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Abstract
There are two popular approaches for automated white matter parcellation using diffusion MRI

tractography, including fiber clustering strategies that group white matter fibers according to

their geometric trajectories and cortical-parcellation-based strategies that focus on the struc-

tural connectivity among different brain regions of interest. While multiple studies have

assessed test–retest reproducibility of automated white matter parcellations using cortical-

parcellation-based strategies, there are no existing studies of test–retest reproducibility of fiber

clustering parcellation. In this work, we perform what we believe is the first study of fiber clus-

tering white matter parcellation test–retest reproducibility. The assessment is performed on

three test–retest diffusion MRI datasets including a total of 255 subjects across genders, a

broad age range (5–82 years), health conditions (autism, Parkinson's disease and healthy sub-

jects), and imaging acquisition protocols (three different sites). A comprehensive evaluation is

conducted for a fiber clustering method that leverages an anatomically curated fiber clustering

white matter atlas, with comparison to a popular cortical-parcellation-based method. The two

methods are compared for the two main white matter parcellation applications of dividing the

entire white matter into parcels (i.e., whole brain white matter parcellation) and identifying par-

ticular anatomical fiber tracts (i.e., anatomical fiber tract parcellation). Test–retest reproducibility

is measured using both geometric and diffusion features, including volumetric overlap (wDice)

and relative difference of fractional anisotropy. Our experimental results in general indicate that

the fiber clustering method produced more reproducible white matter parcellations than the

cortical-parcellation-based method.
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1 | INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) provides the only exis-

ting technique to map the structural connections of the living human

brain in a noninvasive way (Basser, Mattiello, & LeBihan, 1994). dMRI

allows the estimation of white matter fiber tracts in the brain via a pro-

cess called tractography (Basser, Pajevic, Pierpaoli, Duda, & Aldroubi,

2000), which has been widely used for understanding neurological

development, brain function, and brain disease, as described in several

reviews (Ciccarelli, Catani, Johansen-Berg, Clark, & Thompson, 2008;

Essayed et al., 2017; Pannek, Scheck, Colditz, Boyd, & Rose, 2014;

Piper, Yoong, Kandasamy, & Chin, 2014; Yamada, Sakai, Akazawa,

Yuen, & Nishimura, 2009). White matter parcellation, that is, dividing

the massive number of tractography fibers (streamline trajectories)

into multiple fiber parcels (or fiber tracts), is the first and essential step

to enable fiber quantification and visualization. White matter

parcellation can enable the study of fiber parcels from the entire white

matter to identify between-population differences (e.g., between

patients harboring disease and healthy subjects) using machine learn-

ing or statistical analyses (Ingalhalikar et al., 2014; Sporns, Tononi, &

Kötter, 2005; Zalesky, Cocchi, Fornito, Murray, & Bullmore, 2012;

Zhang, Savadjiev, et al., 2018; Zhang, Wu, Ning, 2018). White matter

parcellation is also important for identifying anatomical fiber tracts for

clinical visualization (Golby et al., 2011; Gong et al., 2018; Nimsky,
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Ganslandt, Dorit, Gregory Sorensen, & Fahlbusch, 2006; O'Donnell

et al., 2017) or hypothesis-driven research (Alexander et al., 2007;

Shany et al., 2017; Wu et al., 2015, 2018; Yeo, Jang, & Son, 2014).

Automated and robust white matter parcellation can enable the analy-

sis of new, large dMRI datasets that are being acquired to study com-

plex neural systems across the lifespan and across brain disorders

(Alexander et al., 2017; Casey et al., 2018; Thompson et al., 2017).

There are two popular strategies for automated white matter

parcellation (O'Donnell, Golby, & Westin, 2013): (a) fiber clustering that

groups white matter fibers according to their geometric trajectories,

aiming to reconstruct tracts corresponding to the white matter anatomy

(Ding, Gore, & Anderson, 2003; Garyfallidis et al., 2018; Garyfallidis, Brett,

Correia, Williams, & Nimmo-Smith, 2012; Guevara et al., 2012; Jin et al.,

2014; Kumar, Desrosiers, Siddiqi, Colliot, & Toews, 2017; O'Donnell &

Westin, 2007; Prasad et al., 2014; Siless, Chang, Fischl, & Yendiki, 2018;

Visser, Nijhuis, Buitelaar, & Zwiers, 2011; Wassermann, Bloy, Kanterakis,

Verma, & Deriche, 2010; Zhang, Wu, Norton, 2018) and (b) cortical-

parcellation-based that parcellates tractography according to a cortical

parcellation, focusing on the structural connectivity among different

brain regions of interest (ROIs) (Bassett & Bullmore, 2016; Bastiani,

Shah, Goebel, & Roebroeck, 2012; Bullmore & Sporns, 2009; Gong

et al., 2009; Ingalhalikar et al., 2014; Sporns et al., 2005; Wakana

et al., 2007; Wassermann et al., 2016; Yeh, Badre, & Verstynen,

2016; Zalesky et al., 2012; Zhang et al., 2010).

An important goal of white matter parcellation is to identify white

matter structures that are reproducible (O'Donnell & Pasternak, 2015).

Test–retest reproducibility assesses whether parcellated white matter

structures can be reliably reproduced for the same individual subject in

repeated (test–retest) dMRI scans. Test–retest reproducibility is consid-

ered to be a good indicator of the reliability of white matter parcellation

for potential clinical applications (Besseling et al., 2012; Jovicich et al.,

2014; Keihaninejad et al., 2013; Kristo et al., 2013; Lin et al., 2013). To

measure test–retest reproducibility, previous works have used geometri-

cal measures such as volume, volumetric overlap, fiber length and shape,

and number of fibers (Cheng et al., 2012; Cousineau et al., 2017; Kristo

et al., 2013; Lin et al., 2013; Owen, Chang, & Mukherjee, 2015; Smith,

Tournier, Calamante, & Connelly, 2015; Wang et al., 2012; Zhao et al.,

2015). Other groups have used diffusion measures such as fractional

anisotropy (FA) and mean diffusivity (MD) computed from the voxels

through which the parcellated fibers pass (Besseling et al., 2012;

Ciccarelli et al., 2003; Duan, Zhao, He, & Shu, 2015; Kristo et al., 2013;

Papinutto, Maule, & Jovicich, 2013; Pfefferbaum, Adalsteinsson, &

Sullivan, 2003; Vollmar et al., 2010; Yendiki, Reuter, Paul, Diana Rosas, &

Fischl, 2016). While multiple studies have assessed test–retest repro-

ducibility of white matter parcellations using cortical-parcellation-based

strategies, for example, on the brain connectome network (Besson,

Lopes, Leclerc, Derambure, & Tyvaert, 2014; Bonilha et al., 2015;

Buchanan, Pernet, Gorgolewski, Storkey, & Bastin, 2014; Dennis

et al., 2012; Duda, Cook, & Gee, 2014; Schumacher et al., 2018;

Smith et al., 2015; Vaessen et al., 2010; Zhao et al., 2015; Zhang,

Descoteaux, et al., 2018) and on anatomical fiber tracts (Besseling

et al., 2012; Cousineau et al., 2017; Heiervang, Behrens, Mackay,

Robson, & Johansen-Berg, 2006; Kristo et al., 2013; Lin et al., 2013;

