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Abstract

Background: Hypnotics and general anaesthetics impair memory by altering hippocampal synaptic plasticity. We

recently reported on a neurosteroid analogue with potent hypnotic activity [(3b,5b,17b)-3-hydroxyandrostane-17-
carbonitrile; 3b-OH], which does not cause developmental neurotoxicity in rat pups. Here, we investigated the effects of

3b-OH on neuronal excitability in the subiculum, the major output structure of the hippocampal formation, and synaptic

plasticity at two key hippocampal synapses in juvenile rats.

Methods: Biophysical properties of isolated T-type calcium currents (T-currents) in the rat subiculum were investigated

using acute slice preparations. Subicular T-type calcium channel (T-channel) subtype mRNA expression was compared

using qRTePCR. Using electrophysiological recordings, we examined the effects of 3b-OH and an endogenous neuroac-

tive steroid, allopregnanolone (Allo), on T-currents and burst firing properties of subicular neurones, and on the long-

term potentiation (LTP) in CA3-CA1 and CA1-subiculum pathways.

Results: Biophysical and molecular studies confirmed that CaV3.1 channels represent the dominant T-channel isoform in

the subiculum of juvenile rats. 3b-OH and Allo inhibited rebound burst firing by decreasing the amplitude of T-currents in

a voltage-dependent manner with similar potency, with 30e80% inhibition. Both neurosteroids suppressed LTP at the

CA1-subiculum, but not at the CA3-CA1 Schaffer collateral synapse.

Conclusions: Neurosteroid effects on T-channels modulate hippocampal output and provide possible molecular mech-

anisms for the amnestic action of the novel hypnotic 3b-OH. Effects on T-channels in the subiculum provide a novel

target for amnestic effects of hypnotics.
Editorial decision: 21 December 2018; Accepted: 21 December 2018

© 2019 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

For Permissions, please email: permissions@elsevier.com

643

mailto:srdan.joksimovic@ucdenver.edu
mailto:permissions@elsevier.com
https://doi.org/10.1016/j.bja.2019.01.029


644 - Joksimovic et al.
Keywords: amnesia; general anaesthetic; hippocampus; neurosteroid; T-type calcium channels; synaptic plasticity;

subiculum
Editor’s key points

� The role of T-type calcium channels as targets for the

effects of general anaesthetics is unclear.

� The novel anaesthetic neurosteroid (3b,5b,17b)-3-
hydroxyandrostane-17-carbonitrile (3b-OH) reduced

burst firing by decreasing the amplitude of T-currents

and impaired long-term potentiation in the rat

hippocampus.

� Modulation of hippocampal output through effects on

hippocampal synaptic transmission provides a possible

molecular mechanism for the amnestic action of the

novel hypnotic 3b-OH.
Sedatives, hypnotics, and general anaesthetics cause a tem-

porary loss of consciousness and memory loss (amnesia).

