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Abstract

Cells establish and sustain structural and functional integrity of the genome to support cellular 

identity and prevent malignant transformation. In this review, we present a strategic overview of 

epigenetic regulatory mechanisms including histone modifications and higher order chromatin 

organization (HCO) that are perturbed in breast cancer onset and progression. Implications for 

dysfunctions that occur in hormone regulation, cell cycle control and mitotic bookmarking in 

breast cancer are considered, with an emphasis on epithelial-to-mesenchymal transition and cancer 

stem cell activities. The architectural organization of regulatory machinery is addressed within the 

contexts of translating cancer-compromised genomic organization to advances in breast cancer 

Corresponding Author: Gary S. Stein, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, HSRF 326, 
Burlington, VT05405, Gary.stein@uvm.edu. 

HHS Public Access
Author manuscript
Genes Chromosomes Cancer. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
Genes Chromosomes Cancer. 2019 July ; 58(7): 484–499. doi:10.1002/gcc.22731.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk assessment, diagnosis, prognosis, and identification of novel therapeutic targets with high 

specificity and minimal off target effects.
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Introduction.

Physiological control of gene expression is dependent on chromatin context and requires 

timely and dynamic interactions between transcription factors and coregulatory machinery 

that reside in specialized sub-nuclear microenvironments 1–5. Multiple levels of nuclear 

organization functionally contribute to biological control and are perturbed in cancer1–47. 

Morphologically, cancer nuclei are generally larger, more irregularly shaped and have 

altered sub-nuclear structures 23,31,48. These changes in nuclear structure have long been 

used by pathologists as a major diagnostic tool to detect tumor cells 23,31. While it is well-

known that nuclear morphology is disrupted in cancer cells, emerging evidence supports 

significant contributions by concomitant changes in higher order chromatin organization 

(HCO). There is increasing understanding for mechanisms utilized to maintain HCO in 

normal cells, and the functional consequences of modifications in HCO in cancer onset and 

progression. Technological advances including high-throughput next generation 

sequencing49–53 and sophisticated microscopic techniques5,54,55 have revolutionized 

investigation into genomic organization within the contexts of biological control and 

pathology.

Cells must maintain genomic structural integrity and functional identity throughout 

successive generations to prevent malignant transformation56,57. The retention of cell type 

specific transcription factors and epigenetic histone modifications at target gene loci, 

designated bookmarking, has been posited to be critical to sustain cellular phenotypes58–60. 

Bookmarking of chromatin domains has been proposed to play a significant role in re-

establishing fidelity for HCO of the genome61. Upon exit from mitosis, the biogenesis of 

nuclear bodies, that include nucleoli (where ribosomal RNA is transcribed) and histone 

locus bodies (HLB; where histone mRNA is transcribed), contribute to HCO mediated 

biological control62,63. These physiologically important examples of regulatory 

compartmentalization are obligatory for the balance between proliferation and cell lineage 

specificity. Reprogramming of lineage-committed cells during the initial stages of cancer is 

associated with loss of critical parameters of normal cellular identity. A cogent hypothesis is 

that cancer cells hijack an epithelial-to-mesenchymal transition (EMT) in which cells 

reliquish their epithelial tight junctions and polarity while acquiring mesenchymal 

characteristics that include migration and invasiveness (Figure 1). Many of the signaling 

cascades associated with this process are well known64. Signaling pathways that include 

TGFβ, SNAIL, ZEB, and WNT have been implicated in control that is operative in cancer 

stem cells (CSCs) 65–67. The cancer stem cell hypothesis postulates that a sub-fraction of 
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tumor cells designated CSCs are competent to proliferate, self-renew, ‘differentiate’, and 

drive tumor initiation, growth, and recurrence68.

In this review, we will present a strategic overview of the principles underlying epigenetics 

and HCO with consideration for their role(s) in EMT and CSCs during breast cancer 

initation and progression. The significance of hormone regulation for these pivotal 

regulatory processes, and the importance of the cell cycle and bookmarking in establishing 

and maintaining normal breast epithelial cellular identity will be discussed. The implications 

for these crucial regulatory dimensions of cancer underscore the need for a deeper 

understanding of mechanisms driving cancer-compromised organization of genome 

regulatory machinery to inform novel therapeutic strategies.

Higher order chromatin organization is integral to fidelity of genome 

regulation.