Papinutto et al., 2013; Tensaouti, Lahlou, Clarisse, Lotterie, & Berry,

2011; Wang et al., 2012; Yendiki et al., 2016), there are no existing

studies of fiber clustering, to our knowledge. Studies have suggested that

fiber clustering approaches have advantages in parcellating the white

matter in a highly consistent way, aiming to reconstruct fiber

parcels/tracts corresponding to the white matter anatomy (Ge et al.,

2012; Sydnor et al., 2018; Zhang et al., 2017; Zhang, Wu, Norton, et al.,

2018; Ziyan, Sabuncu, Eric, Grimson, & Westin, 2009), while cortical-

parcellation-based methods could be less consistent considering factors

such as the variability of intersubject cortical anatomy, the dependence

on registration between dMRI and structural images, and the presence of

false positive/negative connections (Amunts et al., 1999; Fischl, Sereno,

Tootell, & Dale, 1999; Maier-Hein et al., 2017; Sinke et al., 2018; Zhang,

Descoteaux, et al., 2018). However, to our knowledge, test–retest repro-

ducibility of the cortical-parcellation-based and fiber clustering white

matter parcellation strategies has not yet been quantitatively compared.

In the present work, we conduct what we believe is the first study

to investigate the test–retest reproducibility of fiber clustering white

matter parcellation. An fiber clustering method based on an anatomi-

cally curated white matter fiber clustering atlas (Zhang, Wu, Norton,

et al., 2018) is evaluated, with comparison to a cortical-parcellation-

based method based on a cortical and subcortical parcellation from

Freesurfer (Fischl, 2012). Both of these white matter parcellation

methods have been demonstrated to be successful in comparison to

manual tract parcellation (O'Donnell et al., 2017; Sydnor et al., 2018;

Wassermann et al., 2016). Here, the test–retest reproducibility of the

two methods is compared for two main applications: (a) whole brain

white matter parcellation, that is, dividing the entire white matter into

fiber parcels and (b) anatomical fiber tract parcellation, that is, identify-

ing particular anatomical fiber tracts. Multiple quantitative measure-

ments, including a geometrical measure (volumetric overlap) and a

diffusion measure (FA), are computed for test–retest reproducibility

evaluation. A large test–retest dataset is studied, including a total of

255 subjects from multiple independently acquired populations.

2 | MATERIALS AND METHODS

2.1 | Datasets, data processing, and tractography

In this study, we evaluated the test–retest reproducibility of two

white matter parcellation methods on dMRI data from a total of

255 subjects across genders (87 females vs. 168 males), a broad age

range (children, young adults, and older adults, from 5 to 82 years),

and different health conditions (autism, Parkinson's disease, and

healthy subjects). This publicly available test–retest dMRI data were

from three independently acquired datasets with different diffusion

imaging protocols. Table 1 gives an overview of the datasets studied,

including demographic information and diffusion image acquisitions.

For each of the subjects under study, the test–retest dMRI scans

were preprocessed to exclude any potential artifacts, for example, from

eddy current and head motion effects. Details of the preprocessing

steps for each dataset under study are included in Appendix. Whole

brain tractography was then computed using the two-tensor unscented

Kalman filter (UKF) method (Malcolm, Shenton, & Rathi, 2010; Reddy &

Rathi, 2016), as implemented in the ukftractography package (https://

github.com/pnlbwh/ukftractography). The UKF method fits a mixture
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model of two tensors to the dMRI data while tracking fibers,

employing prior information from the previous step to help stabilize

model fitting. We chose the UKF method because it has been shown

to be highly consistent in tracking fibers in dMRI data from indepen-

dently acquired populations across ages, health conditions and image

acquisitions (Zhang, Wu, Norton, et al., 2018), and it is more sensi-

tive than standard single-tensor tractography, in particular in the

presence of crossing fibers and peritumoral edema (Baumgartner

et al., 2012; Chen et al., 2015, 2016; Liao et al., 2017). For each of

the subjects under study, the tractography produced about 1 million

fibers per dMRI scan. Details of the related tractography parameters

are included in Appendix.

For each subject, the tractography datasets computed from the two

test–retest dMRI scans were aligned into the same space. This was con-

ducted by computing a registration between the FA images computed

from the dMRI scans. The Advanced Normalization Tools (ANTS) pack-

age (https://github.com/ANTsX/ANTs) (Avants, Tustison, & Song, 2009)

was used to perform the registration, following the default steps in the

software including a rigid, an affine, then a deformable transformation

to reach a good intra-subject alignment. Here, we chose an FA-based

registration because the FA image is sensitive to white matter fiber

tracts and can provide a good correspondence between the registered

fiber tracts (Goodlett, Davis, Jean, Gilmore, & Gerig, 2006), and it has

been applied in many studies for registering between dMRI datasets

(Besseling et al., 2012; Papinutto et al., 2013; Vollmar et al., 2010). In

details, this registration was performed by aligning the FA image from

the second scan to that from the first scan. The obtained transforms

were then applied to the tractography data computed from the second

scan, using 3D Slicer. This step ensured the tractography data from the

second scan was registered to the space of the first scan. In this way,

because transforms were applied after performing tractography, any

resampling or blurring of diffusion-weighted image data was avoided.

2.2 | White matter parcellation

After obtaining whole brain tractography, white matter parcellation

was performed using the two methods (fiber clustering and cortical-

parcellation-based), as illustrated in Figure 1. For each method, both

whole brain white matter parcellation and anatomical fiber tract

parcellation were performed. Details of each parcellation method are

introduced below.

2.2.1 | Fiber clustering white matter parcellation

The fiber clustering method performs white matter parcellation of an

individual subject based on an fiber clustering atlas (Figure 1a1.) pro-

vided by the O'Donnell Research Group (ORG) (http://dmri.slicer.

org/atlases) (Zhang, Wu, Norton, et al., 2018). The ORG atlas contains

an 800-cluster parcellation of the entire white matter and an anatomi-

cal fiber tract parcellation, including 58 deep white matter fiber tracts,

plus 198 short and medium range superficial fiber clusters organized

into 16 categories according to the brain lobes they connect. (The

atlas was generated by creating dense tractography maps [using the

same UKF tractography method as in the current study]) of 100 indi-

vidual HCP subjects and then applying an fiber clustering method to

group the tracts across subjects according to their similarity in shape

and location. The resulting clusters were annotated using expert neu-

roanatomical knowledge.) We chose the ORG-atlas-based fiber clus-

tering method because it is an anatomically curated white matter atlas

that has been demonstrated to have a good performance for consis-

tent white matter parcellation across different populations (Zhang,

Descoteaux, et al., 2018).