While loss of consciousness may be because of effects on

various subcortical and cortical targets, it is believed that

temporary memory impairment originates within the hippo-

campal formation. These agents produce strong suppression

of long-term potentiation (LTP) at the CA3-CA1 synapse,1e3 a

leading cellular model of synaptic plasticity and memory

processing.4 Both inhalation and injectable anaesthetics

impair hippocampal dependent learning and memory at

concentrations that are often below those needed for their

hypnotic effect.5e7

The flow of information between hippocampus and

numerous subcortical and cortical structures is strongly

modulated by the subiculum, themajor output structure of the

hippocampal formation. Most subicular neurones are capable

of burst firing,8,9 a high-frequency (>100 Hz) barrage of action

potentials, which appears to be an important means of

distributing information across brain networks.10 The CaV3.1

isoform of T-type calcium channels (T-channels) contributes

significantly to burst firing of subicular neurones, and T-

channels are important regulators of neuronal excitability and

synaptic plasticity in the subiculum.11

At a molecular level, most general anaesthetics act on N-

methyl-D-aspartate (NMDA)-type glutamate, gamma-

aminobutyric acid type A (GABAA), or both receptors,12 but

also have underappreciated effects on other targets, such as

voltage-gated calcium channels.13 For example, isoflurane

blocks T-channels in thalamocortical neurones at clinically

relevant concentrations.14 We recently described a neuro-

steroid analogue with potent hypnotic activity in rat pups

([3b,5b,17b]-3-hydroxyandrostane-17-carbonitrile; 3b-OH) that

inhibits neuronal T-currents and inhibits glutamate-mediated

synaptic transmission presynaptically, but unlike most other

neurosteroids, it lacks effects on postsynaptic GABAA cur-

rents.15 In the present study, we investigated the effects of 3b-
OH and an endogenous neuroactive steroid, allopregnanolone

(Allo), on burst firing properties of subicular neurones and

synaptic plasticity at two important hippocampal synapses in
juvenile rats. We found that both neurosteroids strongly

affected burst firing by decreasing T-currents and suppressed

LTP at the CA1-subiculum, but not at CA3-CA1 synapses. Thus,

T-channels in the subiculum are a potentially important target

for the amnestic effects of anaesthetics.

Methods

Drugs

The neurosteroid analogue 3b-OH was synthesised as

described,15 whereas Allo was obtained from Sigma Aldrich

Chemical Co. (#P-8887, Saint Louis, MO, USA). Purification of

3b-OH was by flash column chromatography on silica gel;

preparations showed a single component on thin layer chro-

matography on silica gel plates. Both compounds were dis-

solved in 100% dimethyl sulfoxide (Sigma Aldrich Chemical

Co.) as 3 or 10 mM stock solutions, and freshly diluted to the

final concentrations in the external solution at the time of

electrophysiology experiments. For the loss of righting reflex

(LORR) study, 3b-OH was solubilised in 2-hydroxypropyl-b-
cyclodextrin 15% (Santa-Cruz Biotechnology, Santa Cruz, CA,

USA).
Animals

Juvenile male and female Sprague-Dawley rats (P15eP32) were

used. For patch-clamp experiments, we used P15eP28 rats,

and for LTP experiments we used P28eP32 rats, in order to

make a direct comparison with our previous studies of a T-

channel antagonist that selectively inhibits all three subtypes

without affecting other classes of voltage-gated Ca2þ channels

(TTA-P2; 3,5-dichloro-N-[1-{2,2-dimethyl-tetrahydro-pyran-4-

ylmethyl}-4-fluoro-piperidin-4-ylmethyl]-benzamide).11 Anal-

ysis of T-type calcium channel isoform mRNA expression was

performed on subicular tissue of P21eP22 rats. We used

P20eP29 rats to assess the LORR after i.p. administration of 3b-
OH. Animals were housed within accredited animal facilities

according to protocols approved by the University of Colorado

Anschutz Medical Campus, the University of Virginia, or the

Washington University Animal Studies Committee. Treat-

ments of rats adhered to guidelines set forth in the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals. All efforts were made to minimise animal suffering

and the number of animals necessary to produce reliable sci-

entific data. Details of specific experimental procedures are

provided in the online Supplementary material. Data are

shown as mean (standard error of mean).
Results

Biophysical properties of T-currents in the subiculum

Wepreviouslydescribed isolatedT-currents in the subiculumof

rat pups.15Here,we investigated thebiophysical properties ofT-

currents in juvenile rats when dendritic arborisation is well

underway.17 The voltage dependence of T-current activation



Fig 1. Biophysical properties of T-type calcium currents (T-

currents) in the juvenile rat subiculum. (a) Average T-current I-

V traces from representative subicular neurones for Vt

from �75 to �40 mV (the peak of activation) from Vh of �90 mV

in 5 mV increments (top), and traces generated using a double-

pulse protocol with 3.6-s prepulses to variable voltages

(from �110 to �70 mV in 5 mV increments) and test potential

of �50 mV (bottom); not all data points are displayed. (b)

Average current amplitudes of the voltage dependence for

activation and steady-state inactivation. (c) The voltage

dependence of activation (G/Gmax) and steady-state inactiva-

tion (I/Imax) is shown with V50 values noted in the parentheses.