The genome is hierarchically organized at multiple, complex and interdependent levels. At 

the molecular level, ~146 base pairs of DNA are wrapped around an octameric core of 

histones (H2A, H2B, H3, H4) termed the nucleosome69. These repeated nucleosomes are 

configured as a ‘beads-on-a-string’ 10nm chromatin fiber57,70. Repressed chromatin has 

been posited to form a helical 30nm solenoid-like structure57,70. However, recent studies 

using small-angle X-ray scattering, cryo-EM, or super-resolution microscopy have not 

observed these solenoids in vivo71. These studies instead found that the beads-on-a-string 

structures in nuclei are not uniform, but heterogeneous varying in diameter. The advances in 

sophisticated microscopic and sequencing techniques have revealed fundamental principles 

governing higher order levels of chromatin organization that is relevant for cell structure and 

function. These studies have identified that the chromatin fiber is folded into globular 

domains designated topologically associating domains (TADs)72–75. TADs then coalesce 

into two main compartments that are either euchromatic, termed A co-partments, or 

heterochromatic, termed B compartments76,77. These are in turn comprised of six 

computationally distinct subcompartments, two that are euchromatic and four that are 

heterochromatic78. More recently, it has been demonstrated that these subcompartments 

exist as a spectrum of compartments wherein some TADs associate with both A and B 

compartments79. As expected, compartments present at the extremes of the spectrum are 

more indicative of euchromatic or heterochromatic states, respectively. The euchromatic A 

compartments are noticeably more gene rich, transcriptionally active, marked by active 

epigenetic signatures, and preferentially accessible to DNaseI than heterochromatic B 

compartments37,80. At the highest level of organization, chromosomes occupy discrete 

territories within the nucleus81,82.

The vast majority of the human genome does not encode proteins. Consequently, there has 

been speculation that these non-coding regions are so-called “junk DNA”83. While there is 

still no discernable function readily apparent for a portion of what was considered “junk”, 

increasing evidence has established that many non-coding regions provide regulatory control 

over gene expression and genome integrity 84. Key to fidelity of regulation, regions of the 

genome either activate (enhancers) or suppress (silencers) expression of their cognate genes. 
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These elements can be located distal (even up to 1mb) from the genes they regulate. The 

requirement for long-range interactions of enhancers looping back to interact with their 

correct promoters is integral and coincident with gene expression. Disruption of 

physiologically responsive enhancer-promoter interactions has been shown to contribute to 

cancer onset and progression 85–88. For example, regulatory elements within regions several 

kb in length that lack protein-coding genes exhibit long-range interactions with both protein 

and non-protein-coding genes89. These genes include MYC, IGFBP5, KLF4, CCDC26, and 

DIRC3 and have critical roles in breast cancer90–93.

Enhancers are precluded from interacting with inappropriate promoters by insulator 

elements bound by chromatin organizer proteins that mediate long-range intra- and 

interchromosomal interactions94–96. Additionally, these insulators provide barriers against 

the aberrant spreading of heterochromatin from silencers. In performing these essential 

functions, insulators organize the genome into the TADs that serve as subnuclear 

microenvironments94–96. Regions within individual TAD microenvironments are 

epigenetically marked largely consistently throughout74,75 and contain genes that are 

expressed at relatively similar levels 97,98. These genes within the same TADs are generally 

co-regulated and responsive to the same transcriptional stimuli97,99. TADs also function as 

structural domains to constrain long-range contacts between enhancers and promoters such 

that they occur almost exclusively within TADs72,100. Given the inextricable link between 

structure and function within the context of the cell nucleus, it is important to consider the 

role of HCO in maintaining genomic stability and fidelity101–103, and the resulting 

disruptions that occur in these TAD microenvironments introduced by translocations, 

deletions, inversions, and mutations during cancer progression88.

CTCF and/or epigenetic dependent mechanisms contribute to higher order chromatin 
organization.

CTCF is a major protein involved in insulator function and mediates intra- and 

interchromosomal looping interactions in vertebrates104. Through interactions with 

chromatin remodeling proteins, histone modifying enzymes, and transcription factors, CTCF 

is implicated in a broad spectrum of critical regulatory functions including imprinting105, X 

chromosome inactivation106, and organizing the major histone locus41. CTCF and its 

binding sites are mutated in many cancers, including breast cancer, suggesting its functions 

are perturbed upon malignant transformation107–110.

