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Filamentous phages: masters of a microbial
sharing economy
Iain D Hay1,* & Trevor Lithgow2,**

Abstract

Bacteriophage (“bacteria eaters”) or phage is the collective term
for viruses that infect bacteria. While most phages are pathogens
that kill their bacterial hosts, the filamentous phages of the sub-
class Inoviridae live in cooperative relationships with their bacte-
rial hosts, akin to the principal behaviours found in the modern-
day sharing economy: peer-to-peer support, to offset any burden.
Filamentous phages impose very little burden on bacteria and
offset this by providing service to help build better biofilms, or
provision of toxins and other factors that increase virulence, or
modified behaviours that provide novel motile activity to their
bacterial hosts. Past, present and future biotechnology applica-
tions have been built on this phage–host cooperativity, including
DNA sequencing technology, tools for genetic engineering
and molecular analysis of gene expression and protein production,
and phage-display technologies for screening protein–ligand and
protein–protein interactions. With the explosion of genome and
metagenome sequencing surveys around the world, we are coming
to realize that our knowledge of filamentous phage diversity
remains at a tip-of-the-iceberg stage, promising that new biology
and biotechnology are soon to come.
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Introduction

Overview of phage diversity and their application in biotechnology

Phages come in diverse morphological forms and show huge

diversity in their genome size, structure and sequences. They are

the predominant biological entity on Earth, with the exponential

acquisition in genome and metagenome sequence data now

making estimates of their diversity and impact undeniable [1–4].

In addition to their impact on shaping bacterial communities

including our own microbiomes, the knowledge acquired from

phages of various families (Fig 1A) has provided immeasurable

benefit to biotechnology.

Much within the toolbox of modern-day molecular biology

derived from researchers working towards an understanding of

bacteriophage lambda, a member of the Siphoviridae family of non-

contractile tailed phages (reviewed in [5]). Phage T7 is a member of

the Podoviridae family (Fig 1A), and the “Sequenase” reagent that

revolutionized DNA sequencing is a slightly modified form of phage

T7 DNA polymerase [6], while the phage T7 RNA polymerase

system has proved to be a workhorse for heterologous protein

expression as well as enabling some of the first demonstrations and

applications of in vitro transcription systems [7].

The family Microviridae includes the phage phiX174 (Fig 1A),

famed as the first genome sequenced by Fred Sanger [8]; as the

model system Arthur Kornberg used to prove that DNA synthesized

in vitro using purified enzymes generated a biologically active entity

[9]; and as the paradigm in which Craig Venter showed that a

genome created from synthetic oligonucleotides was both necessary

and sufficient to produce biologically active entities [10].

The family Leviviridae includes bacteriophage MS2 (Fig 1A), a

minimalist virus that encodes only four proteins and which infects

Escherichia coli. The MS2 coat protein in conjunction with the hair-

pin sequence derived from the MS2 operator sequence forms the

basis of a revolutionary system for live-cell imaging of specific RNAs

in eukaryotic cells [11].

Four Siphoviridae prophages, φNM1 to φNM4, detected in the

genome of the Gram-positive bacterium Staphylococcus aureus [12],

led to studies in phage-based payload delivery: a small set of genes

from the φNM1 phage were then used to create a packaging capsid

for the delivery of a CRISPR/Cas9 system directed against S. aureus,

and this phage therapy has been applied to kill MRSA, an antibiotic-

resistant form of S. aureus [13].

The family Inoviridae includes phage sub-families with diverse

structures and lifestyles (Fig 1A). One of these subgroups, the fila-

mentous phages, includes species that can be longer than the bacte-

ria that they infect, ranging in length from 800 nm to 4 lm (Fig 1B).

Most of our understanding of the biology of filamentous phages

comes from a group of closely related Escherichia coli phages called

Ff filamentous phages. These phages, historically called M13, fd and

f1, have 98% DNA sequence identity, and their replication mecha-

nisms are identical. They were independently discovered in sewage
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samples in the early 1960s [14–17], and they will here be collec-

tively termed E. coli Ff phages. One characteristic feature of Ff

phages (and most filamentous phages) is that they do not lyse the

host. Indeed, when isolated, they do not form typical lytic plaques

on bacterial lawns, but rather opaque zones of reduced growth.

Much of what we know about the biology of filamentous phages

comes from experiments on these Ff phages, but the Ff phages are

by no means representative of the vast diversity observed in the fila-

mentous phage family.

Ff phages gave rise to one of the early cloning vectors for DNA

sequencing (M13 sequencing: reviewed by [18]), and Ff served as

the basis for phage-display protein–protein interaction screening

and the maturation of protein, peptide, antigen or antibody libraries.

Several features of Ff facilitated its use as the basis for phage-display

technology: (i) assembly of these virions occurs without lysis of the

E. coli host, allowing secretion of phage particles throughout the

culture to the highest titres of any phage (up to 1013 virions per ml

of culture); (ii) the capsid proteins are amenable to genetic fusion to

other proteins, and thus the display of a foreign protein on the

surface of the virion; and (iii) the Ff genome is small and easily

modifiable, and most importantly, the modified genome is packaged

into virions displaying corresponding modified capsid protein. This

physical link between protein and corresponding DNA allows isola-

tion of a desired protein/peptide/antigen/antibody from a library

along with the gene encoding that specific variant [19], with sequen-

tial screening improving the affinity of the interactions (Fig 1C). In

2018, the Nobel Prize in Chemistry was awarded for advances in

directed evolution, incorporating the work by Sir Gregory Winter

and George Smith on phage-display in the directed evolution of new

proteins, particularly directed at the production of antibody-based

therapeutics [20–22].

Escherichia coli Ff: the archetypal filamentous phage

Structurally, the two best-studied filamentous phage virions are

E. coli Ff and the Pseudomonas Pf1 phages. Both are ~6 nm in diam-

eter, with the Ff phage virion approximately 1 lm long and the Pf1

virion approximately 2 lm long. For point of reference, E. coli cells

are 2–3 lm long. The Ff phage filament has a helical structure with

a fivefold rotational axis with a twofold screw axis (C5S2) termed

Class I, and Pf1 phages have a more complex structure (C1S5.4)

termed Class II (see [23] and [24] for detailed reviews). It had been

thought that filamentous phages with larger genomes have longer

virions. However, as more and diverse virions are studied, this

generalization seems to be overly simplistic. Ff and Pf1 have similar

genome sizes (6,408 and 7,349 bp, respectively), but the Pf1

filament is more than double the length of Ff. The lumen of the Ff

filament has more positive charges per capsid subunit, and modifi-

cations to charged residues in the lumen do indeed seem to alter the

DNA packing and therefore the virion length [23–28]. This suggests

that both size and physicochemical properties matter when it comes

to packaging phage genomes. The Ff virion is made up of numerous

copies of five different proteins (Fig 1B). The major capsid protein

pVIII forms the body of the phage, and its copy number is depen-

dent on the length of the genome: an Ff phage has approximately

2,700 copies of pVIII per virion, calculated from the known quater-

nary structure and the length of Ff phages. pVIII is a small, a-helical
protein, with the positively charged C-terminus in the core of the

virion.

The minor capsid proteins cap either terminus of the virion. pVII

and pIX cap the leading (emergent) terminus of the nascent virion,

while pIII and pVI cap the terminal end. In Ff phages, the minor

capsid proteins are present in an equimolar stoichiometry [29] of

five copies per virion as evidenced in labelling pIII with ZnS quan-

tum dots [30]. Taken together, each cap of the filamentous phage

probably conforms to the fivefold symmetry of the major capsid fila-

ment—although there are no high-resolution data to confirm this

assumption. This arrangement is not universal among filamentous

phages, with the Pseudomonas Pf3 phage having only four capsid

proteins.

In the minor capsid proteins, the N-terminal half of pIII forms

two receptor-binding domains termed N1 (TolA binding) and N2

(pilus binding) [31], while the C-terminal domain interacts with the

hydrophobic protein pVI. This pIII:pVI interaction is required for

both the stability of the virion and the release of the nascent virion

from the host cell [32–34]. The proteins pVII and pIX are both small

and hydrophobic, with predicted a-helical structures. They form a

protein complex which interacts with phage DNA, packaging the

signal hairpin to initiate the assembly of the virion, and thereby

forming a cap on the leading terminus of the nascent virion [35].