Note the ‘window’ current depicted by the grey area below the

intersection of the curves. Results are expressed as mean

(standard error of mean).
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was measured using typical I-V relationships (Vh¼�90 mV,

Vt¼�75 to �30 mV in 5 mV increments), whereas an indepen-

dent steady-state protocol was used to measure the voltage

dependence of T-current inactivation (Fig. 1a). As shown in

Fig. 1b, T-current amplitudes were: 270 (28) pA after the long

prepulse at �110 mV (n¼19 neurones, 10 rats), and 264 (36) pA

(n¼15 neurones, nine rats) at the peak of activation (Vt¼�40

mV). I/Imax and G/Gmax curves are shown on the same graph

(Fig. 1c), along with corresponding V50 values (n¼20 and 14

neurones, respectively). The average slope of activation curves

inP15eP23 rats [4.5 (0.5)]wasalmost identical to that reported in

rat pups11; however, the average V50 value was significantly

hyperpolarised by ~4mV (P¼0.043, two-tailed t-test). Overlap of

the activation and inactivation curves revealed a ‘window’

current (ITwindow), shown in grey shaded areas in Fig. 1b and c.

These currents result from a small fraction of T-channels that

are persistently available near the restingmembrane potential,

which in turn allows a basal inward flux of calcium ions.18
mRNA expression of CACNA1G, CACNA1H, and
CACNA1I in the rat subiculum

The three known isoforms of T-type calcium channels (CaV3.1,

CaV3.2, and CaV3.3) are encoded by CACNA1G, CACNA1H, and

CACNA1I genes, respectively.19 Based on our previous findings

of mRNA expression levels in rat pups and insensitivity of

burst firing to low concentrations of Ni2þ,11 and available in situ

hybridisation data,20 it appears that the CaV3.1 isoform con-

stitutes the largest portion of T-channels in the subiculum. To

investigate whether this is also the case in juvenile rats, we

used qRTePCR to assess mRNA expression of all three genes
Fig 2. mRNA expression of all three T-type calcium channel

isoforms in the juvenile rat subiculum. qRTePCR analysis on

excised subicular tissue revealed the dominant expression of

CaV3.1, followed by CaV3.3 isoform. Results are expressed as

mean (standard error of mean). *P<0.05 and yP<0.001, one-way

analysis of variance followed by Holm-Sidak’s post hoc test.
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encoding different T-channel isoforms in the subiculum of

P21eP22 rats. Indeed, CaV3.1 was the dominant T-channel

isoform at this age as well (Fig. 2; P<0.001 vs CaV3.2 and

P¼0.025 vs CaV3.3; one-way analysis of variance (ANOVA) fol-

lowed by Holm-Sidak’s test; n¼8 rats). In contrast to our find-

ings in rat pups, relatively high CaV3.3 isoform mRNA

expression was observed in juvenile rats (P<0.001 vs CaV3.2),

which is likely related to the presence of more extensive

dendritic branching in neurones from juvenile animals.
Hypnotic effect of 3b-OH in juvenile rats

The neurosteroid analogue 3b-OH inhibits T-currents and

produces potent hypnotic effects in rat pups.15 This finding

was corroborated in the present study using juvenile rats. The

ED50 for the LORR obtained when the compound was injected

i.p. was 16.0 (0.4) mg kg�1, with a slope of 3.4 (0.4). At a dose of

50 mg kg�1 i.p., 3b-OH had an average onset of action (time to

LORR) of 14.9 (1.8) min, whereas the average duration of LORR

was 108 (19) min (data not shown). In juvenile rats, this ED50

was five-fold higher than in rat pups,15 which may reflect

differences in pharmacokinetics, in the maturation of thala-

mocortical circuitry, or both.21 All animals remained euther-

mic during LORR and resumed normal locomotor activity after
Fig 3. (3b,5b,17b)-3-hydroxyandrostane-17-carbonitrile blocks T-type c