While the mechanism of how chromatin loops and TADs are established is not fully 

elucidated, CTCF as well as its interaction with the structural maintenance of chromosome 

(SMC) cohesin complex are key components of HCO. The best-accepted model to explain 

TAD formation and maintenance involves a loop-extrusion model111,112. This model 

proposes that a cohesin ring holds two strands of DNA together and creates loops by actively 

extruding the DNA. Once cohesin encounters a CTCF motif that is in a convergent 

orientation, a loop is formed112 (Figure 1). Because CTCF is essential113, investigations 

have focused on its depletion using the auxin inducible degron (AID) or siRNA methods. 

Using an RNAi method, it was found that CTCF knockdown slightly decreased intra-TAD 

contacts while increasing inter-TAD interactions114. Depletion of CTCF using the AID 
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system115 resulted in greater reduction of CTCF and led to a loss in TAD insulation, but 

does not alter intra-TAD contacts116. In this study, ~20% of TAD boundaries were 

unaffected by CTCF-independent upon auxin mediated CTCF degradation. In contrast, 

another study found that while CTCF knockdown reduced genomic occupancy of the 

cohesin complex, its loss only slightly weakened TAD boundaries and the vast majority of 

TADs remained unaltered117. Although the segregation of A and B compartments generally 

occurs at TAD boundaries, knockdown of cohesin and/or CTCF did not affect A and B 

compartmentalization116,118.

While CTCF plays a major role in chromatin organization, its absence at many TAD 

boundaries suggests alternative mechanisms, including epigenetic modifications, for 

delineation of TAD structures. The fact that TADs are found in species that do not have 

orthologues of CTCF including Caenorhabditis elegans, Arabidopsis thaliana, 
Schizosaccharomyces pombe, or Caulobacter crescentus and Escherichia coli provides 

definitive evidence for CTCF-independent mediation of TAD partitioning, particularly in 

ancestral genomes119–123. In these species, other insulators, may play an important role in 

defining TAD boundaries. Alternatively, evidence suggests that the folding of nucleosomes 

from beads-on-a-string into chromatin domains may be directly related to the differential 

compaction of chromatin induced by active versus inactive epigenetic states. High levels of 

acetylation on histone tails results in destabilization of chromatin domains124. This 

destabilization of chromatin domains could explain the enrichment of epigenetic marks 

indicative of actively transcribed genes (e.g. housekeeping genes) at TAD boundaries74. In 

fact, expression data is capable of predicting the three-dimensional folding of the 

genome125,126. The partitioning of TAD boundaries based upon active expression 

independently of CTCF binding appears to be more frequent in drosophila 

melanogaster125,127. TAD boundaries in drosophila are indicative of transitions between 

open and closed compartmentalization to an even greater extent than in human nuclei125. In 

fact, the differential packing ability of active and inactive genes was shown to predict TAD 

boundaries in drosophila based upon polymer simulations127. TADs in drosophila are 

therefore responsive to transcriptional stimuli (e.g. recovery from heat-shock128 or zygotic 

genome activation, or transcriptional inhibition129). The fact that the HCO of genomes from 

lower organisms are more specified by epigenetic states than HCO in the human genome 

suggests that human cells have more tight control over HCO. Loss of this tight control over 

epigenetic regulation and HCO are fundamental alterations that occur during breast cancer 

progression.

Parameters of breast cancer genome topography: Epithelial to mesenchymal transition, 
cancer stem cells, epigenetics and higher order chromain organization.

Breast cancer is the most common cancer in women, encompassing a diverse array of 

subtypes with different cellular origins (luminal versus basal) and distinct molecular 

alterations (e.g., hormonal status including ER, PR, and HER2) that relate to malignancy 
130. Gross morphologic alterations in nuclei in breast cancer are indicative of poor 

prognosis131 and can be used to predict ER status suggesting putative differences in nuclear 

morphology between these breast cancer subtypes132. Despite considerable advancements 
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deciphering critical genes and pathways driving the various subtypes of breast cancer, the 

initial molecular events transforming normal cells require more investigation.

