuronal trajectories to obtain a correspondence between the neuronal recordings 

and network models. To study the neuronal mechanisms underlying the observed time 

courses, the network models were then dissected to reveal dynamical structures, such as 
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fixed points or point attractors [17,54,55], line attractors [17], and oscillatory modes [12,51–

53]. Whether or not these dynamical structures are indeed at play in real neuronal networks 

is still an open question. Nevertheless, these studies are beginning to demonstrate that it is at 

least fruitful to interpret neuronal activity in terms of these dynamical structures, a process 

facilitated by dimensionality reduction.

Functionally-defined neuronal subspaces

Recent studies have investigated how distinct types of information encoded by the same 
neuronal population can be parsed by downstream brain circuits [58–60]. An enticing 

proposal is that different types of information are encoded in different subspaces within the 

population activity space, where the subspaces are identified using dimensionality reduction. 

For example, Kaufman et al. [18] asked how it is possible for neurons in the motor cortex to 

be active during motor preparation, yet not generate an arm movement. They found that 

motor cortical activity during motor preparation resided outside of the activity subspace 

most related to muscle contractions. This allows the motor cortex to prepare arm movements 

without driving downstream circuits, a characteristic which can be implemented by a linear 

readout mechanism. This concept of functionally-defined neuronal subspaces has also been 

used in other studies of motor control [23,61–63], decision making [30,64], short-term 

memory [30,65], learning [19], and visual processing [24].

To understand how a neuronal circuit can implement and exploit such functionally-defined 

neuronal subspaces, one can construct a network model to see whether it reproduces the 

empirical observations. If so, one can then dissect the network to study the underlying 

mechanisms. Mante et al. [17] applied dimensionality reduction to recordings in prefrontal 

cortex to find that motion and color of the visual stimulus were encoded in distinct 

subspaces. They then trained a recurrent network model with 100 neurons to produce only 

the appropriate stimulus-behavior relationships. When they applied the same dimensionality 

reduction method to the network model activity, they surprisingly found that the motion and 

color of the visual stimulus were also encoded in distinct subspaces, even though the 

network model was not trained to reproduce the recorded activity. This population-level 

correspondence between the network model and recordings was enabled by dimensionality 

reduction and went beyond comparisons based on individual neurons or pairs of neurons. 

Mante et al. then dissected the network model to uncover how the two types of information 

encoded in distinct subspaces can be selectively used to form a decision.

Dimensionality reduction has also revealed that, in some cases, standard network models do 

not reproduce the functionally-defined subspaces identified from neuronal recordings. For 

example, Murray et al. [20] applied dimensionality reduction to recordings in prefrontal 

cortex during a working memory task to find that, even though firing rates of individual 

neurons changed over time, there was a subspace in which the activity stably encoded the 

memorized target location (Fig. 2B, top). They then applied the same analyses to activity 

from several prominent network models and found that none of them reproduced both the 

time-varying activity of individual neurons and the subspace in which the memory was 

stably encoded. This provided the impetus to develop a new network model that did 

reproduce these features of the recorded activity (Fig. 2B, bottom) (see also [66]). As 
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another example, Elsayed et al. [67] found that standard network models do not reproduce 

the empirical observation described above that neuronal activity during movement 

preparation and movement execution lie in orthogonal subspaces. Such insights obtained 

using dimensionality reduction can guide the development of more sophisticated network 

models.

Population-wide neuronal variability

The previous sections focus largely on neuronal activity that is averaged across trials and on 

firing rate-based network models. This naturally obscures the trial-to-trial variability that is a 

fundamental feature of neuronal responses across the cortex [68], both at the level of single 

neuron responses [69] as well as variability shared by the population [11,70]. Theoretical 

and experimental studies have focused on how the structure of that variability places limits 

on information coding [71–74], and in turn influences our behavior. At the same time, a 

growing body of work has demonstrated that variability can be thought of not only as noise 

to be removed, but also a signature of ongoing decision processes and cognitive variables 

(e.g., [75–77]). To move beyond single-neuron and pairwise measurements of neuronal 

variability, recent studies have begun to consider population-wide measures of neuronal 

variability [78–82], as enabled by dimensionality reduction. Such measures allow one to i) 

assess whether the large number of single-neuron and pairwise variability measurements can 

be succinctly summarized by a small number of variables (e.g., the entire population 

increasing and decreasing its activity together can be described by a single scalar variable), 

and ii) relate the population activity on individual experimental trials to behavior [22,32–

34,83–85].

