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Baleen whales (Mysticeti) are major ecosystem engineers, thanks to their

enormous size and bulk filter feeding strategy. Their signature gigantism

is thought to be a relatively recent phenomenon, resulting from a Plio-

Pleistocene mode shift in their body size evolution. Here, we report the

largest whale fossil ever described: an Early Pleistocene (1.5–1.25 Ma) blue

whale from Italy with an estimated body length of up to 26 m. Macroevolu-

tionary modelling taking into account this specimen, as well as additional

material from the Miocene of Peru, reveals that the proposed mode shift

occurred either somewhat earlier, or perhaps not at all. Large-sized mysti-

cetes comparable to most extant species have existed since at least the Late

Miocene, suggesting a long-term impact on global marine ecosystems.
1. Introduction
Baleen whales include the largest animals ever, and play a crucial role as major

consumers and ecosystem engineers [1]. Their large body size is likely enabled

by filter feeding, a strategy that dates back to at least the Late Oligocene [2,3].

Nevertheless, for much of their history, mysticetes stayed relatively small [4],

albeit with some notable exceptions [5]. True gigantism is thought to have

arisen only recently, in response to a Plio-Pleistocene (4.5–0.13 Ma) mode

shift in mysticete body size evolution [4]. The latter was perhaps triggered

by wind-driven upwelling, which in turn led to an increase in seasonally

abundant, patchily distributed prey [4].

The mode shift model is highly plausible, yet also sensitive to changes in the

temporal distribution of large-sized mysticete fossils. The latter are relatively

scarce in current datasets on body size evolution [4,6], but it remains unclear

whether this pattern reflects a genuine signal or a sampling bias (but see simu-

lations in [4]). Especially alarming in this regard is the lack of information from

the Pleistocene, and thus the very period during which the mode shift may have

occurred [4]. Further, biases may have arisen from the practical difficulty of

handling large specimens, especially in remote places with limited resources.

For example, ongoing fieldwork has revealed a largely untapped Lagerstätte

of Miocene mysticetes in the Ica Desert of Peru [7,8], several of which appear

surprisingly large.

Here, we address these biases in two ways. First, we report a new blue

whale specimen from the Early Pleistocene of Italy, the largest mysticete

fossil ever described, and explore its implications for the timing of the proposed

mode shift. Next, we extend our analysis further back in time by integrating

additional material from the Middle–Late Miocene of Peru.
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Figure 1. New whale fossils from Italy and Peru imply an early origin of modern mysticete gigantism. (a) Map of Italy showing the fossil locality of
Balaenoptera cf. musculus. (b) Cranium of Balaenoptera cf. musculus, in dorsal view. (c) Right tympanic bulla of B. musculus (National Museum of Nature
and Science specimen M25900), in dorsal view (i), and B. cf. musculus in dorsal (ii) and ventrolateral (iii) view. (d ) Support surface for the mode shift
model from Slater et al. [4]; dark and light grey bars denote the range of the 2- and 3-unit support regions, respectively. (e) Support surface for the
mode shift model with B. musculus truncated at 1.37 Ma, but with the Peruvian fossils excluded. ( f ) Mysticete body length plotted against time, and
compared with the 80 (white), 90 (grey) and 95% (black) quantiles of 1000 BM simulations on the baleen whale phylogeny of [4]; grey circles are
chaeomysticetes, triangles toothed mysticetes, and red circles the new fossils from Italy and Peru. Note that the BM simulations were carried out on a
phylogeny that did not include the specimens described here; their placement relative to the quantiles is thus merely indicative. (d – f ) Modified from
Slater et al. [4]. Photo in (b) by Akhet s.r.l. (www.akhet.it). Drawing of B. musculus by Carl Buell. (Online version in colour.)
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Table 1. Parameter estimates and support for each model. s2, evolutionary rate; Q, root state; tshift, timing of the rate/mode shift; lnL, log-likelihood;
k, number of free parameters; AICc, sample-size corrected Akaike information criterion; DAICc, difference in the AICc; wi, Akaike weight; n.a., not applicable.