During cancer progression, cells lose epithelial-like polarity and acquire mesenchymal-like 

phenotypes that include increased migration, invasiveness, resistance to chemotherapy, and 

immune-response in a process termed Epithelial to Mesenchymal Transition (EMT)133. The 

hallmark of EMT is decreased expression of tight junction proteins including cytokeratin 

and E-cadherin, and the activation of the mesenchymal genes such as N-cadherin, Vimentin 

(a cytoskeletal intermediate filament), and Fibronectin64. Due to the importance of EMT in 

normal development, EMT is precisely regulated by coordinated crosstalk between 

transcription factors and signaling cascades. For example, E-cadherin expression is 

downregulated by EMT-inducing transcription factors that are stimulated by Wnt and Notch 

pathways134. EMT can be activated by extracellular signals, such as cytokines (e.g. TGFβ, 

BMP, and TNFβ), growth factors (eg. FGF, EGF), and certain extracellular matrix (ECM) 

proteins135. In turn, the EMT process induces a dynamic reorganization of the cytoskeleton 

to form membrane protrusions necessary for migration and invasion134. Recent evidence has 

demonstrated an interaction between cytoskeletal structure, nuclear morphology, and higher 

order chromatin organization (136–139). For example, the cytoskeletal arrangement of 

vimentin or actin correlate with nuclear morphology, and depolymerization of vimentin 

using withaferin A perturbs nuclear morphology140. Proteins that link the cytoskeleton to the 

nuclear envelope can transfer cytoplasmic forces into the nucleus. Although it is known that 

actin shuttles into and out of the nucleus, the function of nuclear actin in mediating HCO is 

unclear. In one study, it was found that cells overexpressing an NLS-containing actin 

demonstrated decreased expression of adhesive genes, and exhibited altered cytoskeletal and 

focal adhesion organization and inhibited cell motility relative to cells overexpressing wild 

type actin141. Moreover, actin or actin related proteins (ARPs) can function in association 

with chromatin remodelers and/or act as cofactors with other nuclear complexes142,143. 

Moreover, TGFβ-induced EMT results in genomic instability associated with the 

suppression of several nuclear envelope proteins that are implicated in the regulation of 

mitosis144. Together, this evidence suggests a complex interplay between the signaling 

cascades, cytoskeletal rearrangement, and genome instability induced by EMT and HCO in 

breast cancer (Figure 1).

Efforts have been made to prevent or revert EMT or CSC properties which can restrain 

invasion, metastasis, and chemo-resistance. A promising therapeutic strategy is to target the 

epigenetic properties of cancer cells. For example, 5-azacytidine was shown to block DNA 

methyltransferase (DNMT) activity leading to hypomethylation and gene de-repression, 

thereby preventing EMT in vitro145. ZLD1039, an EZH2 inhibitor, also demonstrated a 

strong anti-cancer effect by inhibiting breast tumor growth and metastasis146. Restoration of 

factors which function epigenetically is another promising avenue for breast cancer 

treatment. For example, reduced levels of BRMS1L (breast cancer metastasis suppressor 1 

like) is associated with breast cancer metastasis and poor patient survival147. BRMS1L was 

shown to epigenetically silence the expression of FZD10, a receptor for the Wnt/β-catenin 

pathway. Therefore, restoring BRMS1L levels can potentially be used to inhibit aberrant 

Wnt signaling in breast cancer patients.
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Although the requirement for EMT to support cancer metastasis has been challenged148,149, 

it is well acknowledged that EMT is in fact a major driving force in cancer stem cell 

formation65,150. CSCs are a subpopulation of tumor cells which are capable to form new 

tumors, self-renew, and “differentiate” into non-stem like cancer cells151. When injected into 

immunocompromised mice, the CSCs can form tumors with much higher efficiency 

compared with non-CSC tumor cells152. Multiple lines of evidence have demonstrated that 

activation of EMT signaling pathways increases the mesenchymal-like CSC 

population65,150. For example, the E-cadherin promoter is hypermethylated by the EMT-

inducing transcription factors Yap, Snail, and Zeb153–155.

RUNX-mediated control of Epithelial-to-Mesenchymal transition and breast cancer stem 
cells.

Our laboratory has demonstrated that the RUNX1 transciption factor has a key role in 

supporting the normal breast epithelial phenotype156–158. Depletion of RUNX1, not only 

initiated EMT 156, but also increased the CSC population in breast cancer cells157, through 

TGFβ and TGFβ independent mechanisms. This suppression of breast CSCs is regulated 

through multiple signaling cascades including ZEB1157 and YAP159. The regulation of 

RUNX1 in suppressing ZEB1 is of particular interest considering that the poised epigenetic 

state of the ZEB1 promoter has been shown to be crucial for generation of CSCs160. This is 

even more intriguing considering RUNX1 and ZEB1 are both downstream of TGFβ161. In 

contrast to RUNX1, RUNX2 (a driver of metastatic bone disease) induces EMT in breast 

and other cancers162 by upregulating the expression of SNAI2163,164.