current traces from a representative subicular neurone at baseline (bla

17-carbonitrile (3b-OH) 1 mM (red trace), generated using a double-pulse

mV (middle), and �90 mV (right). (b) Average current amplitudes exhib

different conditioning potentials. The inset shows the chemical struc

terone scaffold with OH and CN groups in a beta-conformation at posi

Imax) display a leftward shift upon the application of 3b-OH. Inset shows

(black trace) and after 3b-OH (red trace), generated using our standard

(standard error of mean). *P<0.05, yP<0.01, and zP<0.001, two-way repeat

test.
effects of 3b-OH dissipated (data not shown). These results

clearly demonstrate that 3b-OH is an efficacious and appar-

ently safe hypnotic in juvenile rats.
Effects of 3b-OH on T-currents in subicular neurones

The effects of 3b-OH on T-currents in juvenile rats were tested

using a standard steady-state inactivation protocol. Original

traces from a representative subicular neurone are presented

in Fig. 3a. 3b-OH significantly decreased T-current amplitude

across the range of conditioning potentials, as assessed by

two-way repeated measures ANOVA followed by Holm-

Sidak’s multiple comparisons test (Fig. 3b; interaction: F

[12,60]¼3.83, P<0.001; post hoc: P¼0.002 for potentials

from�120 to�110mV, P<0.001 for potentials from�105 to�85

mV, and P¼0.017 for �80 mV; n¼6 neurones, three rats). This

effect was strongly voltage-dependent, ranging from ~30%

inhibition at �120 mV to ~80% inhibition at the �80 mV pre-

pulse. Addition of 3b-OH 1 mM produced a significant hyper-

polarising shift in V50 of ~9 mV (Fig. 3c; �99.5 [2.0] mV vs �90.5

[3.0] mV; P¼0.013; paired t-test). Thus, 3b-OH is a potent and

effective T-channel antagonist, confirming our previous re-

sults in dorsal root ganglion neurones,22 nucleus reticularis

thalami,23 and the subiculum from rat pups.15
alcium currents (T-currents) in subicular neurones. (a) Original T-

ck trace) and after application of (3b,5b,17b)-3-hydroxyandrostane-

protocol with three different 3.6-s prepulses: �110 mV (left), �100

it a significant decrease after the application of 3b-OH 1 mM across

ture of 3b-OH, a neuroactive steroid analogue based on a proges-

tions 3 and 17, respectively. (c) Steady-state inactivation curves (I/

original traces from a representative subicular neurone at baseline

steady-state inactivation protocol. Results are expressed as mean

ed measures analysis of variance followed by Holm-Sidak’s post hoc



Fig 4. (3b,5b,17b)-3-hydroxyandrostane-17-carbonitrile attenuates rebound burst firing in subicular neurones. (a) Original traces from a

representative subicular neurone showing that (3b,5b,17b)-3-hydroxyandrostane-17-carbonitrile (3b-OH) reduced the amplitude of inward

calcium currents (evoked using Vh of �90 mV and Vt of �52.5 mV). (b) Bar graph shows a significant decrease in the average calcium

current amplitude after application of 3 mM 3b-OH. (c) Original traces from a representative subicular neurone depicting active membrane

responses to a 200 pA hyperpolarising stimulus in the absence (black trace) or presence of 3b-OH 3 mM (red trace). (d) The average number

of rebound bursts and the average number of rebound action potentials (e) was significantly decreased upon the addition of 3b-OH,

whereas the average input resistance was not significantly affected (f). Results are expressed as mean (standard error of mean). *P<0.05
and yP<0.01, paired t-test.
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Effects of 3b-OH on rebound burst firing in subicular
neurones