In parallel with the growing interest in neuronal variability, there have been attempts to 

create network models that exhibit variability matching recorded neurons. In particular, a 

class of models has used the balance between excitation and inhibition as a way to generate 

variability as an emergent property of network structure, rather than via an external variable 

source [71,86,87]. In these models, the particular structure of the network has a large impact 

on the population-wide variability that emerges. Using the lens of factor analysis, 

Williamson et al. [31] found that the dimensionality of spontaneous activity fluctuations in 

V1 neurons increases with the number of recorded neurons (Fig. 2C, top). This was more 

consistent with activity generated by networks with clustered excitatory connections [8] than 

networks with unstructured connectivity [86] (Fig. 2C, bottom). The combination of 

population-wide measures of variability (in this case, dimensionality) and the ability to 

manipulate model network structures facilitated an understanding of how features of 

variability observed in biological networks relate to network structure.

The approach of using dimensionality reduction to compare the population-wide variability 

of neuronal recordings and network models has also been applied to study spontaneous 

versus evoked activity [88,89], the activity of different classes of neurons [90], and the 

activity during different behavioral conditions, such as attention [81,82]. Dimensionality 

reduction has also been used to analyze population activity from balanced network models 

to help identify the crucial network architecture and synaptic timescales required to produce 

the low-dimensional shared variability that is widely reported in neuronal recordings 
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[82,87]. Together these studies demonstrate the power of combining dimensionality 

reduction and network models to understand the mechanisms and effects of neuronal 

variability.

Conclusion

Dimensionality reduction has enabled incisive comparisons between biological and model 

networks in terms of population activity time courses, functionally-defined neuronal 

subspaces, and population-wide neuronal variability. Such comparisons result in either i) a 

correspondence between the neuronal recordings and the network model, in which case the 

model can be dissected to understand underlying network mechanisms, or ii) discrepancies 

between the neuronal recordings and standard network models, leading to the development 

of improved models. This approach (cf. Fig. 1) has already provided insight into the 

neuronal mechanisms underlying brain functions such as working memory, decision making, 

and motor control, and is likely to become even more important as the scale of neuronal 

recordings and network models grows.

A key consideration in network modeling is what aspects of neuronal recordings the model 

should reproduce. We posit that the population activity structure (including population 

activity time courses, functionally-defined neuronal subspaces, and population-wide 

neuronal variability) will provide key signatures of how neurons work together to give rise to 

brain function. Thus, if a network model is to provide a systems-level account of brain 

function, we should require it to reproduce the population activity structure of neuronal 

recordings, in addition to existing population metrics [3] and standard spike train statistics 

based on individual and pairs of neurons.

Most studies described here have used neuronal recordings to inform network models via 

dimensionality reduction. An important future direction is to use network models and 

dimensionality reduction to design new experiments and form predictions. For example, if 

one day we can experimentally perturb neuronal activity in specified directions in the 

population activity space [91], we can test whether driving the population activity in 

particular directions leads to particular decisions or movements predicted by the network 

model. The hope is to establish a virtuous cycle, where neuronal recordings and network 

models closely inform each other through the common ground provided by dimensionality 

reduction.
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Highlights

• The interplay of neuronal recordings and network models is becoming ever 

stronger.

• Population activity structure provides common ground for incisive 

comparisons.

• Dimensionality reduction can be used to identify population activity structure.

• This approach is used to study working memory, decision making, motor 

control, etc.
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Fig 1. Relating biological and model networks using population analyses:
Because a model network typically does not attempt to replicate the precise anatomical 

connectivity of a biological network, there is not a one-to-one correspondence of each 

biological neuron with a model neuron. Dimensionality reduction can be used to obtain a 

concise summary of the population activity from each network. This provides common 

ground for incisive comparisons between biological and model networks. Discrepancies in 

the population activity structure between biological and model networks can then help to 

refine model networks.
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Fig 2. Examples of comparing neuronal recordings and network models using dimensionality 
reduction.
A. (Top) Population activity time courses from medial frontal cortex during a time 

production task. Each trajectory represents a time course of neuronal activity during a 

different produced time interval. Circles represent the start and end of the time production 

interval and diamonds represent a fixed time interval after the start circle. Diamonds appear 

closer to the start of the trajectory on long-interval trials (blue) than short-interval trials 

(red), indicating that neuronal activity traverses the path at different speeds during the two 

intervals. (Bottom) Circles represent fixed points in the model network’s dynamics and 

diamonds represent a fixed time interval after the start of the time production task. A similar 

difference in traversal speed is observed in the model network as was observed in the neural 

recordings. Adapted with permission from [48]. B. (Top) Delay period activity from 

prefrontal cortex during a delayed saccade task. Each trajectory represents a different 

stimulus condition. The trajectories for different stimuli remain well-separated in a stimulus 

subspace throughout the delay period. (Bottom) Network model activity demonstrating 

similar subspace stability. Adapted with permission from [20]. C. (Top) Dimensionality of 

population-wide neuronal variability in primary visual cortex increases with the number of 

neurons recorded. (Bottom) A similar dimensionality trend is observed for a spiking network 

model with clustered excitatory connections (blue), but not for a model with unstructured 

connectivity (red). Adapted with permission from [31].
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