s2 Q parameter tshift (Ma) lnL k AICc DAICc wi

Balaenoptera cf. musculus 1.37 Ma, Peruvian specimens excluded

BM 0.00294 2.68 n.a. n.a. 43.99 2 283.81 6.28 0.04

AC/DC 0.00190 2.67 0.018 n.a. 44.28 3 282.23 7.87 0.02

trend 0.00280 2.65 0.006 n.a. 44.67 3 283.00 7.09 0.03

OU 0.00294 2.68 0.000 n.a. 43.99 3 281.65 8.44 0.01

temp.-dep. rates 0.00076 2.68 0.002 n.a. 44.27 3 282.20 7.89 0.02

rate shift 0.00232 2.67 0.003 19.92 44.18 4 279.79 10.31 0.01

mode shift 0.00232 2.67 0.050 3.62 49.33 4 290.09 0.00 0.88

Balaenoptera cf. musculus 1.37 Ma, Peruvian specimens included

BM 0.00338 2.69 n.a. n.a. 40.37 2 276.59 3.25 0.13

AC/DC 0.00218 2.67 0.019 n.a. 40.68 3 275.04 4.80 0.06

trend 0.00330 2.66 0.005 n.a. 40.73 3 275.14 4.70 0.06

OU 0.00338 2.69 0.000 n.a. 40.37 3 274.43 5.41 0.04

temp.-dep. rates 0.00177 2.69 0.002 n.a. 40.49 3 274.66 5.18 0.05

rate shift 0.00187 2.66 0.004 17.93 41.18 4 273.82 6.02 0.03

mode shift 0.00287 2.68 0.054 3.00 44.19 4 279.84 0.00 0.64
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2. Material and methods
(a) Material
The most important of the new mysticete fossils is a partial

blue whale skeleton from Lake San Giuliano, near Matera, southern

Italy (figure 1), dated to 1.49–1.25 Ma (electronic supplementary

material). In addition, we included three specimens from the

Miocene strata of the Pisco Formation, exposed near the village of

Ocucaje, Peru (electronic supplementary material, figure S1): Peloce-
tus sp. from the Middle Miocene locality of Mal Paso [9]; and two

Late Miocene balaenopterids, one from the base (late Tortonian)

and one from the top (Messinian) of the well-known site of Cerro

Los Quesos [7] (electronic supplementary material).

(b) Body size
We estimated the total length (TL) of all specimens based on their

bizygomatic width (BZW), using the ‘stem mysticete’ equation

of [10]:

log(TL) ¼ 0:92� (log(BZW)–1:72)þ 2:68:

In addition, we confirmed the length of the blue whale fossil

based on the ‘general mysticete’ equation of [6, suppl. fig. 9],

and a range of new equations focusing on extant rorquals only

(data from [6], electronic supplementary material, table S1).

(c) Macroevolutionary model fitting
We integrated our new fossils into the recent study of Slater et al.
[4], which analysed mysticete body size evolution by fitting several

macroevolutionary models to a comprehensive phylogeny and

associated body size dataset. Specifically, we considered the fol-

lowing models: (i) simple Brownian motion (BM); (ii) single peak

Ornstein–Uhlenbeck (OU); (iii) a biased random walk (trend);

(iv) time-dependent rates (accelerating/decelerating: AC/DC);

(v) temperature-dependent rates (based on the global d18O curve

[11]); (vi) a shift between two rate regimes, with the timing of

the shift (tshift) treated as a free parameter; and (vii) a mode shift

from BM to a biased random walk, with the shift point (tshift)

again treated as a free parameter.
To place the blue whale fossil from Matera, we used its

midpoint age (1.37 Ma) to truncate the branch representing

Balaenoptera musculus, following Slater et al. [4]. Limited resources

prevented the collection of the three Peruvian fossils, and thus

their formal inclusion in the phylogeny. We therefore approxi-

mated their position by grouping them with three species of

similar age and morphology, namely, Pelocetus calvertensis from

the early Middle Miocene of the eastern United States [12]; Balae-
noptera siberi from the Tortonian of the Pisco Formation [13,14];

and Parabalaenoptera baulinensis from the Tortonian–Messinian

of California [15]. We assigned branch lengths of 1 Ma to the

two balaenopterids, and a branch length of 2 Ma to Pelocetus
sp. to reflect its somewhat younger age relative to P. calvertensis.

Finally, we fitted all models in R 3.4.4 [16], and assessed their

relative support based on the second-order Akaike information

criterion (AICc) and Akaike weights (wi). Where appropriate, we fur-

thermore calculated the support surface for the mode shift model

[4, fig. 4] to gauge the effect of our new specimens on its timing.
3. Results and discussion
The blue whale fossil from Matera is poorly preserved but none-

theless shares several traits with extant Balaenoptera musculus,
including: a somewhat anteriorly oriented posterior border

of the supraorbital process of the frontal; a relatively blunt

apex of the nuchal crest; and a large (145 mm long) tympanic

bulla with a squared anterior border, a posteriorly extended

involucrum, a sigmoid process located approximately at the

transverse midline, a laterally retracted involucral ridge

and a weakly developed anterolateral shelf [17] (figure 1b,c).