The specific roles played by these proteins within the phage life

cycle are elaborated later in this review.

Filamentous phages influence the virulence of bacterial pathogens

Whereas other types of phages are pathogens of their bacterial host,

killing the bacterium during egress, filamentous phages infecting

E. coli are episomal replicating phages that impose only a modest

burden on the host. Thus, their relationship is more one of coopera-

tion, with the host providing for delivery of phages throughout the

environment. The biology of these ride-share phages will be covered

in detail in the final sections. To understand the benefits to the host

bacterium, several well-studied phage–host scenarios are considered

where the phage requires relatively little from its host, yet contri-

butes significantly to its virulence and therefore its evolutionary

fitness.

Phages that make Vibrio capable of cholera

The filamentous phages of Vibrio have garnered great attention as

they are intimately linked to the evolution of toxigenic strains of

Vibrio cholerae. The major means by which cholera is caused by

V. cholerae is secretion of the cholera toxin: an oligomeric protein

encoded by two genes that are carried by the temperate bacterio-

phage CTX. Cholera toxin provides an advantage to the bacterial

host, as it promotes profuse diarrhoea in humans which results in

Glossary

CRISPR clustered regularly interspaced short palindromic repeats
Ff collective term for near-identical phages M13, fd and f1
MRSA methicillin-resistant Staphylococcus aureus
RF replicative form
T2SS bacterial type 2 secretion system
T3SS bacterial type 3 secretion system
T4P bacterial type 4 pili
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the dissemination of the pathogen. Infection of a non-pathogenic

strain with CTXφ results in a toxigenic strain [36,37]. Furthermore,

many other Vibrio phages and prophages interact with the CTXφ
phage to promote the horizontal transfer of the cholera toxin genes

(reviewed in detail by [36]). The host receptor for the CTXφ phage

is the toxin-coregulated (TCP) type IV bundle-forming pilus, which

itself is an important virulence factor. Controversially, the TCP pilus

itself was previously described to be located on a large (40 kb)

mobile element called VPI which was described as a filamentous

prophage [38], but this was later shown to be incorrect; VPI is now

regarded as an independent transmissible mobile genetic element,

transferred via generalized transduction [39–42]. Recent assessment

of prophages in diverse marine populations of Vibrio spp. suggests

that filamentous prophages are numerous and widespread and play

comprehensive roles in evolution through shaping niche adaptation

and emergence of novel pathogenic strains emerging from environ-

mental Vibrio communities [43–46]. Recently, a prophage with a

similar genomic arrangement to CTXφ has been described in the

human pathogen Acinetobacter baylyi (and A. baumannii) genome,

though no homologous CTX toxin is present [47].

Phages that convince bacteria that altruistic death is a good thing

Pseudomonas aeruginosa harbours a group of related filamentous

phages called the “Pf1-like” phages: Pf1, Pf4, Pf5 Pf6 and Pf7. The

Pf1-like phages have been isolated from different strains of P. aerug-

inosa and are thought to be strain-specific variants of an ancestral

prophage, with specificity now due to strain-specific variation of the

type IV pili receptors [48,49]. These Pf1-like prophages are wide-

spread among P. aeruginosa strains [48] and contribute to various

aspects of host cell physiology. During biofilm growth, Pf4 genes

are among the most upregulated with biofilm growth leading to the

release of 100–1,000 times more phage virions [50]. This increase in

expression of phage genes was also observed when P. aeruginosa

was grown in anaerobic conditions mimicking a chronic late-stage

cystic fibrosis lung [51], suggesting a cooperative role in the mainte-

nance of infection. Pf4 plays a critical role in the overall structure,

organized remodelling and seeding of mature biofilms. Filamentous

phages present in the biofilm matrix self-organize into a viscous

liquid-crystal-like arrangement providing the bacteria with increased

surface attachment, and resistance to both desiccation and antibi-

otics [52]. Amidst biofilm microcolonies, a spatially and temporally

organized Pf4-dependent cell death occurs leading to the remod-

elling and seeding of the biofilm.

Removal of the Pf4 prophage drastically reduces the develop-

ment and stability of biofilm, which ultimately reduces virulence

in mouse pneumonia model [53,54]. Furthermore, cells seeded

from the Pf4-dependent remodelling of biofilms showed increased

tendency to form “small colony variants”, which showed higher

levels of phage filaments on their surface and showed an

increased attachment to surfaces and have been associated with

pathogenicity [55].

The production of Pf4 has been linked to the maintenance of

long-term chronic infections typical of P. aeruginosa infection. In a

murine pneumonia model, phage production promoted a chronic

lung biofilm infection, reducing the bacterial invasion of the host

epithelial cells, and reducing the host inflammation and immune

response to the infection. Combined with the increased antibiotic

resistances observed in Pf4-producing biofilms, it seems the produc-

tion of Pf4 by P. aeruginosa causes the bacteria to favour persistent

infection over invasive infection which may be cleared by the

animal host [52,56].

Phages that infect plant pathogens

Given the global uncertainty around food security, there is a major

push for understanding how phages can shape microbial communi-

ties to disfavour bacterial pathogens on crop plants. The Xantho-

monas phage Xf infects the rice leaf blight pathogen Xanthomonas

oryzae and was one of the earliest filamentous phages described

[57]. Beyond the initial physical description, little is known about

this Xanthomonas phage. Other Xanthomonas phages, Cf, Cf1t/Cf1c

and Cf16, were isolated from the citrus canker pathogen Xantho-

monas citri in the 1980s. Cf1c was the first discovered example of a

filamentous phage integrating into the host genome [58–60]. The Lf

phage was later isolated from cruciferous vegetable black rot

pathogen Xanthomonas campestris and was used as a cloning vehi-

cle for the integration of DNA into X. campestris. Recently, the

complete genome sequence of a “UK variant” of the Lf phage has

been deposited in NCBI (GenBank: MH206184.1), along with four

new Xanthomonas phages: Lf2, isolated form Xanthomonas campes-

tris pv. campestris; Xv2, isolated from Xanthomonas campestris pv.

vesicatora; Xf190, isolated from X. oryzae; and Xf409, isolated from

Xanthomonas oryzae pv. Oryzicola; only XF109 has been described

in the literature [61].

Screening another agricultural pathogen, Ralstonia solana-

cearum, revealed phages that can be loosely grouped into two fami-

lies: the RSM1 and related phages [62]. These phages can integrate

into their host genome and reside as prophages [63]. The RSM1-like

phages (including RSM3, and Rs551) have been implicated in coop-

eratively trading away virulence to acquire drug resistance in a plant

disease model. This the phage does by reducing Ralstonia’s produc-

tion of extracellular polysaccharide, reducing twitching motility,

increasing cell aggregation and reducing the expression of key viru-

lence genes [64–70]. Given the phage modifies the host to amelio-

rate virulence, they have been proposed as biocontrol agents [64].

◀ Figure 1. Filamentous phages: classification and applications in biotechnology.

(A) Bacterial and Archaeal virus sub-families are represented and grouped based on their Baltimore classification. Relative sizes and symmetries are approximate. (B)
Schematic representation of the Escherichia coli Ff phage showing the overall architecture and copy number of the structural proteins. (C) In phage-display screening, a
natural or synthetic DNA library is cloned between the signal peptide and mature pIII-encoding gene on a phagemid vector containing an Ff origin of replication, a plasmid
origin of replication, and a selectable marker. The phagemid pool is transformed into E. coli infected with a helper phage containing a compromised Ff origin. The helper phage
produces all the machinery required for phage replication and assembly, and the phagemid produces modified pIII capsids. Phages are assembled and secreted with a
subpopulation of the pIII capsid proteins containing the insert. The phage library them undergoes multiple rounds of “panning”: (i) phages are applied to a matrix with
immobilized ligand or target, those phages displaying peptides which bind to or are recognized by the target/ligand are bound while the non-binding phages are washed
away, and then, (ii) bound phages are eluted and used to infect E. coli cells, which are then pooled and infected with a helper phage to amplify the library and produce phages
for a subsequent round of panning. Multiple cycles of panning can produce peptides with increased affinity.
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RSS1 phages increase the virulence of their Ralstonia host in a plant

disease model, by increasing extracellular polysaccharide produc-

tion, twitching motility, and the expression of some virulence genes

[71]. It has been suggested that virulence-enhancing RSS1 phages

are actually “superinfective” forms of the non-virulence-enhancing

RSS0 prophage [63]. Prophage recombination on host chromosomes

is common, and RS603 appears to be a hybrid phage with elements

similar to the RSM1 and RSS1-like phages [72], whereas RS611

seems to be a hybrid of RSS1 and RSS0 [73].