The fiber clustering method was applied to perform white matter

parcellation of one subject as follows. A tractography-based registra-

tion was performed to align the subject's tractography data into the

atlas space. A fiber spectral embedding was conducted to compute

the similarity of fibers between the subject and the atlas, followed by

the assignment of each fiber of the subject to the corresponding atlas

cluster. This process produced a whole brain white matter parcellation

into 800 fiber clusters. (This parcellation scale of 800 fiber clusters

has been chosen to successfully separate white matter structures con-

sidered to be anatomically different (O'Donnell et al., 2017; Zhang,

Wu, Ning, et al., 2018; Zhang, Wu, Norton, et al., 2018). These fiber

clusters included 84 commissural clusters as well as 716 bilateral

hemispheric clusters (that included fibers in both hemispheres). We

separated the hemispheric clusters by hemisphere (the maximum

number of clusters is thus [716 × 2 + 84] = 1,516); therefore, we

TABLE 1 Demographics and dMRI data of the datasets under study

Dataset # subjects Age Gender Health condition dMRI data studied

ABIDE II 70 5–17 years (12.0 ± 3.1) 6 F
64 M

49 AUT
21 healthy

1 b0 image
63 gradient directions (b = 1,000)
TE/TR = 78/5200 ms
Resolution = 3 mm3 (isotropic)
Test–retest interval: In same scan session

HCP 44 22–35 years (30.4 ± 3.3) 31 F
13 M

44 healthy 18 b0 images
90 gradient directions (b = 3,000)
TE/TR = 89/5520 ms
Resolution = 1.25 mm3 (isotropic)
Test–retest interval: 18–328 days (134 ± 62)

PPMI 141 51–82 years (63.7 ± 7.2) 50 F
91 M

100 PD
41 healthy

1 b0 image
63 gradient directions (b = 1,000)
TE/TR = 88/7600 ms
Resolution = 2 mm3 (isotropic)
Test–retest interval: In same scan session

Abbreviations. Dataset—ABIDE-II: autism brain imaging data exchange II (Martino et al., 2017); HCP: human connectome project (Van Essen et al., 2013);
PPMI: Parkinson's Progression Markers Initiative (Marek et al., 2011); Disease—AUT: autism; PD: Parkinson's disease. Gender—F: female; M: male.
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produced over 800 parcels for each subject (see experimental results

in Section 3.1 for the number of parcels). Next, for anatomical fiber

tract parcellation, we leveraged the anatomically curated tracts in the

atlas. Each tract was comprised of a set of fiber clusters. In our study,

we used 45 tracts (see Table 2 for the list of the tracts) that are

defined in both the fiber clustering method and the cortical-

parcellation-based method (Section 2.2.2). All fiber clustering

processing was performed using the whitematteranalysis software

(https://github.com/SlicerDMRI/whitematteranalysis), and all parame-

ters were set to their default values. (Details are described in

(O'Donnell et al., 2017; O'Donnell, Wells, Golby, & Westin, 2012;

O'Donnell & Westin, 2007; Zhang, Wu, Norton, et al., 2018).

2.2.2 | Cortical-parcellation-based white matter
parcellation

The cortical-parcellation-based method performs white matter

parcellation based on Freesurfer (http://freesurfer.net; Fischl, 2012).

Freesurfer anatomically segments brain regions of an individual sub-

ject based on brain atlases including a cortical (Desikan et al., 2006)

and a subcortical parcellation (Fischl et al., 2002; Figure 1b1). We

chose the Freesurfer-based cortical-parcellation-based method for

comparison because it has been applied in many studies of the test–

retest reproducibility of whole brain white matter parcellation (Besson

et al., 2014; Bonilha et al., 2015; Buchanan et al., 2014; Smith et al.,

2015) and anatomical fiber tract parcellation (Cousineau et al., 2017;

Ning et al., 2016; Roy et al., 2017; Yendiki et al., 2016).

The cortical-parcellation-based method was applied to perform

white matter parcellation of one subject as follows. The Freesurfer seg-

mentation of an individual subject (Figure 1b2) was performed using

the T1-weighted image. Registration between the T1-weighted and

dMRI images was performed (see Appendix) so that the tractography

data was in the same space as the Freesurfer parcellation result. Then,

for whole brain white matter parcellation, we identified parcels con-

necting between all pairs of segmented cortical and subcortical regions

(Figure 1b2), as in many previous studies (Besson et al., 2014; Bonilha

et al., 2015; Buchanan et al., 2014; Smith et al., 2015). The Freesurfer

atlases (Desikan et al., 2006; Fischl et al., 2002) include a total of

87 ROIs. Therefore, the cortical-parcellation-based whole brain

parcellation resulted in a total of 3,741 (87 × 86/2) parcels per subject.

Next, for anatomical fiber tract parcellation, we leveraged the White

Matter Query Language (WMQL; https://github.com/demianw/tract_

querier; Wassermann et al., 2016), an automated method to delineate

anatomical fiber tracts based on the Freesurfer anatomical regions they

intersect (Figure 1b1). In our study, we applied WMQL because it

FIGURE 1 Overview of the two white matter parcellation methods. Sub-figure (a) shows the fiber clustering (FC) method. It relies on an

O'Donnell’s Research Group (ORG) fiber clustering atlas (a1) that includes an 800-cluster parcellation of the entire white matter and an
anatomical fiber tract parcellation. Whole brain white matter parcellation (a2) is performed by identifying subject-specific fiber clusters according
to the 800-cluster atlas parcellation (a2). Anatomical fiber tract parcellation (a2) is performed by leveraging the anatomically curated tracts in the
atlas. Sub-figure (b) shows the cortical-parcellation-based (CPB) method. It relies on a neuroanatomical brain parcellation atlas from Freesurfer to
segment an individual's brain into multiple cortical and subcortical regions (b1). Whole brain white matter parcellation (b2) is performed by
identifying fiber parcels connecting between each pair of the segmented regions of interest (ROIs). Anatomical fiber tract parcellation (b2) is
performed by leveraging White matter query language (WMQL), which provides anatomical definitions of fiber tracts based on their intersected
Freesurfer regions (e.g., the CST) [Color figure can be viewed at wileyonlinelibrary.com]
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enables identification of a relatively large number of fiber tracts

(45 tracts) and it has been used in multiple works to study white matter

parcellation retest–retest reproducibility (Cousineau et al., 2017; Ning

et al., 2016; Roy et al., 2017). For a given anatomical fiber tract,

subject-specific parcellation was performed by identifying the fibers

from the whole brain tractography that met the tract's anatomical defi-

nition (Figure 1b2). In our work, a total of 45 anatomical fiber tracts that

had available WMQL tract definitions were extracted for each subject

under study (the same tracts as in the fiber clustering method; see

Table 2 for the list of the tracts).

2.3 | Test–retest measurements

After performing white matter parcellation, we computed test–retest

measurements of the parcellated white matter structures (whole-brain

fiber parcels or anatomical fiber tracts) to evaluate the reproducibility

of the parcellation performance. We included both geometrical and

diffusion measures.

For a geometrical measure, we computed the volumetric overlap

between the parcellated white matter structures to investigate if they

had the same volume and shape. We applied the weighted Dice

(wDice) coefficient that was designed specifically for measuring volu-

metric overlap of fiber tracts (Cousineau et al., 2017). wDice extends

the standard Dice coefficient (Dice, 1945) taking account of the num-

ber of fibers per voxel so that it gives higher weighting to voxels with

dense fibers, as follows:

wDice P1,P2ð Þ=
P

υ0W1,υ0 +
P

υ0W2,υ0P
υW1,υ +

P
υW2,υ

ð1Þ

where P1 and P2 represent two corresponding parcellated white mat-

ter structures from the test–retest data, v’ indicates the set of voxels

that are within the intersection of the volumes of P1 and P2,

v indicates the set of voxels that are within the union of the volumes

of P1 and P2, and W is the fraction of the fibers passing through a

voxel. A high wDice value represents a high reproducibility between

the two corresponding parcellated white matter structures.