Crucially, the Matera specimen also matches blue whales in

overall size: at a BZW of 294 cm, we estimate a total body

length of 23.4–26.1 m, depending on the exact equation used.

In the light of these similarities, we preliminarily refer the

new fossil to Balaenoptera cf. musculus.
The specimen from Matera provides a rare insight into the

poorly known Pleistocene marine record, which was largely

rendered inaccessible by rising sea levels following the end of



Table 2. Total length (m) of the Peruvian fossil mysticetes analysed here,
based on the ‘stem mysticete’ and ‘stem balaenopteroid’ equations of [10]
and the ‘general mysticete’ equation of [6, suppl. fig. 9].

‘stem
mysticete’

‘stem
balaenopteroid’

‘general
mysticete’

Balaenoptera cf.

musculus

23.4 27.1 24.8

Pelocetus sp. 11.8 13.7 12.2

Tortonian

balaenopterid

15.8 18.3 16.4

Messinian

balaenopterid

14.9 17.2 15.4
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widespread glaciation [18]. Its size is truly titanic and confirms

previous suggestions of a complex Quaternary history of mys-

ticetes in the Mediterranean [19], which was once home to

larger whales than are found there today [20]. Truncating B.
musculus at 1.37 Ma still recovers a mode shift as the best-

fitting model, albeit with less support than in the original

analysis (wi ¼ 0.88 versus 0.99; table 1). The timing of the

mode shift is pushed back from 0.31 to 3.62 Ma, and its two-

unit support region now extends into the latest Miocene, as

opposed to the Early Pliocene [4] (figure 1d,e). Truncating

B. musculus at 1.25 or 1.49 Ma yields similar results (electronic

supplementary material, table S2).

Among the Peruvian specimens, Pelocetus is relatively

common in the vicinity of Mal Paso and identified by its

narrowly triangular supraoccipital shield, an exoccipital that

projects posteriorly beyond the occipital condyle, a narrow

nasal, a wide squamosal fossa, a proportionately small tympa-

nic bulla, and a well-developed subcondylar furrow on the

posterior face of the mandibular ramus. Based on its BZW of

140 cm, we estimate a TL of 11.8 m. The balaenopterids from

the Pisco Formation are less well studied, but clearly identifiable

by their recurved mandibular neck [21]. We estimate 15.8 m for

the Tortonian rorqual from the base of Cerro Los Quesos

(BZW¼ 192 cm), and 14.9 m for its Messinian counterpart

(BZW¼ 180 cm). Inclusion of the Peruvian specimens reveals

a more gradual emergence of mysticete gigantism (figure 1f ),

and causes support for the mode shift model to reduce sub-

stantially (wi ¼ 0.64). BM (wi ¼ 0.13) is the best-supported

alternative (table 1).

Crucially, these results are robust to varying assumptions,

including truncating B. musculus at either 1.25 or 1.49 Ma

(electronic supplementary material, table S2), and smaller

body size estimates (electronic supplementary material). They

are also conservative. To maintain comparability, we followed

Slater et al. [4] in using the ‘stem mysticete’ equation of [10],

which—for balaenopteroids—yields lower estimates than

alternative approaches, such as the ‘general mysticete’ equation

of [6, suppl. fig. 9] and the ‘stem balaenopteroid’ equation of

[10] (table 2). If applied here, either of these equations would

further weaken support for the mode shift model.

Overall, our results thus suggest that the origin of modern

mysticete gigantism dates back to at least 3.6 Ma, and likely

even further. A mode shift around this time remains possible,

but seems questionable in light of our preliminary observations

from Peru. This does not mean, however, that large-bodied

baleen whales have always been dominant. On the contrary,

relatively small species were the norm throughout much of mys-

ticete history [4,6] and appear to have remained so until their

disappearance around 3 Ma [3]. Nevertheless, maximum body
size increased steadily, and reached essentially modern levels

by the Middle–Late Miocene. Considering the importance of

living whales as major predators and nutrient distributors [1],

it seems likely that these early giants had a profound, though

currently underappreciated, impact on the evolution of global

marine ecosystems.
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