Filamentous phages that impact marine microbial communities

In an era of climate change, where marine environments are under

inarguable physical stress, filamentous phages isolated from marine

bacterial species that shape their population structure are under

intense investigation. The phage f327 was isolated from an arctic

sea ice Pseudoalteromonas strain, and homologous phages to f327

are widespread through arctic sea ice. Carriage of the phage slows

growth somewhat, but enhances the motility and chemotaxis of the

host. This has been suggested as beneficial for the survival of the

host in sea ice environments by preventing population “overbloom-

ing” during the relatively nutrient-rich summer period [74]. In the

case of phage SW1 isolated from the deep-sea bacterium Shewanella

piezotolerans, the phage genes and virion secretion are induced at

low temperatures and presence of the phage results in differential

transcription of many genes in response to low temperature and

high pressure including flagella genes which results in a reduced

motility [75–77]. A modified form of SW1 has been engineered into

a low-temperature inducible expression vector for biotechnology

applications [78]. Given the recent identification of filamentous

phages from the hyperthermophile Thermus thermophilus [79],

equivalent engineering could also generate high-temperature expres-

sion vectors for biotechnology applications.

Diagnostic features in filamentous phage genome sequences

With a few key exceptions, the currently described filamentous

phages have been isolated from a small handful of species from the

gammaproteobacterial genera Escherichia (and Salmonella), Pseu-

domonas, Xanthomonas, Pseudoalteromonas, Yersinia, Shewanella

and Stenotrophomonas; and from the betaproteobacterial genera

Ralstonia, and Neisseria (Table 1). With the benefit of a substantial

body of work that defines the structural and regulatory genes that

contribute to filamentous phage biology, genome sequences can

now be mapped and studied comparatively (Fig 2A).

Across the various filamentous phage lineages, only the pI

proteins stand out as being highly conserved and fully diagnostic

(Fig 2B). The pI proteins have a conserved Zot domain (Pfam

PF05707 Zot domain) at their N-terminus. This domain was named

for the pI homologue in the Vibrio CTXφ phage called the Zonula

Occludens Toxin, which is essential for the assembly and export of

CTXφ phage virions, and has been implicated in the virulence of

pathogenic V. cholerae strains by increasing intestinal permeability

through binding to tight junctions (zonula occludens) between small

intestine epithelial cells [80,81]. While the toxin itself carries the

conserved Zot domain in its N-terminus, the Zot domain is not the

toxic component: the C-terminal domain is cleaved from the Zot

protein, and it is this non-conserved, C-terminal fragment that intox-

icates the human epithelial cells [82–86]. Unfortunately, the “Zonula

Occludens Toxin” automated annotation that has now attached

itself to entries for most filamentous phages has resulted in incorrect

assumptions about toxin activity in newly annotated phage genomes

[87,88].

Phylogenetic analysis of the conserved pI proteins shows that

they provide a basis for phage classification (Fig 3). The phylogeny

also demonstrates that based on the current ICTV threshold for the

classification of filamentous phage genera, there are many other

clades that could be subject to future classification. In the simplest

sense, grouping filamentous phages based on their pI proteins leads

to distinct clades. For example, the Escherichia phages Ff, I22, IKe

and If1, the Vibrio phages fs2 and VFJ phages group together as a

single clade. This clade contains the phage genera Saetivirus,

Inovirus and Lineavirus, and all the members are non-integrative

episomal phages. A second clade is formed by the Vibrio VfO36K/

f237, VCY and KSF1 on one branch and a group containing the Pseu-

domonas “Pf1-like” phages (Pf1, Pf4, Pf5) and the Vibrio CTXφ
phage on another branch. All the Neisseria prophages are in a large

diverse third clade with the Xanthomonas Cf1c-like and Xf109/

Xf409 phages; the Stenotrophomonas phages SMA6, SHP2 and

PSH1; the Ralstonia RSS1 family phages (RSS1, RSS0, p12J, PE226);

and the Pseudomonas episomal phage Pf3. A fourth clade is formed

with the Ralstonia “RSM1-like” phages (RSM1, RSM3, RS603) of the

genera Habenivirus, the Stenotrophomonas phages SMA7 and SMA9

and the Xanthomonas phages Lf and Lf2 on one branch, and the

Yersinia/Escherichia CUS phages (CUS-1, Ypf/CUS-2) on a separate

branch. A clade encompassing the Fibrovirus genus contains the

Vibrio phages fs1, VSK, VSKK, VEJ, VGJ and Vf33, as well as the

Shewanella phage SW1. A more distantly related branch contains

the Thermus phages OH3 and OH16 and the Gram-positive Propioni-

bacterium phage B5.

Filamentous phage life cycle: infection

Almost all of the described filamentous phages infect Gram-negative

hosts, and thus must traverse two membrane barriers. While the cell

surface receptor is unknown for the majority of described filamen-

tous phages, where it is known the receptor has been shown to be a

pilus of some description. For example, Ff and related phages use

the F sex/conjugation pilus (Fig 4A); various Vibrio spp. phages use

either the toxin-coregulated type 4 pili or the mannose-sensitive

haemagglutinin type 4 pili; Pseudomonas phages Pf1 and Pf3 use the

PAK type 4 pili and conjugative RP4 pilus, respectively; Xantho-

monas phage Cf uses an uncharacterized type 4 pilus; and Acineto-

bacter phage CRAφ utilizes a competence pilus [47,89–93]. While

commonly referred to as “pili”, the F-pilus and the various type 4

pili are evolutionally, mechanistically and structurally unrelated; the

common feature important for phage entry into its bacterial host

seems to be simply the retractile function of the pilus.

Docking onto the host cell pilus is mediated through the pIII

protein (Fig 4A). Electron microscopy observations suggest that the

phages bind to the tip of the pilus, in a tip-to-tip fashion [94]. This

has been experimentally confirmed in the case of CTXφ, where pIII

binding to the pilus tip subunit (called the minor pilin, TcpB) of the

toxin-coregulated type 4 pilus in Vibrio cholerae has been directly

demonstrated [95]. It is speculated that binding of the phage to the

pilus induces signalling to retract the pilus, bringing the phage

towards the host cell surface [96]. Upon pilus retraction, the pIII
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Table 1. Filamentous phages

Phage Host Additional Information # References

Ff Escherichia coli Inovirus ICTV type species. AKA M13, f1, fd. Host receptor—F “sex” pilus. Non-integrative
episomal replication. 900 × 6 nm

[195]

If1 Escherichia coli Unassigned genus. Host receptor—I pilus. Non-integrative episomal replication. 900 × 6 nm [196]

IKe Salmonella
typhimurium
and Escherichia coli

Lineavirus ICTV type species. Host receptor—N or I2 pilus. Non-integrative episomal
replication. 1,000 × 6 nm

[197–199]

I22 Escherichia coli Lineavirus. Host receptor—N, I2 or P pilus. Non-integrative episomal replication. 1,000 × 6 nm [199,200]

CUS-1 Escherichia coli Prophage. RF observed but no RF sequence available. Associated with pathogenic strains.
Imparts slight fitness advantage to host during mammalian infection—unknown mechanism

[168,169]

Ypf/CUS-2 Yersinia pestis Prophage. Very similar to CUS-1. RF observed but no RF sequence available. Associated with
pathogenic strains. Imparts slight fitness advantage to host during mammalian infection—
unknown mechanism. 1,200 × 8 nm

[170,201]

CTXφ Vibrio cholera Unassigned genus. Host receptor—toxin-coregulated type IV bundle-forming pilus. Associated
with pathogenic strains. Encodes cholera toxin A/B. Typically requires a satellite prophage or
prophage duplication to produce infective phage virions.