Then, for a diffusion measure, we calculated the reproducibility of

the mean FA of the voxels where the parcellated white matter struc-

tures were located. In related work, Papinutto et al. evaluated repro-

ducibility by computing the absolute difference between mean FA

values divided by the average of the two mean FA values (Papinutto

et al., 2013). In our study, we adopted a similar evaluation strategy

and extended it by measuring a relative difference, that is, the abso-

lute difference divided by the sum of the mean FA values. We chose

this approach because diffusion properties (e.g., FA) are different

across different white matter structures (Madden et al., 2004; Pie-

rpaoli, Jezzard, Basser, Barnett, & Di Chiro, 1996; Santis, Silvia, Bells,

Assaf, & Jones, 2014), and relative difference can provide comparable

values across different structures. This was essential for comparing

the reproducibility of the whole brain parcellations across methods,

because there was no one-to-one correspondence between the white

matter parcels produced by the two methods. Specifically, for two

corresponding parcellated white matter structures P1 and P2 from the

test–retest scans, we computed the mean FA of the voxels where

their fibers passed, and measured the relative difference of the mean

FA values, as follows:

RD P1,P2ð Þ= j FA P1ð Þ−FA P2ð Þ
FA P1ð Þ+ FA P2ð Þ j ð2Þ

A low relative difference value represents a high reproducibility

between the two parcellated white matter structures. (We note that we

have provided the results of the reproducibility of the mean MD, ana-

lyzed in the same way as the mean FA, in Supporting Information S1.)

2.4 | Statistical analysis

We then performed statistical comparisons between the two

parcellation methods based on the computed test–retest measure-

ments. These statistics were performed in each of the three datasets.

2.4.1 | Whole brain white matter parcellation analysis

The parcellation methods were compared in two ways, including a

comparison using all parcels and a more fine-grained comparison using

parcels with similar volumes. First, for each parcel, we computed the

mean wDice score and mean relative difference value across all sub-

jects for each parcellation method. This gave a vector of mean wDice

scores (and another vector of mean relative difference values), with

length of the number of parcels, for each method. We compared the

wDice (and also relative difference) measurements across methods

using an unpaired two-sample Student's (two-tailed) t-test, for each of

the three datasets separately. Second, we compared parcels with simi-

lar volumes across the two methods. To enable this, we created a

TABLE 2 A total of 45 fiber tracts are compared between the fiber

clustering and cortical-parcellation-based methods, including
24 hemispheric (LR) association tracts, 7 commissural (C) tracts, and
14 hemispheric (LR) projection tracts

Tract category
(number of tracts) Tract name

Association
tracts (24)

Arcuate fasciculus (AF)—LR
Cingulum bundle (CB)—LR
External capsule (EC)—LR
Extreme capsule (EmC)—LR
Inferior longitudinal fasciculus (ILF)—LR
Inferior occipito-frontal fasciculus (IoFF)—LR
Middle longitudinal fasciculus (MdLF)—LR
Posterior limb of internal capsule (PLIC)—LR
Superior longitudinal fasciculus I (SLF I)—LR
Superior longitudinal fasciculus II (SLF II)—LR
Superior longitudinal fasciculus II (SLF III)—LR
Uncinate fasciculus (UF)—LR

Commissural
tracts (7)

Corpus callosum 1 (CC 1)—C
Corpus callosum 2 (CC 2)—C
Corpus callosum 3 (CC 3)—C
Corpus callosum 4 (CC 4)—C
Corpus callosum 5 (CC 5)—C
Corpus callosum 6 (CC 6)—C
Corpus callosum 7 (CC 7)—C

Projection
tracts (14)

Corticospinal tract (CST)—LR
Striato-frontal (SF)—LR
Striato-occipital (SO)—LR
Striato-parietal (SP)—LR
Thalamo-frontal (TF)—LR
Thalamo-occipital (TO)—LR
Thalamo-parietal (TP)—LR

These tracts are the ones that can be identified in both of the parcellation
methods.
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histogram by binning parcels into 50 bins evenly distributed between

0 and 100,000 mm3 (approximately the maximum volume size across

all parcels). To compare parcels in each bin across methods, we per-

formed an unpaired two-sample Student's (two-tailed) t-test to ana-

lyze both the mean wDice and mean relative difference of these

parcels. The false discovery rate (FDR) procedure (Benjamini &

Hochberg, 1995) was used to control for multiple comparisons (across

all bins). We excluded a bin if the number of parcels in either method

was 0. We note that, to eliminate potential biases from inconsistent

parcels, for each method we included only the parcels that were

detected in at least 95% of subjects (see Table 3 for the number of

retained parcels).

2.4.2 | Anatomical fiber tract parcellation analysis

The parcellation methods were compared in two ways, including a

comparison using all tracts and a more fine-grained comparison using

individual tracts. First, for each tract, we computed the mean wDice

and mean relative difference across all subjects for each parcellation

method. We compared these measurements between methods using

a paired two-sample Student's (two-tailed) t-test. (The paired test was

performed because the same set of anatomical tracts was selected in

the fiber clustering method to match the set of tracts parcellated in

the cortical-parcellation-based method.) Second, we compared indi-

vidual tracts. For each tract, we analyzed the wDice and relative

difference from all subjects using a paired two-sample Student's (two-

tailed) t-test. The FDR procedure was used to control for multiple

comparisons across all tracts.

3 | RESULTS

3.1 | Whole brain white matter parcellation results

Table 3 shows the number and volume of retained white matter par-

cels after removing the ones that were not consistently detected

across each dataset (Section 2.4.1). While the number of retained par-

cels was different between the two methods across the three datasets

(p = 0.006; paired t-test, two-tailed), their median parcel volumes

were similar (p = 0.151; paired t-test, two-tailed).

3.1.1 | Volumetric overlap of whole brain white matter
parcels

Figure 2 shows the distributions of the mean wDice scores in each

dataset, after application of the fiber clustering and cortical-

parcellation-based methods. Because there was no one-to-one corre-

spondence of the parcels between the two methods, we plotted the

mean wDice of each parcel versus its mean volume. This enables a

visual comparison of method performance for parcels with various

volumes. It is visually apparent that the mean wDice was generally

lower and had a larger range in the cortical-parcellation-based method

than the fiber clustering method. For quantitative assessment, in the

comparison using all parcels, significantly higher mean wDice was

achieved using the fiber clustering method compared to the cortical-

parcellation-based method, with p < 0.001 (unpaired t-test, two-

tailed) for each of the three datasets. In the more fine-grained com-

parison using parcels with similar volumes (parcels within the same

bin of the parcel volume histogram), 63.16%, 58.97%, and 69.70% of

all retained bins, respectively, in the ABIDE-II, HCP and PPMI

datasets, had significantly higher mean wDice scores using the fiber

clustering method (p < 0.05, unpaired t-test, two-tailed; FDR

corrected), while no bins had significantly higher mean wDice scores

using the cortical-parcellation-based method. (See Supporting Infor-

mation 2 for the number of the retained bins in each dataset after

removing the ones that had 0 parcels in either method.)