Hyperpolarising stimuli, such as inhibitory postsynaptic po-

tentials, can deinactivate T-channels and cause ‘rebound’

burst firing of thalamocortical neurones in an oscillatory

manner.24 This phenomenon is also observed in a large

population of pyramidal neurones of the subiculum.8,11 We

tested whether 3b-OH 3 mM affects rebound burst firing by

blocking T-channels in the subiculum of juvenile rats. Using

voltage-clamp recordings, we investigated the effects of 3b-
OH on calcium currents (mostly consisting of T-currents)

evoked from �90 mV (Fig. 4a. 3b-OH reduced the maximal
calcium current by ~50% (Fig. 4b; P¼0.003, paired t-test, n¼5

neurones). In current-clamp mode, we investigated burst

firing properties in response to a brief hyperpolarising stim-

ulus (Fig. 4c). 3b-OH significantly decreased the number of

bursts (Fig. 4d; P¼0.034, paired t-test, n¼6 neurones), and the

number of rebound action potentials (Fig. 4e; P¼0.031). The

membrane potential was held at approximately the same

value (baseline: �54.7 [1.7] mV vs 3b-OH: �54.6 [2.0] mV),

whereas the average input resistance was not significantly

affected upon the addition of 3b-OH (Fig. 4f; P¼0.054). Our

data suggest that the effects of 3b-OH on burst firing are

preserved across different age groups in rats.



Fig 5. Allopregnanolone blocks T-type calcium channels (T-channels) in a voltage-dependent manner and attenuates rebound burst firing

in subicular neurones. (a) Original traces from a representative subicular neurone displaying that allopregnanolone (Allo) reduced the

amplitude of inward calcium currents evoked using three different 3.6-s prepulses: �110 mV (red), �90 mV (blue), and �80 mV (green), and

Vt of �50 mV. (b) Average current amplitudes exhibit a significant decrease after application of 1 mM Allo across different conditioning

potentials. The inset shows the chemical structure of Allo (*P<0.05, yP<0.01, and zP<0.001, two-way repeated measures analysis of variance

followed by Holm-Sidak’s post hoc test). (c) Steady-state inactivation curves (I/Imax) display a leftward shift upon application of Allo. (d)

Original traces from a representative subicular neurone depicting active membrane responses to a 200 pA hyperpolarising stimulus in the

absence (black trace), presence of Allo 3 mM (blue trace), and after drug wash-out (black trace). (d) The average number of rebound bursts

and average number of rebound action potentials (e) was significantly decreased upon addition of Allo, whereas the average input

resistance was not significantly affected (f). Results are expressed as mean (standard error of mean). *P<0.05 and yP<0.01, paired t-test.
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Effects of Allo on T-current properties and rebound
burst firing in subicular neurones

Allo partially blocks T-currents in rat sensory neurones with

an IC50 of 0.9 mM.25 We assessed whether Allo exhibits similar

effects on T-currents in subicular neurones, and compared

these effects with those of 3b-OH using the same voltage- and

current-clamp protocols (Fig. 5a). Allo (1 mM) showed a strik-

ingly similar T-current blocking effect as the same concen-

tration of 3b-OH (Fig. 5aec). Allo significantly decreased T-

current amplitudes starting from the prepulse of �120 mV

(30% inhibition) to a prepulse of �85 mV (75% inhibition;

Fig. 5b; interaction: F[12,72]¼5.34, P<0.001; post hoc: P<0.001 for

potentials from �120 to �95 mV, P¼0.002 for �90 mV, and
P¼0.046 for �85 mV; n¼7 neurones, three rats), which was

accompanied by a hyperpolarising shift in V50 of 10 mV

(Fig. 5c).

The effects of Allo on T-current-dependent rebound burst

firing was investigated in subicular neurones (Fig. 5d). The

effects of Allo mirrored those of 3b-OH 3 mM: the number of

bursts (Fig. 5e; P¼0.020, paired t-test, n¼5 neurones, three rats),

and the number of rebound action potentials (Fig. 5f; P¼0.002),

were significantly decreased, whereas the average input

resistance was slightly higher upon the addition of Allo

(Fig. 5g; P¼0.103). We conclude that both the endogenous (Allo)

and synthetic (3b-OH) neuroactive steroid analogues block

isolated T-type calcium currents and rebound bursting in the

subiculum, with similar potency.