[36,202,203]

RS1 Vibrio cholera Satellite prophage depends on CTXφ, KSF1 or VJG. [36,204,205]

fs2 Vibrio cholera Saetivirus ICTV type species. Non-integrative episomal replication. [191,206]

TLC Vibrio cholera Satellite prophage depends on fs2. Promotes the integration of CTXφ. [37]

VFJ Vibrio cholera Saetivirus. Non-integrative episomal replication. Looks like a mosaic of fs2 and VEJ or VCY.
Host shows inhibition of flagellum formation and had slightly increased antibiotic resistance
through an unknown mechanism. 1,400 × 7 nm

[207]

VCY Vibrio cholera Unassigned genus. Integrates into host genome. Associated with environmental Vibrio isolates.
1,800 × 7 nm

[44]

KSF1 Vibrio cholera Unassigned genus. Host receptor—MSHA type IV pili. 1,200 × 7 nm [208]

VfO3K6 Vibrio parahaemolyticus Unassigned genus. AKA f237 or pO3K6. Episomal replication. Associated with pathogenic
strains. 2,500 × 8 nm

[74,209]

VfO4K68 Vibrio parahaemolyticus Unassigned genus. Derivative of VfO3K6 potentially carrying novel toxin gene. Episomal
replication 1,300 × 6 nm

[74]

Vf33 Vibrio parahaemolyticus Unassigned genus. AKA Vf12. Integrates in to host DNA. 1,400 × 7 nm [210]

fs1 Vibrio cholera Fibrovirus ICTV type species. Host receptor—MSHA type IV pilus. Integrates into host genome.
1,000–1,200 × 7 nm

[191,211]

VSK Vibrio cholera Considered a variant of fs1 [191]

VSKK Vibrio cholera Considered a variant of fs1 [191]

VEJ Vibrio cholera Considered a variant of fs1. Host receptor—MSHA type IV pilus. Recombination with CTXφ
allows horizontal transfer of cholera toxin genes.

[184,191]

VGJ Vibrio cholera Fibrovirus. Host receptor—MSHA type IV pilus. Integrates into host genome. Recombination
with CTXφ allows
horizontal transfer of cholera toxin genes. 1,000 × 7 nm

[89,185]

Pf1 Pseudomonas
aeruginosa (PAK)

Unassigned genus. Episomal replication Host receptor—PAK type IV pili. Virion inhibits
Candida albicans growth
via sequestering iron. 2,000 × 6 nm

[91,212,213]

Pf3 Pseudomonas aeruginosa Unassigned genus. Episomal replication. Host receptor—RP4 conjugative pilus. Non-
integrative episomal replication. 700 × 6 nm

[91,214]

Pf4 Pseudomonas
aeruginosa (PAO1)

Prophage. Integrates into host genome. RF observed but no RF sequence available. Implicated
in host virulence via biofilm remodelling and dispersal mediated by host cell death; and the
formation of virulent
small colony variants (SCV). Virion inhibits Aspergillus fumigatus metabolism and
Candida albicans growth via
sequestering iron. Predicted length 37,000 × 6 nm

[53,55,213,215]

Pf5 Pseudomonas
aeruginosa (PA14)

Prophage. Integrates into host genome. RF observed but no sequence available. [216]

Pf6 Pseudomonas
aeruginosa (PAO1-MPAO1)

Pf4 variant from the PAO1-MPAO1 strain. Inserted at different locus to Pf4 and containing
two additional genes encoding protein kinases. AKA RGP42.

[49,217]
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Table 1 (continued)

Phage Host Additional Information # References

RSM1 Ralstonia solanacearum Habenivirus ICTV type species. Host receptor—probably type IV pili. Integrates into host
genome. Decreases host virulence. Increases host cell aggregation. 1,400 × 10 nm

[68–70,178,191]

RSM3 Ralstonia solanacearum Habenivirus. Host receptor—probably type IV pili. Integrates into host genome. Decreases host
virulence, growth rate, extracellular polysaccharide production, motility, and expression of
some virulence genes. Increases host cell aggregation and antibiotic resistance. Proposed
biocontrol agent.

[64,65,68]

RS603 Ralstonia solanacearum Habenivirus. Only RF episomal form described (lacks integrase from RSM1/3). Appears to be a
hybrid of RSM1/3 and RSS1/0. 1,120 × 8 nm

[72]

RS551 Ralstonia solanacearum Not classified (probably Habenivirus). Decreases host virulence, extracellular polysaccharide
production, motility. Integrates into host genome. 1,200 × 7 nm

[66,67]

RSS1 Ralstonia solanacearum Unassigned genus. Host receptor—probably type IV pili. Increases host virulence, extracellular
polysaccharide production, motility and expression of some virulence genes. May be an
episomal “superinfective” form of RSS0. 1,100 × 10 nm

[68–71,178]

RSS0 Ralstonia solanacearum Not classified. Very similar to RSS1 with additional ORF encoding potential DNA-binding
regulator and an attP site.

[62]

RS611 Ralstonia solanacearum Not classified. Appears to be a hybrid of RSS1 and RSS0 with a deletion of two ORFs.
1,120 × 8 nm

[73]

p12J Ralstonia pickettii Not classified. Unclear if the deposited sequence is a phage or prophage sequence [218]

PE226 Ralstonia solanacearum Not classified. Only RF episomal form described. 1,050 × 6–9 nm [87]

Xf109 Xanthomonas oryzae Unassigned genus. Integrates into host genome. 1,210 × 8 nm [61]

Xf409 Xanthomonas oryzae Not classified. similar to Xf109 *

Lf Xanthomonas campestris Not classified. Complete genome of “UK variant” available. Suggested to be integrative,
though not conclusively demonstrated. 1,000 × 8 nm

[219]

Lf2 Xanthomonas campestris Not classified *

Xv2 Xanthomonas campestris Not classified *

Xf Xanthomonas oryzae Not classified. No sequence information. 977 × 8 nm [57]

Cf Xanthomonas citri Not classified. No sequence information. 1,000 nm long [220]

Cf1t Xanthomonas citri Not classified. Similar to Cf. Integrates into host genome [58,59]

Cf1c Xanthomonas citri Unassigned genus. Variant of Cf1t. Forms clear plaques. Sequence available. [221]

Cf16 Xanthomonas citri Not classified. Integrates into host genome [222]

XacF1 Xanthomonas citri Not classified. Integrates into host genome. Lowers host EPS production, motility, and growth.
Host shows reduced virulence in plant disease model. 600 nm long

[223,224]

MDAφ Neisseria meningitidis Not classified. AKA Nf1-A. Host receptor—probably type IV pili. Integrates into host genome.
Presence of prophage correlates with hypervirulent invasive strains. Increases bacterial host
attachment to epithelial cells. 1,200 nm long

[177,225]

Nf1 Neisseria meningitidis Not classified. Prophage [171]

Nf2 Neisseria meningitidis Not classified. Prophage [171]

Nf3 Neisseria meningitidis Not classified. Prophage [171]

Nf4 Neisseria gonorrhoeae Not classified. Prophage [171]

Ngo6 Neisseria gonorrhoeae Not classified. Virus derived from synthetic phagemid containing the Nf4-G2 prophage.
Reported to infect diverse proteobacterial species.

[226]

CRA Acinetobacter baylyi Not classified. Prophage. RF observed but no RF sequence available. Host receptor—probably
competency pilus. Phage inhibits natural competency of cells

[47]

SHP1 Stenotrophomonas
maltophilia

Unassigned genus. AKA PSH1. Only episomal RF reported. 2,100 × 15 nm [227]

SHP2 Stenotrophomonas
maltophilia

Not classified. Only episomal RF reported. 800 × 10 nm [228]

SMA6 Stenotrophomonas
maltophilia

Unassigned genus. Integrates into host genome [229]
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containing terminus of the virion is thereby brought into the

periplasmic space, to engage a secondary receptor in the periplasm

of the host. It seems most likely that this entry event would be

through the pilus pore, and the spatial constraints of the pore would

allow this. In the cases investigated so far, the secondary receptor is

always the inner-membrane-anchored protein TolA, which extends

out into the periplasm (Fig 4A). TolA is a component of the TolQRA

complex, a nanomachine element in the “Tol-Pal” system that

controls membrane integrity and invagination during cell division

[97–100]. While this primary function of TolA may not be relevant

to phage entry, the primary function of TolA is essential; thus, the

TolQRA secondary receptor is highly conserved, hence ever avail-

able for filamentous phage infection [101].