For visual quality assessment of the volumetric overlap perfor-

mance, Figure 3 gives a visual comparison of the white matter parcels

obtained using the fiber clustering and cortical-parcellation-based

methods. We identified the most and the least reproducible parcels

from both methods, in terms of wDice score, for a certain parcel vol-

ume. In Figure 3, white matter parcels with volume around

10,000 mm3 (from one subject in the HCP dataset) are displayed. This

volume was chosen as approximately the average of the median of

the parcel volumes of the six parcellations (two parcellation methods

for each of the three datasets).

3.1.2 | Relative difference of FA of whole brain white
matter parcels

Figure 4 shows the distributions of the mean relative difference of the

white matter parcels in the fiber clustering and cortical-parcellation-

based methods, versus the mean parcel volume, in each dataset. We

can observe that fiber clustering method obtained visually lower mean

relative difference than the cortical-parcellation-based method; how-

ever, this visual difference is not as apparent as that observed in the

mean wDice (Figure 2). For quantitative assessment, in the comparison

using all parcels, significantly lower mean relative difference was

achieved using the fiber clustering method compared to the cortical-

parcellation-based method, with p < 0.001 (unpaired t-test, two-tailed)

for each of the three datasets. In the more fine-grained comparison

using parcels with similar volumes (parcels within the same bin of the

parcel volume histogram), 7.89%, 23.08%, and 48.48% of all retained

bins, respectively, in the ABIDE-II, HCP and PPMI datasets, had signifi-

cantly lower mean relative difference values using the fiber clustering

method (p < 0.05, unpaired t-test, two-tailed; FDR corrected), while

no bins had significantly lower mean relative difference values using

TABLE 3 Number of white matter parcels retained in each dataset after removing the parcels that were not consistently detected across

subjects in each dataset

ABIDE-II HCP PPMI

Fiber clustering 1,274 (9,569 mm3) 1,499 (10,088 mm3) 1,373 (10,025 mm3)

Cortical-parcellation-based 1968 (9,081 mm3) 2,350 (8,853 mm3) 2,269 (9,513 mm3)

The parcels that were detected in at least 95% of the subjects in each dataset were retained (Section 2.4.1). The median of the mean volume of the
retained parcels in each dataset is given in parentheses.
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the cortical-parcellation-based method. (See Supporting Information

S2 for the number of the retained bins in each dataset after removing

the ones that had 0 parcels in either method.)

3.2 | Anatomical fiber tract parcellation results

3.2.1 | Volumetric overlap of anatomical fiber tracts

Figure 5 shows the mean wDice of the 45 anatomical fiber tracts in

each dataset, after application of the fiber clustering and the cortical-

parcellation-based methods. In the comparison using all 45 tracts, sig-

nificantly higher mean wDice was found using the fiber clustering

method than the cortical-parcellation-based method in all of the three

datasets, with p < 0.001 (paired t-test, two-tailed). In the more fine-

grained comparison using individual tracts, 32, 38, and 36 tracts,

respectively, in the ABIDE-II, HCP and PPMI datasets, had significantly

higher wDice scores using the fiber clustering method, while 5, 6, and

6 tracts had significantly higher wDice scores using the cortical-

parcellation-based method (p < 0.05, paired t-test, two-tailed; FDR

corrected; Additional results on the tract volume are provided in

Supporting Information S3.)

For visual quality assessment of the volumetric overlap perfor-

mance, Figure 6 gives an visualization of the tracts obtained using the

fiber clustering and cortical-parcellation-based methods by showing

the ones with high or low volumetric overlaps. To create this visualiza-

tion, we computed an average wDice score for each tract. This aver-

age was computed across the results from all methods and datasets in

that tract (across the two methods and three datasets). This gave a

total of 45 average wDice values, one per tract. We then identified

the tracts with the maximum, the median and the minimum mean

wDice scores, which were the corpus callosum 6 (CC6), the left

FIGURE 2 Volumetric overlap of white matter parcels computed from the test–retest dMRI data using the fiber clustering (FC) and cortical-

parcellation-based (CPB) methods. Each plotted point represents one parcel and shows the parcel's mean wDice score versus the mean parcel

volume across all subjects in one dataset. A high wDice score represents a high test–retest reproducibility [Color figure can be viewed at
wileyonlinelibrary.com]
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inferior occipito-frontal fasciculus (IOFF-L), the right striato-parietal

(SP-R) tracts, respectively. In Figure 6, we display these three tracts

from one HCP dataset.

3.2.2 | Relative difference of FA of anatomical fiber tracts

Figure 7 shows the mean relative difference of FA of the 45 anatomi-

cal fiber tracts in each dataset, after application of the fiber clustering

and the WMQL methods. In the statistical comparison across all

45 tracts, two of the three datasets (ABIDE-II and PPMI) had signifi-

cantly lower relative difference values in the fiber clustering method

than in the cortical-parcellation-based method (p = 0.032 and 0.012,

respectively, paired t-test, two-tailed), while there was no significant

difference between the two methods in the HCP dataset (p = 0.620,

paired t-test, two-tailed). In the comparison on individual fiber tracts,

5, 1, and 7 tracts, respectively, in the ABIDE-II, HCP, and PPMI

datasets, had significantly lower relative difference values using the

fiber clustering method, while 1, 1 and 2 tracts had significantly lower

relative difference values using the cortical-parcellation-based method

(p < 0.05, paired t-test, two-tailed; FDR corrected).

4 | DISCUSSION

In this work, we assessed test–retest reproducibility of two popular

white matter tract parcellation strategies, including a white-matter-

atlas-based fiber clustering method and a Freesurfer-based cortical-

parcellation-based method. Overall, we found that the fiber clustering

method had significantly higher reproducibility than the cortical-

parcellation-based method in white matter parcellations for dividing the

entire white matter into whole-brain parcels and identifying anatomical

fiber tracts. When comparing all parcellated structures (either all whole-

brain parcels or all anatomical tracts), the fiber clustering method

obtained significantly higher reproducibility on both volumetric overlap

and relative difference of FA in all of the three datasets. In more fine-

grained comparisons on individual anatomical tracts, volumetric overlap

and relative difference of FA were significantly higher using the fiber

clustering method in 73.10% and 9.63% of tracts, respectively, on aver-

age across the three datasets. In contrast, volumetric overlap and rela-

tive difference of FA were significantly higher in 12.59% of tracts and

2.96% of tracts using the cortical-parcellation-based method. Below,

we discuss several detailed observations regarding the comparison

results for these two types of white matter parcellation.

We found that the test–retest reproducibility of white matter

parcels obtained in whole brain white matter parcellation was highly

related to their parcel volumes, such that parcels with larger volumes

tended to be more reproducible. The cortical-parcellation-based

method generated a white matter parcel based on its connected corti-

cal or subcortical ROIs, where large-size ROIs likely generated parcels

with large volumes. As a result, the reproducibility of a cortical-

parcellation-based parcel was highly determined by the size of its con-

nected ROIs, in agreement with other findings in the literature

(Chamberland et al., 2017). For example, the most reproducible

cortical-parcellation-based parcels connected to large-size Freesurfer

regions such as the superior frontal gyrus and the rostral middle fron-

tal gyrus (see Supporting Information S4). Similar results related to the

ROI size in cortical-parcellation-based strategies have also been

reported in several previous studies (Bonilha et al., 2015; Cheng et al.,

2012). On the other hand, the fiber clustering method produced white

matter parcels based on the white matter anatomy. It did not require

any gray matter anatomical information; thus it would not be affected

by the sizes of ROIs. For instance, we found that the fiber clustering

parcels related to the frontal pole, which is a relatively small Freesurfer

cortical ROI, were highly reproducible (see Supporting Information S4).