Fig 6. Long-term potentiation is impaired by (3b,5b,17b)-3-hydroxyandrostane-17-carbonitrile or allopregnanolone at the CA1-subiculum,

but not at the CA3-CA1 synapse. (a) Schematic diagram of hippocampal formation with stimulation probe for CA1 recordings placed along

the Schaffer collateral pathway. Extracellular recordings were obtained in the apical dendritic layer of the CA1 region. Inset shows original

excitatory postsynaptic potential (EPSP) traces in baseline (dashed line) conditions and 60 min after high frequency stimulation (HFS) in the

presence of (3b,5b,17b)-3-hydroxyandrostane-17-carbonitrile (3b-OH) 1 mM or Allo 1 mM (solid line). Constant current pulses (0.1 ms, 100

Hz�1 s) HFS successfully induced long-term potentiation (LTP) in CA1 in the presence of either 3b-OH or Allo measured 60 min after HFS.

(B) Schematic diagram of hippocampal formation with stimulation probe for LTP induction in the subiculum located towards the end of

CA1 in the stratum oriens/alveus region, and with the recording pipette in the molecular layer of the subiculum. Original EPSP traces

shown in inset depict the absence of LTP at the CA1-subiculum synapse after the addition of 3b-OH 1 mM or Allo 1 mM (solid line), as

compared with baseline conditions (dashed line). The normalised EPSP slopes show that HFS (200 Hz�1 s�2) did not induce subicular LTP

in the presence of either 3b-OH or Allo. Results are expressed as mean (standard error of mean). *P<0.05 vs control, one-way analysis of

variance followed by Holm-Sidak’s post hoc test.
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Effects of 3b-OH and Allo on synaptic plasticity at the
CA3-CA1 and CA1-subiculum synapses

Most hypnotics and general anaesthetics suppress LTP at

the CA3-CA1 synapse.26e28 TTA-P2, a structurally unrelated

T-channel antagonist, alters LTP at the CA1-subiculum, but

not at the CA3-CA1 synapse.11 As our results revealed T-

channel-blocking properties of 3b-OH and Allo on subicular

T-currents, we speculated that these neuroactive steroids

also have significant effects on synaptic plasticity in hip-

pocampal slices. 3b-OH or Allo at 1 mM did not significantly

alter basal transmission (control: 100 [2]% of baseline; 3b-
OH: 112 [10]%; Allo: 99 [2]%, n¼5 in each group; F(2,12)¼1.54,

P¼0.255, one-way ANOVA) or LTP at the CA3-CA1 synapse

(Fig. 6a; control: 156 [16]% of baseline 60 min after high

frequency stimulation [HFS]; 3b-OH: 169 [24]%, red trace;

Allo: 144 [21]%, blue trace). This finding was confirmed us-

ing 3b-OH 10 mM (138 [9]%, n¼5; data not shown). These data

are consistent with our previous study that showed the lack

of effect of Allo on LTP induction at this synapse.29

Conversely, 3b-OH and Allo, both at 1 mM, significantly

suppressed LTP at the CA1-subiculum synapse (Fig. 6b;