Upon pilus binding and retraction, the N2 domain of protein pIII

appears to have a crucial role in assisting the infection process. An

experiment where the N2 domain of pIII was recombinantly

expressed in host bacteria prevented F-pilus extension and locked

the pilus in a retracted state through an unknown mechanism [102],

and it has been proposed that this allows the phage to securely

traverse the outer membrane and disassemble into the inner

membrane without F-pilus extension or subsequent infection with

other phages interfering with the process [19]. Once the N1 domain

of pIII is uncovered and brought into the periplasm via the retrac-

tion of the pilus, it binds to the C-terminal domain “III” of TolA.

Beyond the pIII-TolA binding event, very little is known of subse-

quent infection steps or how the virion DNA traverses the host cell

inner membrane. The extreme C-terminus of pIII is predicted to

contain a transmembrane a-helix and two short amphipathic a-
helices which are essential for phage infection, and pIII has been

shown to have pore-forming properties in artificial lipid bilayers

[103], suggesting that the C-terminus of pIII inserts into the

membrane creating a pore that could allow phage DNA access to the

host cytoplasm. The major capsid proteins end up embedded in

the inner membrane, with their N-termini on the periplasmic side of

the membrane, potentially reused for packaging new phage particles

[104–106], suggesting there is some kind of ordered disassembly of

the virion capsid at the inner membrane that drives the phage DNA

into the host cytoplasm.

Filamentous phage life cycle: genome replication

For Ff phages, episomal replication of the ssDNA genome (Fig 4B)

is a well-characterized process and early experiments on Ff genome

replication provided seminal information for our current under-

standing of rolling circle DNA replication, a mechanism relevant to

understanding bacterial plasmid replication, the amplification of

various virial genomes, and the replication of mitochondrial DNA in

at least some species of eukaryotes [107,108].

As shown in Fig 4B, the filamentous phage genome is injected

into the host cell cytoplasm as single-stranded circular DNA referred

to as the infective form (IF). Replication of the phage genome is

largely controlled by the intergenic sequence (IG) located between

the gIV and gII genes, which contain the + and – strand origins of

replication and the packaging signal that all form double-stranded

hairpins in the ssDNA genome. Filamentous phage genome replica-

tion is entirely dependent on the core bacterial DNA replication

machinery. Upon entry, the host RNA polymerase r70 holoenzyme

binds to the – strand origin hairpin, which mimics a bacterial �35

and �10 promoter sequence, with an affinity much higher than a

typical bacterial promoter [109,110]. RNA polymerase begins to

synthesize RNA on the ssDNA template but stalls and backtracks at

Table 1 (continued)

Phage Host Additional Information # References

SMA7 Stenotrophomonas
maltophilia

Unassigned genus. Integrates into host genome [229]

SMA9 Stenotrophomonas
maltophilia

Unassigned genus [88]

f327 Pseudoalteromonas
sp. BSi20327

Not classified. AKA pSM327. Only RF described. Decreases host growth rate. Increases motility
and chemotaxis. Widely distributed in arctic sea ice samples. 1,500 × 14 nm

[230]

SW1 Shewanella piezotolerans Not classified. Integrates into genome. Phage replication and genes expression induced at low
temperatures. Seems to have a role in flagella regulation.

[76,77,231]

OH3 Thermus thermophilus Unassigned genus. Only RF episomal observed. 830 × 8 nm [79]

OH16 Thermus thermophilus Not classified. Like OH3 but with an additional transposase. Only genome sequence—no
description

*

PH75 Thermus thermophilus Not classified. Only protein sequence of major capsid protein reported. [232]

B5 Propionibacterium
freudenreichii

Unassigned genus. Only RF episomal form described 620 × 12 nm [233]

CAK1 Clostridium beijerinckii Not classified. Only RF observed. Infectivity not demonstrated. No genome sequence.
1,000 × 5–8 nm

[234]

NP-2014 Environmental DNA sequenced during human virion project from amniotic fluid—classed as “Ralstonia
phage” though no rational for this naming is given

*

WW-nAnB Environmental DNA isolated from raw sewage. Previously detected in faecal samples but incorrectly
described as “non-A, non-B hepatitis”

[235]

This should not be considered a complete list of filamentous phages/prophages. * No literature publicly available, only genome sequence available. # Virion sizes
are as reported in relative literature. Different methodologies may result in difference in measurements (particularly with respect to the width measurements).
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a section of the genome and dissociates leaving a short RNA primer

(18–20 nt long) which is extended by the host DNA polymerase III

holoenzyme to generate the – strand of the genome and the double-

stranded replicative form (RF) of the phage genome [111,112]. The

RF can also be synthesized from other regions of the genome but

with drastically lowered efficiency [113]. The RF is further

processed by the host gyrase to form a supercoiled RF [114,115].

There are three crucial aspects to the initial function of the RF.

Firstly, it serves as a template for the transcription of the initial

mRNA transcripts encoding the phage proteins including pII and pX,

which are required for the amplification of the phage genome.

Secondly, it serves as a template for the replication of the RF.

Thirdly, it serves as a template for replication of the IF. Amplifi-

cation of the RF and IF through rolling circle replication is mediated

by the phage protein pII.

Protein pII is a strand transferase which binds to the newly

synthesized supercoiled RF at the + strand origin of replication,

cleaves the + strand and attaches to the 50 end [115–117]. The free

30 end can now serve as a primer for the host DNA polymerase

holoenzyme to synthesize a new + strand, displacing the origi-

nal + strand as it progresses. In Ff, these pII-mediated steps are also

dependent on the host replicative Rep helicase and integration host

factor, whereas some Vibrio and Pseudomonas Pf phages use the

hosts alternate DNA repair helicase UvrD and the histone-like HU

proteins [118–120]. Once the replication completes a full circle, pII

cleaves and cyclizes the free ends resulting in a ssDNA IF and

dsDNA RF [116]. Early in the infection cycle, the IF is converted into

new RF, as described above, until approximately 50 RF copies are

present in the host [121], whereas the RF can serve as a template

for further rolling circle replication generated IFs and as a template

for the transcription of phage mRNA transcripts. As the number of

RFs templated for transcription increases, so too does the number of

phage proteins present in the host cell. Late in the infection when

the level of pV protein reaches a critical number, it forms dimers

and binds at the bottom of the hairpin formed by the packaging

signal in the IF DNA and begins to coat the entire length (except the

packaging signal) of the DNA, with one antiparallel ssDNA strand

bound by each side of the dimer forming a long helical DNA–protein

complex containing approximately 1,600 copies of pV [122,123]. pV

also plays a role in timing the infection cycle in the host and coordi-

nating the level of IF for packaging. Late in the infection, the

increasing levels of pV directly inhibit both the synthesis of the

negative strand and the translation of the pII and pX proteins, which

results in the accumulation of IF DNA [124,125]. Although pII inhi-

bition is dispensable for a successful infection cycle [126], pX

protein—which is identical to the C-terminal third of pII and trans-

lated from an internal start codon within the pII gene—appears to

play an additional, though unclear, regulatory role in the levels

ration of IF and RF [127,128].

Despite this seemingly costly exercise in DNA replication by the

phage, it really is a cooperative use of host resources. Most filamen-

tous phages are produced rapidly in an initial stage lasting less than

10 host cell generations, with each bacterial cell producing around

200 phages per generation, after which time the host settles into a

stable state where the phage genome is only replicated at very low

levels and very few phages are produced [121]. By contrast, within

a few minutes of infection the classic E. coli tailed phage T4

converts the host cell into a factory, with the sole purpose of

producing phage particles. The T4 genome contains more than 270

genes, with many of them encoding the machinery required for the

hostile takeover of the host cell. T4 immediately inhibits host DNA

replication, transcription and translation and completely remodels

the host metabolism to favour phage production. The host DNA is

degraded and recycled into phage DNA. Within 20–30 min, the host

is actively lysed and 100–200 T4 virions are released (for a review

of T4 host interactions, see [129]).