However, while the cortical-parcellation-based method in general had

the highest test–retest reproducibility on the largest volume parcels,

the fiber clustering method did not produce parcels with volumes as

large as the largest volume parcels from the cortical-parcellation-based

method. For example, there were only a small number of fiber cluster-

ing parcels with volumes over 40,000 mm3 (Figure 2).

We observed that the volumetric overlap of the anatomical fiber

tracts was more sensitive than the diffusion FA measure for finding

differences in test–retest reproducibility between the methods. There

FIGURE 3 Visualization of volumetric overlap of white matter parcels

(red—first scan; blue—second scan) obtained using the two
parcellation methods. In the fiber clustering method, the parcel with
the lowest wDice corresponds to the atlas cluster #728; the parcel
with the highest wDice score corresponds to the atlas cluster #206. In
the cortical-parcellation-based method, the parcel with the lowest
wDice connects to the Freesurfer regions of the left middle temporal
gyrus (brown) and right hemispheric superior frontal gyrus (dark
green); the parcel with the highest wDice score connects to the
Freesurfer regions of the right hemispheric precentral gyrus (purple)
and the right hemispheric supramarginal gyrus (light green) [Color
figure can be viewed at wileyonlinelibrary.com]

3048 ZHANG ET AL.

http://wileyonlinelibrary.com


were a higher number of significant differences between the two

methods when using the wDice overlap score than relative difference

of FA (Figure 5 vs. Figure 7). The wDice score was driven by non-

overlapping voxels that were not intersected by the white matter

structure in both test–retest scans, while the relative difference of FA

was driven by the FA differences of these voxels. It is possible that

the higher number of significant differences using wDice, when com-

pared to relative difference of FA, can be attributed to the fact that

the measured FA is averaged in the entire tract. wDice is expected to

be more sensitive to small changes in the borders or edges of the fiber

tract, which may not greatly affect the tract mean FA. Therefore, small

differences in the voxels intersected by the fiber tract do not have a

large effect on the measured mean FA. In the field of studying brain

white matter properties (e.g., for analyzing disease analysis, under-

standing neurodevelopment, etc.), the reproducibility of diffusion

measures (such as FA and MD) is highly important. Our results

suggested that the fiber clustering and cortical-parcellation-based

methods performed comparably on a diffusion measure (Figure 7). For

example, while there were a larger number of tracts with significantly

lower relative difference values using the fiber clustering method in

the ABIDE II (5 tracts versus 1 tract in the cortical-parcellation-based

method) and PPMI (7 tracts versus 2 tracts in the cortical-parcellation-

based method) datasets, both methods had the same number of tracts

with significantly lower relative difference values in the HCP dataset

(both had 1 tract).

In comparison to related work on test–retest reproducibility of

white matter parcellation, we found that both of the fiber clustering

and cortical-parcellation-based methods performed relatively well.

While existing studies applied different evaluation criteria using differ-

ent testing datasets (Besseling et al., 2012; Cheng et al., 2012;

FIGURE 4 Reproducibility of diffusion FA measure of white matter parcels computed from the test–retest dMRI data using the fiber clustering

(FC) and cortical-parcellation-based (CPB) methods. In the plots, each point represents the mean relative difference (RD) of FA versus the mean
parcel volume across all subjects in one dataset. A low relative difference value represents a high test–retest reproducibility [Color figure can be
viewed at wileyonlinelibrary.com]
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Ciccarelli et al., 2003; Cousineau et al., 2017; Duan et al., 2015; Kristo

et al., 2013; Lin et al., 2013; Owen et al., 2015; Papinutto et al., 2013;

Pfefferbaum et al., 2003; Smith et al., 2015; Vollmar et al., 2010;

Wang et al., 2012; Yendiki et al., 2016; Zhao et al., 2015), one study

performed volumetric-overlap-based experiments in a comparable way

to the present study (Cousineau et al., 2017). In this work, Cousineau

et al. studied test–retest reproducibility of a Freesurfer-based cortical-

parcellation-based anatomical tract parcellation on PPMI data and

suggested a threshold for a good wDice score to be 0.72 (based on an

analysis of the mean wDice score across data in a healthy population;

Cousineau et al., 2017). Although different parcellated tracts and differ-

ent PPMI subject subsets were analyzed, 44 of 45 cortical-parcellation-

based parcellated tracts and all fiber clustering parcellated tracts had

mean wDice scores over 0.72 in our PPMI dataset, while only 8 of

28 parcellated tracts in (Cousineau et al., 2017) had mean wDice scores

over this threshold. (This difference could potentially relate to the high

consistency of UKF tractography across different scan protocols and

age groups (Zhang, Wu, Norton, et al., 2018). On average across all

three datasets in our study, 87.41% of cortical-parcellation-based

parcellated tracts and 99.26% of fiber clustering parcellated tracts had

mean wDice scores over 0.72. In another study, Papinutto et al. mea-

sured test–retest reproducibility of FA of three tracts to evaluate across

different acquisition dMRI parameters, and they reported that the low-

est mean reproducibility error was around 2.4% (corresponding to an

mean relative difference value of 0.012 in our study; Papinutto et al.,

2013). In our study, on average across all the three datasets, the

mean relative difference values were 0.0122 and 0.0139 using the fiber

clustering and cortical-parcellation-based methods, respectively, which

were close to the lowest value reported by Papinutto et al. In addition

to comparison with existing work, we observed that changes in tract FA

values between the test–retest scans (|FA1st − FA2nd|/FA1st) were rela-

tively small (see Supporting Information S5 for details). On average

FIGURE 5 Volumetric overlap of anatomical fiber tracts identified from the test–retest dMRI data using the fiber clustering (FC) and cortical-

parcellation-based (CPB) methods. Plots show the mean wDice score (averaged across subjects in each dataset) for each tract. A high wDice score
represents a high test–retest reproducibility. The tracts with significantly higher mean wDice scores using the fiber clustering method are
annotated with a red asterisk, while the tracts with significantly higher mean wDice scores using the cortical-parcellation-based method are
annotated with a blue X [Color figure can be viewed at wileyonlinelibrary.com]
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across the three datasets, FA changes of only 3.11% and 3.40%

were observed in the fiber clustering and cortical-parcellation-based

methods, respectively. These statistics showed that the cortical-

parcellation-based and fiber clustering methods used in the present

study obtained generally reproducible results.

Overall, the differences of the test–retest reproducibility results

from the two white matter parcellation methods can be explained as

follows. First, the methods had different assumptions relative to the

input tractography. The cortical-parcellation-based method relied on

particular points on the fibers, especially on fiber terminal regions.