RUNX transcription factors directly contribute to chromatin looping by recruiting mediators, 

chromatin remodelers, and chromatin organizing proteins to regulatory elements of target 

genes158,165. For example, in hematopoietic stem cells, RUNX1 contributes to the 

interaction of the CD34 promoter to its distal enhancer 4. Likewise, RUNX2 was shown to 

bind the promoter of Supt3h and facilitate long-range interactions between the Supt3h and 

the RUNX2 promoters166. Similar to other transcription factors, RUNX1 has also been 

shown to be enriched at TAD boundaries and facilitate HCO that is functionally relevant in 

early stage luminal ER+ BrCa 167. Another level of HCO, that involves all RUNX factors, is 

their unique protein domain that targets RUNX to subnuclear sites via a nuclear matrix 

targeting signal (NMTS). This NMTS is essential for assembling multimeric complexes 

containing KATs, HDACs, and coregulatory factors for signaling pathways critical to cancer 

progression (e.g. SMADs, WWD, and P53)158. Together these studies suggest RUNX 

factors are regulators of EMT and can potentially influence HCO in breast cancer.

Hormone signaling and its impact on higher order chromatin organization.

Nuclear hormone receptor (NR) signaling is a major contributor to altered epigenetic and 

gene expression profiles during breast cancer progression. NRs are ligand-activated 

transcription factors that drive the development and maintenance of normal cellular 

phenotypes168, and their dysregulation can result in the loss of key aspects of cellular 

identity in cancer. Despite the important role these signaling cascades have in modifying the 

epigenetic landscape in breast cancer cells, the contribution of higher order chromatin 
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organization to these events is less well understood. Open questions remain regarding the 

contribution of individual NRs to epigenetic signatures and higher order chromatin 

structures that drive EMT during early and late stage tumor development.

The importance of the biological activity of hormones in breast cancer was indicated by the 

removal of the ovaries in women, which greatly reduced further metastasis of breast cancer 

in these patients169. Additionally, it is well appreciated that the active metabolite of 

estrogen, 17β-estradiol, is required for the development of normal breast tissue and 

contributes an oncogenic role in breast cancers 170. The invention and application of 

microarray and next generation sequencing technologies has expanded our understanding 

and classification of breast cancers 171 and to this end, the intrinsic molecular subtypes of 

breast cancer are determined by the expression of different genes including hormone 

receptors 172. Luminal A or B and unclassified/normal-like breast cancers are characterized 

by the presence of estrogen receptor (ER, Reviewed in 173) and/or progesterone receptor 

(PR), while triple-negative or basal-like and HER2-enriched subtypes are hormone-receptor 

negative (Reviewed in 174). Other critical hormone receptors that have been identified in 

breast cancer are the androgen receptor (AR), glucocorticoid receptor (GR) and thyroid 

receptor (TR) 175,176.

Hormone signaling is a critical regulator of EMT.

The lack of proper hormone regulation may be one of the key requirements altering cellular 

identity during breast cancer EMT. The best-studied and arguably most critical hormone in 

EMT and breast cancer progression is estrogen. Estrogen promotes an epithelial phenotype 

by suppressing TGFβ, MTA3, and NF-kB. Indicative of EMT, loss of ERα results in altered 

expression of EGFR, HER2, matrix metalloproteinases and their endogenous inhibitors. 

Both Snail1 and ZEB1, which are elevated in EMT and in breast CSCs, in turn suppress 

ERα expression. ERβ has also similarly been shown to suppress EMT. Other hormones also 

play critical and opposing roles in EMT. For example, growth hormone induces EMT177 

whereas prolactin inhibits EMT178. While several EMT inducing genes were increased by 

PR during mammary alveologenesis179–181, progesterone reversed EMT phenotypes in 

basal-like breast cancer via a membrane bound PRα mediated pathway 182. Therefore, these 

studies indicate a complex role for progesterone in normal breast development where it 

induces EMT versus basal breast cancer where it reverses EMT.