Filamentous phage life cycle: phage egress

In contrast to tailed phages, the physical dimensions of filamentous

phages would presumably prevent their assembly within the cell; as

such, the virion is assembled at the bacterial cell envelope, with the

maturing phage actively secreted through the cell envelope in a non-

lytic manner. The single-stranded DNA genome appears to lack any

significant Watson–Crick base pairing apart from a hairpin at one

terminus, called the packaging signal [24]. The newly replicated

ssDNA IF genome is coated with the DNA-binding protein pV in the

cytoplasm, and this serves to stabilize and expose the “packaging

signal” (Fig 4B and C) that will target the DNA–protein complex to

the inner membrane of the host cell (Fig 4C). The trans-envelope

export complex is comprised of two phage proteins: pI and pXI (pXI is

translated from an internal start site in the pI gene and is identical to

the transmembrane and C-terminal periplasmic third of pI). These two

phage proteins, pI and pXI, each have a single transmembrane domain

to anchor them to the host cell inner membrane, and thereby form

one half of a secretion complex, equivalent but not homologous to a

bacterial type 2 secretion system. Intriguingly, the translocation chan-

nel across the outer membrane utilized by filamentous phages is a

protein of the secretin protein family, referred to as pIV (Fig 2B), with

the secretin protein family also forming the exit channel of type 4 pili

as well as type 2 secretion systems. The phage secretion machinery is

remarkable in its apparent simplicity; whereas the T2SS and type 4 pili

require many periplasmic or envelope proteins to assemble their pilus,

the filamentous phage secretion machinery assembles a more complex

DNA–protein hybrid filament with only two (or three) proteins.

The pI protein is embedded in the membrane by a signal anchor

domain, leaving the N-terminal ~250 residues in the bacterial

◀ Figure 2. Diversity of filamentous phage genomes.

(A) Schematic representation of filamentous phage genomes: for each gene identified in the genome, the putative function is noted either based on experimental evidence,
inferred from sequence homology, or based on conserved domain predictions. Scale bare represents genome size in nucleotide base pairs. (B) Protein sequence similarity
network plot of all predicted open-reading frames from 56 filamentous phage genomes. The great proportion of orphan proteins in this plot demonstrates that at the protein
sequence level, there is a very high degree of diversity in filamentous phages. Each circle node represents a sequence, and each connecting line represents a BLAST score better
than 1e-5. Identical proteins are collapsed into one circle with the size representing the number of proteins denoted. Representative species are coloured as shown, and the
identity of the Ff proteins is annotated in the plot.
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cytoplasm and the C-terminal ~80 residues in the periplasm, and the

signal anchor domain of pXI results in the remainder of the protein

exposed to the periplasm. Being (initially) signal-anchored proteins,

both pI and pXI require the bacterial Sec machinery for insertion

into the membrane [130]. The functional benefit of pXI to the phage

is unclear, and while both pI and pXI are essential for Ff phage

export [131,132], the internal start site generating protein pXI is not

a conserved feature. The cytoplasmic domain of pI is predicted to

act as an ATPase, powering the assembly and transport of the

phages through the envelope. This is supported by the finding that

Ff phage assembly is dependent on ATP hydrolysis [133].

pI and pXI form a complex with the outer membrane protein pIV

in the absence of other phage proteins or DNA, suggesting that this

is a genuine secretion nanomachine representing a pre-initiation

step of phage morphogenesis [134]. Like other secretins, pIV resides

in the outer membrane [130], though the mechanism of secretin

assembly into the outer membrane remains unknown [135]. Low-

resolution cryo-electron microscopy of purified pIV showed that the

protein forms ring-like structures with an outer ring diameter of

approximately 13.5 nm and an inner (channel) diameter of approxi-

mately 6 nm. This channel diameter would be just sufficient to

allow passage of the filamentous phage particle, which has a diame-

ter of 6 nm. Although no clear symmetry could be observed, nano-

gold labelling suggested that there are 14 subunits per secretin

complex [136]. From recent near-atomic resolution cryo-electron

microscopy models of secretins from the type 2 secretion system

[137–139] and previous mutagenesis experiments on the pIV gate

regions [140], we can extrapolate some information about the struc-

ture and function of pIV. Secretins form homo-oligomeric complexes

comprised of 15 copies of the secretin subunit. The outer membrane

channel is formed by extended b-strands (four from each subunit)

with two b-hairpins folded upwards into the lumen of the barrel to

form a b-barrel cone forming an internal gate. A recent structure of

the T3SS with the gates in an open state showed that the two b-hair-
pins forming the internal gate straighten and move approximately

40 Å upwards against the outer b-barrel [141]; these are the same

regions identified as “leaky” gate mutants in a mutagenesis screen

of pIV [140]. Thus, it is plausible that the pIV secretin gate would

open in a similar fashion during phage filament extrusion.

While some phages encode their own secretin (pIV), most do not

(Fig 2B). Nonetheless, it seems likely that secretin-mediated egress is

a common feature for the filamentous phages, given two well-studied

cases where phages were shown to share the host cell secretion for

their own travel out of the bacterial cell. When CTXφ is secreted from

V. cholerae, it uses the endogenous T2SS secretin EspD for phage

secretion, and this process is independent of the T2SS inner

membrane machinery [142,143]. When MDAφ infects N. meningi-

tidis, it uses the endogenous type 4 pilus secretin PilQ for phage secre-

tion [144]. It is assumed that the majority of other filamentous phages

lacking a dedicated secretin use a similar mechanism. This ride shar-

ing by filamentous phages contrasts with the process of host cell

protein secretion, wherein secretins normally require highly

organized interactions with their cognate inner membrane machinery

[145–147]. This suggests that evolution has driven phage pI proteins

to present periplasmic domains that mimic and/or displace secretin-

binding domains of the cognate bacterial secretion systems.

The Ff structural proteins are initially integrated in to the bacte-

rial IM prior to assembly. In a past era of pioneering work on how

bacteria target and assemble membrane proteins, filamentous phage

coat proteins were used as models and helped drive our understand-

ing of membrane protein biogenesis in E. coli [148–152]. The

“procoat protein” pVIII has a signal sequence to engage with the

Sec/YidC machinery of the host cell, and was therefore used as a

model protein to dissect the role of the targeting pathways and

membrane translocation events in E. coli [149,153,154]. The phage

proteins also have sequences predicted as transmembrane domains;

initially perplexing, since the phage contains no lipids, it is now

clear that the coat proteins use a mode of integration into the inner

membrane in order to coalesce together and to co-translocationally

displace the pV (DNA-binding protein) from the ssDNA, and thereby

coat the DNA to create the filamentous phage capsid [23]. How the

coat proteins are extracted out of the inner membrane during virion

assembly is unknown, but an active area of investigation (see also

Box 1).

◀ Figure 3. Phylogenetic tree of filamentous phages.

Phylogenetic tree built of the conserved pI homologues of known filamentous phages and prophages. Alignments were calculated with mafft generated (L-INS-i option), and
sites for tree inference chosen using trimal (automated1). The tree was calculated with RAxML “PROTGAMMAAUTO” criteria (final model LG) and “autoMRE” bootstrap
convergence test and midpoint rooted [236–238]. Clades are coloured as described in the text, and leaves are coloured based on their ICTV genera classification.

Box 1: In need of answers

(i) The structure of both termini of the Ff virion—Although various
methods have resolved the super structure of the virion shaft and
several crystal structures of domains of the minor capsid pIII exist,
the tertiary and quaternary structures of the pVII:pIX and pIII:pVI
caps and how they interface with the helical shaft remain
unknown. Modern advances in electron microscopy may lead to
advanced in our understanding of the virion structure.

(ii) Assembly of the virion—How do the capsid proteins transition
from their inner membrane embedded to their structural virion
forms? How are they extracted from the membrane, and what
initiates the assembly? Is the assembly reaction actively driven by
the pI ATPase, akin to the pilus of the type 4 pili?

(iii) Egress through the bacterial OM—do all filamentous phages use
secretins for secretion across the OM? Do those lacking an endoge-
nous OM secretin pores all hijack the bacterial secretion systems
to exit the cells as seen in CTXφ and the T2SS in V. cholerae?

(iv) The “origin” of filamentous phages and bacterial secretins—The
origin of filamentous phages is directly linked to the evolution of
secretins and thus the T2SS, T3SS and the T4P. So, are filamentous
phages the progenitors of bacterial secretin systems or simply
hijacking established systems?