Parcellation results were thus sensitive to whether the fiber endpoints

touched the cortical and subcortical ROI. This could be affected by

multiple factors, for example, whether tractography could track

through the low-anisotropy interface between gray matter and white

matter or in deep gray matter regions near corticospinal fluid (CSF),

where fiber endpoints are uncertain. The fiber clustering method, on

the other hand, used all points on the fibers, that is, the full length of

the fiber trajectory. In this way, fibers whose endpoints did not quite

reach the cortex or the subcortical structures could nevertheless

be parcellated. Using the entire fiber trajectory could also enable

localization of compact fiber clustering parcels, within which all fibers

followed similar paths. This tendency toward compact fiber clustering

parcels, versus the potentially more dispersed or spatially sparse par-

cels that were possible in the cortical-parcellation-based method

(Figure 3), could also partially explain the higher volumetric overlap

observed in the fiber clustering method. Second, the two methods

applied different image registration steps to align the input tractography

data to an atlas parcellation space. The cortical-parcellation-based

method used multiple registration steps, including a registration

between the subject-specific dMRI data and the subject-specific

T1-weighted data, and a registration between the subject-specific

T1-weighted data and the Freesurfer atlas. While there are sophisti-

cated tools to compute these registrations (Avants et al., 2009;

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012), the perfor-

mance is limited by nontrivial factors. For example, the intermodality

registration between dMRI and T1-weighted can be affected by dif-

ferences in image resolutions (Malinsky et al., 2013) echo-planar imag-

ing (EPI) distortion in dMRI data (Albi et al., 2018). Large individual

anatomical variations with respect to the atlas population could also

affect, or even cause to fail, the subject-specific T1 registration to the

atlas. For example, Freesurfer has been shown to have limited success

in neonates (Makropoulos et al., 2018) and patients with brain tumors

or other structural lesions (Zhang et al., 2017). In contrast, the fiber

clustering method needed only one intra-modality registration step

between the subject-specific tractography data and the atlas

tractography data. This registration, in combination with robust fiber

spectral embedding in the atlas space, has been demonstrated to

enable successful white matter parcellation across subjects from dif-

ferent populations, including neonates, young children, and brain

tumor patients, who had large neuroanatomical variations to the atlas

population (Zhang, Wu, Norton, et al., 2018). Third, the two methods

adopted different ways to handle false positive fibers that have been

suggested to be a contributing factor affecting white matter

parcellation reproducibility (Maier-Hein et al., 2017). In the present

study, we applied a multi-fiber UKF tractography method to increase

the sensitivity in tracking crossing fibers (Baumgartner et al., 2012;

Chen et al., 2015, 2016; Liao et al., 2017). The high sensitivity has

been suggested to be important to reduce false negatives, but at the

expense of increased false positives (Maier-Hein et al., 2017; Thomas

et al., 2014). Therefore, the UKF method, as well as other sensitive

fiber tracking methods (Christiaens et al., 2015; Jeurissen, Tournier,

Dhollander, Connelly, & Sijbers, 2014), may introduce more false

positive or anatomically incorrect errors compared to a standard

single-fiber diffusion tensor fiber tracking method. Prior anatomical

knowledge is often used to exclude false positive fibers by employing

additional constraints and expert judgment (Conturo et al., 1999; Huang,

Zhang, van Zijl, & Mori, 2004; Yeh et al., 2018). In the cortical-

parcellation-based method, the WMQL tract definitions, which were

originally designed for standard single-tensor tractography (Demian

Wassermann et al., 2016), were improved following query testing and

modification (by NM and colleagues) for the more sensitive UKF by

including additional ROIs to constrain fiber selection (Sydnor et al.,

2018). In the FC method, false positive fibers in the atlas were anno-

tated and rejected via expert judgment to ameliorate potential subject-

specific false positive fibers that were inconsistent with respect to

FIGURE 6 Visualization of volumetric overlap of example anatomical

fiber tracts (red—first scan; blue—second scan) identified using the
two parcellation methods. These three tracts have the maximum, the
median and the minimum mean wDice scores. The tracts are corpus
callosum 6 (CC6), left inferior occipito-frontal fasciculus (IOFF-L), and
right striato-parietal (SP-R) tract [Color figure can be viewed at
wileyonlinelibrary.com]
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known neuroanatomical knowledge (Zhang, Wu, Norton, et al., 2018). In

addition to the prior anatomical knowledge annotated in the atlas, the

fiber clustering method also included a data-driven false positive fiber

removal for rejection of fibers that have improbable fiber geometric tra-

jectory (O'Donnell et al., 2017; Zhang, Wu, Norton, et al., 2018), similar

to the processing applied in many other fiber clustering methods (Côté,

Garyfallidis, Larochelle, & Descoteaux, 2015; Xia, Turken, Whitfield-

Gabrieli, & Gabrieli, 2005; Ziyan et al., 2009). This removal of false posi-

tive fibers can be one factor that improves the reproducibility of the

wDice score in the FC method.

We also found that the test–retest reproducibility from the three

datasets was different. In general, the HCP dataset had higher perfor-

mance than the other two datasets. This likely relates to the much

higher quality of the HCP acquisition (Table 1). It is well known that

estimation of diffusion MRI parameters is more robust with a higher

number of gradient directions and higher signal-to-noise ratio (Farrell

et al., 2007; Jones, 2004). The data quality may also explain that the

HCP dataset had a larger number of retained white matter parcels

than the other two datasets in both the fiber clustering and cortical-

parcellation-based methods (Table 2).

Test–retest reproducibility is considered to be a good indicator of

the reliability of white matter parcellation for potential clinical applica-

tions, as well as the study of large datasets for neuroscientific

research. Having highly reproducible parcellation is a prerequisite for

clinical applications such as neurosurgery and neurology (Kristo et al.,

2013). Test–retest reproducibility is also important to determine the

sensitivity of tractography to reveal pathological abnormalities and

changes over time (Besseling et al., 2012). Multiple studies have used

test–retest reproducibility to assess predictive power in studying brain

longitudinal changes (Jovicich et al., 2014; Keihaninejad et al., 2013;

Lin et al., 2013). In our study, we showed a highly reproducible white

matter parcellation using the fiber clustering method; thus, we

suggested this method could be reproducibly applied for clinical appli-

cations and large dataset analysis. These applications can include

FIGURE 7 Reproducibility of diffusion FA measure of anatomical fiber tracts identified from the test–retest dMRI data using the fiber clustering

(FC) and cortical-parcellation-based (CPB) methods. A low relative difference (RD) value represents a high test–retest reproducibility. The tracts
with significantly lower mean relative difference scores using the fiber clustering method are annotated with a red asterisk, while the tracts with
significantly lower mean relative difference scores using the cortical-parcellation-based method are annotated with a blue X [Color figure can be
viewed at wileyonlinelibrary.com]
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white matter parcellation for neurosurgical planning (O'Donnell et al.,

2017), parcellation of scans from different time points to track white

matter changes, and analysis of very large diffusion MRI datasets that

will soon become available (Alexander et al., 2017; Casey et al., 2018;

Thompson et al., 2017).