control: 210 [38]% of baseline 60 min after HFS; 3b-OH: 110

[7]%; Allo: 103 [10]%; n¼5, 7, and 5, respectively), as assessed

by one-way ANOVA followed by Holm-Sidak’s post hoc test

(F[2,14]¼7.86, P¼0.005; 3b-OH: P¼0.010 and Allo: P¼0.010,

both vs control). Taken together, these results confirm our

findings that modulating T-channels can have a crucial in-

fluence on synaptic plasticity in the CA1-subiculum, but not

in CA3-CA1 pathway.
Discussion

We have shown that burst firing of subicular neurones relies

on T-channel activity,11 and that 3b-OH, a novel neuroactive

steroid with hypnotic effects, is a potent blocker of subicular

and thalamic T-currents in rat pups.15 Here, we confirm the

hypnotic and T-channel-blocking properties of 3b-OH in ju-

venile rats and, furthermore, report on its differential effects

at two hippocampal synapses important for memory pro-

cessing: CA3-CA14 and CA1-subiculum.30

First, we detected isolated T-currents in subicular neu-

rones with minimal differences in biophysical properties

compared with rat pups,11 which clearly showed a domi-

nant expression of the CaV3.1 T-channel isoform. However,

here we report an increase in mRNA expression of CaV3.3

isoform compared with rat pups. This increase of CaV3.3

expression coincides with distal dendritic localisation of

this T-channel isoform in the subiculum,31 which may

explain why we did not detect substantial T-currents with

CaV3.3-like properties (e.g. slow activation and inactivation

kinetics) using somatic recordings in rat pups. The devel-

opment of the dendritic arbor and change in the expression

of CaV3.3 may also account for the slight but significant

hyperpolarising shift in V50 for T-current activation, which

yielded a ‘window current’.

The neurosteroid analogue 3b-OH and the endogenous

neurosteroid Allo blocked T-currents in subicular neurones

with similar potency as described.15,25 Inhibition of T-currents

was accompanied by the attenuation of rebound burst firing

without significant changes in passive membrane properties
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of subicular neurones. These effects largely mirror our find-

ings with the structurally unrelated selective T-channel

antagonist TTA-P2,11 thus indirectly confirming the crucial

role of T-channels in mediating burst firing in the subiculum.

3b-OH also blocks CaV3.2 T-currents in dissociated neurones of

the dorsal root ganglion25 and in the nucleus reticularis

thalami,23 an inhibitory thalamic nucleus rich in CaV3.2 and

CaV3.3 T-channel isoforms.20 Taken together, our results show

that 3b-OH modulates neuronal excitability acting through T-

channels, regardless of which T-channel isoform is dominant

in neuronal tissue.

LTP represents a persistent activity-dependent change in

synaptic efficacy usually studied by stimulating the Schaffer

collateral pathway (CA3-CA1 synapses). Amnestic actions of

hypnotics and anaesthetics are usually studied using this

particular synapse as a cellular model of learning and mem-

ory, with limited data on their effects on other hippocampal

synapses. Most studies have focused on either GABAA or

NMDA receptors as the major molecular targets for hypnotic/

anaesthetic-induced impairment of synaptic plasticity,3,32,33

with very little, if any, data on the contribution of voltage-

gated calcium channels to these effects. The results pre-

sented here show that 3b-OH and Allo are devoid of effects on

LTP induction at the CA3-CA1 synapse, thus corroborating our

previous findings that T-channels do not play an important

role in regulating synaptic plasticity in this hippocampal

subregion.11 This is also consistent with a lack of effect of 3b-
OH on NMDA receptors,15 as LTP in the CA3-CA1 pathway re-

lies heavily on activation of these glutamate receptors.34 In

contrast, both 3b-OH and Allo strongly suppressed the induc-

tion and maintenance of LTP at the CA1-subiculum synapse,

very similar to TTA-P2.11 This effect should likely be accom-

panied with specific alterations in memory processing, and

this hypothesis needs to be tested in future behavioural ex-

periments aimed at assessing learning and memory processes

that require intact function of the hippocampal formation.

Towards this end, we recently reported that CaV3.1
�/� mice

exhibit specific deficits in spatial navigation and recognition

memory.35

3b-OH is a potent hypnotic in both rats and mice15 (un-

published data). This hypnotic effect is apparently pre-

served across different age groups. The concentration range

used in this study (1e3 mM) probably reflects sub-hypnotic

doses in juvenile rats, but is nonetheless high enough to

modulate both neuronal excitability and synaptic plasticity

in the subiculum. We propose that the predominant action

of 3b-OH on subicular T-channels and LTP in the CA1-

subiculum synapse may result in amnestic effects

different from those seen with other commonly used

injectable anaesthetics, such as propofol or ketamine, that

have very little effect on neuronal T-type currents at clini-

cally relevant concentrations.16.36.37
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