In addition to their roles in EMT and CSCs (discussed above), RUNX factors have been 

implicated in ER signaling. Loss of function mutations in the DNA binding-Runt homology 

domain of RUNX1 were detected with a particular frequency in the luminal A ER+ subtype 

of breast cancer183–186 (Figure 2). Mechanistically, RUNX1 has been shown to recruit and 

tether ERα to the genome in breast cancer187. A conditional knockout of Runx1 in mice 

resulted in a significant reduction in ER-positive mature luminal cells. This phenotype can 

be reversed by Trp53 or Rb1 mutation, suggesting a role for RUNX1 in ER+ luminal breast 

cancer with background mutations in P53 or RB1188. Loss of RUNX1 in the luminal A 

subtype of breast cancer was also shown to facilitate estrogen‐induced WNT signaling by 

suppressing AXIN1189. In contrast, the oncogenic activities of RUNX2 were antagonized by 

estradiol stimulation190.
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Estrogen receptor α coordinates long-range chromatin interactions to drive aberrant 
transcription in breast cancer.

Estrogen-dependent breast cancer is characterized by abnormally high levels of ERα 
expression191. ERα acts as a driver of tumorigenesis in about 80% of human breast 

cancers191. Therefore, endocrine therapies that target ERα are the cornerstone of breast 

cancer treatment. The tumor-promoting activity of ERα depends on dynamic interaction 

with dozens of other factors, including pioneer factors and chromatin remodeling complexes, 

to regulate chromatin structure and gene expression. ERα’s most reliable cofactor, FOXA1, 

was discovered through the observation that forkhead motifs are heavily enriched within 

ERα binding sites192. FOXA1 is a pioneer factor, meaning it is able to interact with 

compacted DNA and unravel it to facilitate the subsequent binding of other transcription 

factors193. It has been shown to be required for ERα binding in breast cancer cells, and its 

knockdown slows the growth of the MCF7 cell line194. The transcription factor GATA3 has 

also been shown to be a key player in estrogen-dependent gene regulation195. Interestingly, 

GATA3 is required development of normal mammary glands196, suggesting an important 

role in promoting cellular differentiation, yet silencing of GATA3 inhibits estrogen-

dependent breast cancer cell proliferation197. Both FOXA1 and GATA3 are required for 

establishment of a stable estrogen-responsive transcriptional complex, and they both serve as 

prognostic indicators for response to antiestrogen therapy192,198.

The organization of the estrogen-dependent breast cancer cell genome is defined by ERα 
activity. ERα transcriptional activation is mediated through a complex network of ER 

binding sites located both proximal and distal to transcriptional start sites of target genes199. 

Many of the distal binding sites have been shown to act as transcriptional enhancers that are 

involved in long range chromosomal interaction, transcription complex formation, and wide-

spanned chromatin rearrangement200,201. Studies of this phenomenon indicate that ERα can 

regulate a number of its target genes in a relatively confined space, which requires the 

arrangement of different regulatory regions into a single transcriptional hub. For example, 

ERα was not only recruited to bind a known target in MCF7 ER-positive breast cancer upon 

estrogen stimulation, but also resulted in the regulation of enhancer-promoter interactions 

mediating transcription193. Genes that were contacted by enhancers upon estrogen 

stimulation contained increased transcriptional activity. With the development of ChIA-PET 

(a method for determining protein mediated intra-and inter-chromosomal contacts), global 

ER-mediated chromatin interactions were detected201. This comprehensive chromatin map 

of ER-alpha revealed that long-range chromatin interactions loop distal promoters together 

for coordinated transcriptional control. Furthermore, distant estrogen response elements 

localized in regions frequently amplified in ER positive breast cancers form long-range 

interactions that support estrogen mediated signaling. These gene clusters potentially predict 

poor clinical outcomes and drug resistance in breast cancer 202. Estradiol stimulation of 

MCF7 further demonstrated that hormone-stimulation can function through 3D chromatin 

organization, its core receptor (ER in this case), epigenetics and gene expression203. Further 

dissection of this multi-step process (hormone stimulation > receptor activation > 

recruitment of chromatin remodeling factors > changes in HCO and gene expression) will 

allow a deeper understanding of the extent to which estrogen-dependent transcriptional 

dysregulation in breast cancer is influenced by defects in chromatin organization.
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In addition to the characterization of estrogen signaling in ER positive breast cancer others 

have begun to study the effects of other types of hormone-signaling on HCO. Progestin and 

estradiol influence topologically associated domains (TADs) in the human breast cancer 