(v) How widespread are filamentous phages in nature? In the current
review, we have provided evidence suggesting filamentous
prophages are distributed widely throughout the bacterial and
archaeal kingdoms, though only very few have been experimentally
validated. A more systematic approach to identifying filamentous
phages and prophages both experimentally and in bacterial and
metagenomic sequence data will elucidate our understanding of
these fascinating systems.
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Filamentous phage assembly is initiated by the minor capsid

proteins pVII and pIX which are small hydrophobic proteins, inte-

grated into the bacterial inner membrane. These proteins bind to

the exposed packaging signal of the phage DNA, thereby forming

the cap of the virion to initiate assembly of the emergent phage

[35,155–157]. During the early stages of phage infection, the

major capsid protein pVIII becomes one of the most abundant

proteins in the cytoplasm with upwards of 4 million copies per
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cell [121]. The protein may (e.g. E. coli) or may not (e.g.

P. aeruginosa) contain an N-terminal signal peptide, but its inte-

gration into the inner membrane is mediated by the YidC translo-

con [158–161]. The signal peptide of pVIII is cleaved by the host

cell signal peptidase, leaving the membrane-embedded capsid

with its N-terminus in the periplasm and the C-terminus in the

cytosol [149,150,162]. Accumulation of the local concentration of

pVIII capsid protein in the inner membrane leads to protein

oligomerization [163,164] driving phage filament assembly

(Fig 4C). Precisely how the assembly of the coat protein subunits

is mediated is unknown, but models for the transition of

membrane-embedded pVIII into virion filaments have been

proposed and reviewed recently [23,165].

Once the entirety of the phage DNA is coated in the major capsid

protein, it must be released from the inner membrane and capped

with the minor capsid proteins pIII and pVI, which form a stable

complex at the base of the virion [166]. If pIII of pVI is deleted, the

virion cannot be released from the host cell and the filament contin-

ues to grow integrating multiple copies of the phage DNA into the

growing filament [32]. As well as being responsible for host cell

receptor binding and injections of the phage DNA during the infec-

tion process, pIII plays a key role in the release of mature phages.

pIII is targeted to the inner membrane via its N-terminal signal

peptide, which is then cleaved leaving pIII embedded in the

membrane via a C-terminal transmembrane helix [33,167]. The C-

terminal domain of pIII is implicated in binding to and thereby

releasing the newly assembled phages. It is thought significant rear-

rangements must occur in pIII to achieve this, but how the pIII/pVI

capping complex detects the end of the phage and induces this final

release of the virion is not known [32].

Prophages and discovery science

Many filamentous phages can integrate into the host chromosome

and be replicated along with the bacterial genome during cell divi-

sion. In addition to providing clues as to the details of phage–host

interactions, this feature means that filamentous phages can be

discovered through genome and metagenome surveys of diverse

environments. Filamentous prophage integration (Fig 5 and

Table 2) can be mediated by one of two methods: using host recom-

binases XerC and XerD or using a phage-encoded recombinase.

Integrated prophages pay their way through contributions to

virulence and other advantageous phenotypes. An E. coli prophage

called CUS-1 is correlated with invasive extraintestinal pathogenic

E. coli strains, and the prophage encodes puvA, which was identi-

fied as contributing to bacterial virulence in a rat disease model

[168,169]. An almost identical phage, Ypf/CUS-2, has been

described in Yersinia pestis, where again the prophage is associated

with virulent plague strains and disruption of the prophage resulted

in reduced virulence in mice [170].

Many prophages thought to encode filamentous phages have

been described in Neisseria gonorrhoeae and Neisseria meningitidis

strains [144,171–173]. Whole-genome sequence analysis of four

Neisseria species found 12 complete prophages and 11 incomplete

prophages. These various prophage elements have been implicated

in plasticity of Neisseria genomes, and assisting the massive chro-

mosomal rearrangements observed between strains [171,173–175].

For N. meningitidis, the presence of one of these prophages, Nf1-A,

has been assigned Meningococcal Disease Associated (MDA)

because it was one of the only loci correlated with hypervirulence

[144,176]. It was later shown that carriage of the prophage does not

increase the virulence of the septicaemic phase of the disease in a

human tissue disease model, but that phage secretion increases

biofilm formation and colonization of epithelial cells [177]. In this

scenario, the MDAφ virion behaves analogously to type IV pili, with

many virions remaining associated with the bacterial surface and

promoting bacteria–bacteria interactions.

Our current understanding of prophage integration into

bacterial chromosomes

The host-mediated XerC and XerD site-specific recombination is the

most well-characterized integration process, because of studies

focused on understanding the method of integration in Vibrio fila-

mentous phages. The endogenous role of the recombinases XerC

and XerD is to ensure the segregation of two bacterial circular chro-

mosomes during genome replication, by catalysing recombination

between two dif (deletion-induced filamentation) resolving dimeric

chromosomes formed during DNA replication [178]. Filamentous

phages have hijacked this system by containing a dif-like site (ter-

med attP) on their genome (the bacterial chromosome site for inte-

gration, which is typically a dif site is termed the attB site) (Fig 5).

◀ Figure 4. Lifecycle of the archetypical filamentous Ff phage.

(A) In the initial stage of phage attachment, the N2 domain of pIII binds to the tip of the F-pilus on the surface of the bacterial cell. Upon F-pilus retraction, the pIII/pVI
terminus of the phagewould be brought into periplasm of the host cell. The N1 domain of pIII binds to the host protein TolA in the TolQRA complex in the innermembrane. The
next stage, which has not been characterized, would need to result in phage disassembly and injection into the cytoplasm of the ssDNA genome termed the “infective form”

(IF). (B) Phage replication ensues through recruitment of the host RNA polymerase to a hairpin at the negative (�) origin of replication, resulting in synthesis of a short RNA
primer. The positive (+) strand is then extended by the host DNA polymerase III, generating a double-stranded phage genome termed the “replicative form” (RF). Early in the
infection, this can serve as a template for host RNA polymerase to generate phage mRNA, to be translated into phage proteins. The phage protein pII binds to the + origin of
replication and nicks the + strand, and the resulting 30 end is extended by host DNA polymerase III displacing the “old” + strand. Upon one full cycle, pII cleaves and ligates
the + strands resulting in a single-stranded IF and a double-stranded RF. The RF can then undergo multiple rounds of rolling circle replication to replicate the phage genome
and also serve as a template for transcription and translation of phage proteins. Later in the infection, single-stranded IF is coated by phage protein pV, leaving the packaging
signal-free in preparation for secretion. (inset) A schematic representation of the phage intergenic region containing the packaging signal, the – origin of replication and
the + origin of replication is shown. (C) Structural phage proteins and phage proteins required for assembly and secretion are shuttled to the inner membrane and processed
by the SecYEG, YidC and signal peptidase machinery. The packaging signal hairpin of the pV-coated ssDNA is bound by the minor capsid proteins pVII and pIX and recognized
by the pI/pXI IM assembly proteins. As the emerging ssDNA traverses the inner membrane, pV is removed and replaced by the membrane-embedded major capsid protein
pVIII. As pVIII is added to the emerging phage, the tip is forced outwards through the oligomeric secretin-gated channel pIV. The terminal phage capsid proteins pIII and pVI
detect and cap the end of the nascent phage allowing its release from the host cell. Host proteins are represented as various shades of purple. Phage proteins involved in DNA
replication and packaging are represented by shades of blue. Phage proteins involved in secretion are shown as shades of orange. Structural phage proteins are shown as
shades of green. (inset) Phage proteins which interact with the bacterial membranes are shown. Topogenic signal peptides and transmembrane regions are annotated.
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The Vibrio phage VGJ genome contains an attP site, which

XerCD can bind to in the dsDNA RF of the phage genome and catal-

yse recombination between the attP and attB sites. This integration

is reversible because the prophage is flanked by functional attL and

attR sites [179,180]. However, the Vibrio phage CTXφ genome

contains two adjacent “defective” attB sites in an inverted orienta-

tion. In the ssDNA IF, these sites can form a forked hairpin that

results in a functional attB site. XerCD can catalyse recombination

with the bacterial attB site [181,182]. Integration of the CTXφ ssDNA

template leaves a Holliday junction intermediate that must be

resolved by the host DNA replication machinery through an unclear

process. The prophage cannot be excised as the att hairpin cannot

form on the chromosome. Thus, once CTXφ has been integrated as

a prophage, it must undergo rolling circle replication on the
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Figure 5. Methods of filamentous phage host chromosome integration and excision.