Potential future directions and limitations of the current work are

as follows. First, the two compared methods produced different num-

bers of parcels, with different distributions of parcel volumes (though

the median parcel volumes were not significantly different). The scale

of the white matter parcellation (i.e., the number of parcels, or the vol-

ume of those parcels) is an important factor in the success of the

parcellation for a particular application. Many studies have shown that

different parcellation scales can provide a better description of local

brain regions (Cammoun et al., 2012; Hagmann et al., 2007; Liu et al.,

2017; Zhang, Savadjiev, Cai, et al., 2018). The scale of a white matter

parcellation also affects the intersubject parcellation consistency

(Zhang, Norton, et al., 2017). Future work could include an investiga-

tion of different white matter parcellation scales on test–retest repro-

ducibility. Second, the aim of this study was to compare test–retest

reproducibility of different white matter parcellation methods on sev-

eral independently acquired datasets; thus we did not perform any

statistical analyses across the different populations. There have been

studies that investigate differences of reproducibility measures, for

example, between disease versus healthy populations (Cousineau

et al., 2017; Lin et al., 2013) and between data with different acquisi-

tions (Papinutto et al., 2013), using cortical-parcellation-based strate-

gies. Future work could include applying fiber clustering strategies for

such statistical analyses. Third, in the present study, we chose

volumetric overlap and FA to investigate white matter parcellation

test–retest reproducibility. While these two measures are relatively

representative test–retest reproducibility measures and have been

used in many related studies (Cousineau et al., 2017; Besseling et al.,

2012; Ciccarelli et al., 2003; Kristo et al., 2013; Papinutto et al., 2013;

Pfefferbaum et al., 2003; Vollmar et al., 2010), there are many other

measures available, for example, MD, apparent fiber density and num-

ber of fiber orientations (Cousineau et al., 2017; Kristo et al., 2013;

Kuhn et al., 2016; Papinutto et al., 2013). In Supporting Information

S1, we provide additional experimental results from relative difference

of MD on whole brain white matter parcellation and anatomical fiber

tract parcellation. The results in general agree with our overall finding,

that is, the fiber clustering method generates significantly more repro-

ducible white matter parcellations than the cortical-parcellation-based

method. However, we noticed that the performance on MD was

slightly different from that on FA. For example, there are more signifi-

cantly different tracts between the two methods using MD (11, 3, and

20, respectively, in the three datasets) compared to FA (6, 2, and

9, respectively, in the three datasets). This could potentially be related

to different levels of fiber specificities of FA and MD. Therefore, a fur-

ther investigation could be done by including more test–retest

reproducibility measures and a comparison between them. Fourth,

we performed comparison of the fiber clustering and cortical-

parcellation-based methods using a deterministic UKF tractography

method, which is highly consistent in tracking fibers in dMRI data from

independently acquired populations across ages, health conditions

and image acquisitions (Zhang, Wu, Norton, et al., 2018). However,

many other tractography methods (such as probabilistic (Jeurissen,

Leemans, Jones, Tournier, & Sijbers, 2011), global (Christiaens et al.,

2015), and multi-tissue (Jeurissen et al., 2014) fiber tracking methods)

potentially could generate improved white matter parcellation test–

retest reproducibility. Fifth, in the present study, we compared two

fiber clustering and cortical-parcellation-based strategies that are

widely used but relatively traditional approaches. In the past few

years, there have been methods designed to improve test–retest

reproducibility for constructing cortical-parcellation-based con-

nectomes by including additional pre- and/or postprocessing steps,

for example, dilating gray matter regions (Zhang, Descoteaux, Zhang,

et al., 2018), constructing continuous connectome matrices (Moyer,

Gutman, Faskowitz, Jahanshad, & Thompson, 2017), and filtering out

implausible fiber streamlines (Smith et al., 2015). A further study could

include comparison of test–retest reproducibility between the fiber

clustering and cortical-parcellation-based strategies with advanced

processing.

5 | CONCLUSION

Our experimental results in general indicate that the fiber clustering

method generates significantly more reproducible white matter

parcellations than the cortical-parcellation-based method. However,

both methods have high performance when compared to existing

studies of reproducibility of fiber tract anatomical parcellation.
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APPENDIX: DATA PREPROCESSING AND UKF
TRACTOGRAPHY

For the HCP dataset, we used the already processed dMRI data (following

the processing pipeline in (Glasser et al., 2013). We extracted the

b = 3,000 s/mm2 shell of 90 gradient directions and all b0 scans (18) for

each subject, as applied in our previous studies (O'Donnell et al., 2017;

Zhang, Kahali, et al., 2017; Zhang, Norton, et al., 2017; Zhang, Wu, Norton,

et al., 2018). Angular resolution is better andmore accurate at high b-values

such as 3,000 (Descoteaux, Angelino, Fitzgibbons, & Deriche, 2007; Ning

et al., 2015), and this single shell was chosen for reasonable computation

time and memory use when performing tractography. The Freesurfer (ver-

sion 5.2 was used in the HCP data processing pipeline) segmentation,

which had been co-registered to the dMRI space, was directly used.

For the ABIDE-II and the PPMI datasets, we pre-processed the

provided raw imaging data using the following steps. DWIConvert

(https://github.com/BRAINSia/BRAINSTools) was first applied to con-

vert the original data format (DICOM or NIFTI) to NRRD. Eddy

current-induced distortion correction and motion correction were con-

ducted using the Functional Magnetic Resonance Imaging of the Brain

(FMRIB) Software Library tool (version 5.0.6) (Jenkinson et al., 2012).

To further correct for distortions caused by magnetic field inhomoge-

neity (which leads to intensity loss and voxel shifts), an EPI distortion

correction was performed with reference to the T2-weighted image

using the ANTS (Avants et al., 2009). Because T2-weighted images

were not available in all of these datasets (no T2 images were provided

in the ABIDE-II, and in the PPMI dataset not all subjects had T2

images), we generated a synthetic T2-weighted image from a

T1-weighted image for each subject (T1-weighted images were avail-

able for in all datasets) using the T1-weighted to T2-weighted conver-

sion toolbox (https://github.com/pnlbwh/T1toT2conversion). For

each subject, a nonlinear registration (registration was restricted to the

phase encoding direction) was computed from the b0 image to the

synthetic T2-weighted image to make an EPI corrective warp. Then,

the warp was applied to each diffusion image. A semi-automated qual-

ity control (using in-house developed Matlab scripts) was conducted

on all diffusion images. Individuals that had diffusion images with any

apparent signal drops were excluded from the analyses. For the

remaining subjects, all gradient directions were retained for analysis.

We also performed a Freesurfer (version 5.3) segmentation for each

subject in these two datasets. Each individual's Freesurfer segmenta-

tion was transformed from T1-weighted space into diffusion corrected

(b0) space via nonlinear registration using ANTS.

After obtaining the pre-processed DWI data, we applied the same

UKF parameters for all subjects under study, as follows. Tractography

was seeded in all voxels within the brain mask where FA was greater

than 0.1. Tracking stopped where the FA value fell below 0.08 or the

normalized mean signal (the sum of the normalized signal across all

gradient directions) fell below 0.06. The normalized average signal

measure was employed to robustly distinguish between white/Gy

matter and cerebrospinal fluid (CSF) regions. These seeding and stop-

ping thresholds were set slightly below the default values (as used in

our previous study (Zhang, Wu, Norton, et al., 2018)) to enable higher

sensitivity for fiber tracking, in particular for the subjects (such as chil-

dren) that might have low white matter anisotropy. Fibers that were

longer than 40 mm were retained to avoid any bias toward implausi-

ble short fibers (Guevara et al., 2012; Jin et al., 2014; Lefranc

et al., 2016).
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