Methods for filamentous prophage integration into the host chromosome are shown. Top: Host-mediated (XerCD) integration via two methods. Vibrio phage VJG uses a
reversible integration—a dsDNA RF phage genome with an attP site is recognized by the host XerCD recombinase which mediates homologous recombination at the dif site
on the host chromosome. The prophage can be excised by XerCD-mediated recombination at the resulting attL and attR sites. Vibrio phage CTXφ uses an irreversible
integration—XerCD recognizes an attP site formed by a hairpin in the ssDNA phage genome andmediates homologous recombination at the dif site on the host chromosome
(and typically a satellite phage). Due to nature of the attP hairpin, the resulting AttL site on the prophage is defective and thus cannot be excised by XerCD. Replication of the
resulting prophage is inactivated by a regulatory loop involving the phage-encoded repressor RtsR (R), the host repressor LexA (L) and the satellite activator RtsC (C). Upon
activation by the host SOS response, LexA is degraded and the positive regulator RtsC is produced and binds to the RtsR repressor allowing expression of the phage replication
protein RtsA (functionally equivalent of pII). RtsA binds to the + ori on the prophage genome and acts in an analogous way to that of pII on RF circular DNA. The resulting
phage ssDNA is amplified and packaged as described in Fig 4B. In examples of phage-mediated integration (bottom), Pseudomonas phage Pf4 uses a phage-encoded integrase
to reversibly integrate itself into the Gly tRNA site of the host chromosome and Ralstonia phage RSM1 uses a phage-encoded resolvase to reversibly integrate into Ser tRNA
site on the host chromosome, while Neisseria phage MDAφ uses a phage-mediated transposase to integrate at a 20-bp repeat region (dRS3) on the host chromosome.

Table 2. Filamentous prophage integration methods

Integration method Host integration site attB Examplesa

Host XerC/XerD (reversible) dif VGJ, TLC (satellite), VEJ, VSK, Vf33, fs2, Lf, Cf1c,
Cf16, RSS0

Host XerC/XerD (irreversible) dif CTX, CUS-1, Ypf

Integrase—tyrosine recombinase Gly tRNA (Met-tRNA) Pf4, Pf5, Pf7 (Pf6)

Resolvase—serine recombinase Ser tRNA RSM1, RSM3

Transposase Variable—dRS3 repeat MDAφ

aThis is not a complete list of phages using the listed method. Not all experimentally validated (may be based on attP sequence homology or presence of
recombinase on phage/prophage genome).
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chromosome to form new phage genomes for amplification and

virion assembly. This poses a problem when terminating rolling

circle replication, as to reach the positive strand origin for termina-

tion the pII/DNA polymerase would have to replicate the entire

bacterial chromosome. Consequently, the CTXφ prophage is always

found integrated adjacent to a second Vibrio prophage, a satellite

phage (a prophage lacking phage morphogenesis genes which uses

a second phage to produce virions), or in a duplicated form, where
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Figure 6. Ff discovery through gene signatures in prokaryote (host) chromosomes.

Zot domains are widely distributed throughout prokaryotic organisms including Gram-negative, Gram-positive and Archaeal organisms. Proteins from the UniRef90 database
(representing 2,205 UniProtKB entries) with predicted “Zot” domains (PF05707) are represented in a phylogenetic tree. The taxonomic kingdom (or bacterial superphylum) is
indicated in the outer ring. Branches/clades containing the known filamentous phages are coloured according to clades described in Fig 3. PF05707 domains were aligned and
a tree was built with RAxML “PROTGAMMAAUTO” criteria (final model used = BLOSUM62) and “autoMRE_ING” bootstrap convergence test and midpoint rooted.
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it utilizes the neighbouring prophage positive strand origin to termi-

nate and release ssDNA phage genomes. A consequence of this is

that the resulting phages contain fragments of the second prophage

[183] (Fig 5).

The CTXφ prophage can be extracted under specific conditions—

if CTXφ infects a strain already harbouring a reversibly integrated

prophage such as VGJ. CTXφ can integrate adjacent to the VGJ

prophage (using the dif/att site of the prophage) resulting in a VGJ-

CTX module flanked by two intact functional att sites which can

subsequently be used by the host Xer recombinase machinery to

extract a hybrid VGJ-CTX genome that can undergo rolling circle

replication and be packaged into functional virions containing the

VGJ-CTX hybrid genome with the VGJ phage proteins

[179,180,184,185]. This interplay of Vibrio prophage integration,

chimera formation, excision and potential horizontal transfer results

in the diverse concatenated prophage arrays observed at dif integra-

tion sites in Vibrio genomes [186,187].

There are three distinct examples of integration methods using fil-

amentous phage-encoded recombinase, though there are limited

mechanistic insights. Pseudomonas Pf4 and Pf5 phages are integrated

into the chromosome at a site encoding a tRNAGly, whereas Pf6 is

integrated at the tRNAMet site. These phages encode a tyrosine

recombinase of the phage integrase family, protein which presum-

ably facilitates this integration. The Ralstonia RSM phages integrate

into the tRNASer site and encode their own serine recombinase of the

resolvase/invertase family, which presumably facilitates this integra-

tion. Similar prophages are detected in the genomes of other species

of Burkholderiaceae, such as the human pathogen Burkholderia

pseudomallei [188]. The Neisseria prophages may have a more

promiscuous integration mechanism, where they are integrated into

a short repeat region called dRS3; in N. meningitidis, there are more

than 250 of these sites present on the chromosome. The Nf typically

encode a Piv/MooV family transposase, and it is thought that this

mediates the insertion and excision (transposition) of the prophage

genome via a method similar to IS110 transposons [171,173].

Prophages as a means to discover new Ff sequences (and new

Ff applications)

As the pI N-terminal Zot domain (Pfam PF05707) seems to be charac-

teristic of and unique to filamentous phages and prophages, this

sequence signature can be used to gauge the prevalence of undocu-

mented filamentous phages in genome and metagenome sequence

data. There are approximately 2,300 proteins with PF05707 domains

present in the UniProtKB (2018_09) database with almost all of them

(> 99%) associated with prokaryotic genomes and likely from fila-

mentous phage origins. There are representatives across a wide range

of prokaryotes including various phyla from Gram-negative and

Gram-positive bacteria, as well as Archaea. Thus, there are potentially

thousands of uncharacterized filamentous prophages present within

the prokaryotic genomic repertoire (Fig 6). Furthermore, searching

the Joint Genome Institutes Integrated Microbial Genomes and Micro-

biomes database returns more than 300,000 genes from metagenome

sequences predicted to contain the PF05707 domains.

Our appreciation of this diversity of filamentous phages heralds an

exciting phase of further discovery, about their biology and their

evolution (see also Box 1). A massive restructuring of the taxonomy

of phages, undertaken by the International Committee on Taxonomy

of Viruses (ICTV), put emphasis on genome sequence information

[189–191]. This led to a complete restructuring of the Inoviridae

family into seven genera, but left the bulk of the described filamentous

phages as “unclassified” or “unassigned”, again suggesting that we

are only seeing a small cross section of the diversity of these useful

and enigmatic viruses. The previous Plectrovirus genus containing the

mollicute-infecting rod-shaped viruses has been divided into the

genera Plectrovirus (containing the Acholeplasma virus L51) and the

Vespertiliovirus (containing the Spiroplasma viruses). The previously

defined genus Inovirus containing the “classic” filamentous phages

has been divided into five new genera: Inovirus, Habenivirus, Fibro-

virus, Lineavirus and Saetivirus; and many of the previously classified

species have been shifted into an “unclassified” genus category. More

recently, there has been a further push away from morphological

taxonomy, to integrate more metagenomic data into viral taxonomy

and develop a universal method to classify viruses [192–194]. Appling

these methods to the Inoviridae family results in three unrelated

groups representing the Plectrovirus genus, the Vespertiliovirus genus

and the third diverse group comprising all the related classic filamen-

tous phages described in this review, with Saetivirus, Lineavirus and

Inovirus in one clade, acutely separated from a clade formed by Fibro-

virus, Habenivirus and other currently unassigned groups [192].

Given how beneficial filamentous phages have been to our

understanding of fundamental aspects of bacterial cell biology (e.g.

membrane biogenesis, protein secretion, DNA recombination and

replication) and developments in biotechnology, as well as their

crucial roles in promoting bacterial virulence and shaping bacterial

communities, this new age of filamentous phage discovery and

characterization is one of promise and possibility.
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