cell-line T47D, that expresses ER and PR97. While the majority of TAD boundaries remain 

unaltered after 1 hour of progestin stimulation, genes within 20% of TAD regions display 

differential expression. Regions that were responsive to progestin showed some coincidence 

with estradiol altered regions, however, elements unique to estradiol stimulation are also 

detected. Hormone-induced alterations in gene expression and chromatin remodeling, result 

in simultaneous changes in intra-TAD interactions within TADs that are hormone 

responsive. Furthermore, stimulation with glucocorticoids, which activate the glucocorticoid 

receptor also alter long-range chromatin interactions, DNAseI hypersensitivity, and 

corresponding gene expression programs in murine breast cancer cells204.

Progesterone receptor enhances and blunts estrogen receptor signaling through 
epigenetic modifications in breast cancer.

The progesterone receptor (PR) is a critical player in progression, therapeutic responsivity 

and eventual outcome of breast cancers. These receptors when bound to DNA induce 

assembly of chromatin remodeling complexes and cofactors to induce changes in gene 

transcription. PR amplifies ER expression in breast cancer cells through direct binding to 

low-methylated ESR1 promoter. Loss of PR expression results in an increased methylation 

of the ESR1 promoter and re-expression of PR did not restore ER expression or decrease 

methylation205. Not surprisingly, methylation of PR-responsive promoters genome-wide 

impedes PR binding to consensus response elements and subsequent changes in gene 

expression205. Demethylation of ESR1 in ER negative breast cancer cells can reactivate 

ERα expression and restore sensitivity206.

In addition to directly increasing ER expression in breast cancer, unliganded PR increases 

breast cancer cell proliferative response to estrogen and enhances antiestrogens effectiveness 

through inducing changes in chromatin organization via a scaffolding complex that includes 

ERα and PELP1 transcriptional co-regulator207. This unliganded PR binds genomic sites 

and targets a repressive complex containing HP1γ (heterochromatin protein 1 gamma), 

LSD1 (lysine-specific demethylase 1) among other co-repressors to induce a closed 

chromatin conformation that precludes gene expression. This includes approximately 20% 

of hormone-inducible genes in breast cancer cells, keeping these genes silenced prior to 

hormone treatment. Upon hormone treatment, the liganded PR induces displacement of the 

repressor complex and allows the recruitment of coactivators needed for chromatin 

remodeling and increased gene expression207.

Addition of hormone can magnify these nuclear events and also trigger a kinase signaling 

cascade through activation of cell membrane receptors to amplify these events 208,209. 

Phosphorylated and under-SUMOylated unliganded PR recruits steroid receptor coactivator 

1 (SRC1) to regulate the expression of growth-promoting genes and SUMOylated PR 

recruits histone deacetylase 3 (HDAC3) to reduce chromatin accessibility and decrease 

expression of the same genes209. Of note, the liganded PR also can recruit the chromatin 

remodeling enzyme BRG1 associated with the demethylase repressor complex HPYγ-LSD1 

Fritz et al. Page 10

Genes Chromosomes Cancer. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



anchored by the histone methyltransferase SUV39H2 to induce heterochromatin. This 

hormone-dependent transcriptional repression is mediated through BRG1 recruitment to 

repressed genes involved in cell proliferation and apoptosis. The pioneer factor FOXA1 

marks the hormone-repressive promoters enabling BRG1, and not additional associated 

factors (BAFs), to mediate heterochromatinization210. Knockdown of BRG1 in normal-like 

mammary epithelial ER-low MCF10A resulted in altered HCO and expression of key 

extracellular matrix genes that can exert mechanical forces and affect nuclear 

structure{Barutcu, 2016 #536}. Distinguishing the effects of perturbed BRG1 signaling on 

HCO in ER positive breast cancers will be of particular interest.

Androgen Receptor signaling in breast cancer is context-dependent.

The androgen receptor (AR) is a well-characterized clinical target in male prostate cancer, 

however its diagnostic and therapeutic potential in female breast cancer has recently 

emerged in the literature. AR has clinical implications in both ER-positive and ER-negative 

breast tumors211. In ER-positive tumors, AR expression was associated with positive clinical 

outcomes. Higher AR expression was predictive of a more favorable response to ER-targeted 

therapies, such as tamoxifen and aromatase inhibitors212. There is also preclinical evidence 

that breast cancers that have become resistant to tamoxifen can be effectively treated with 

AR-targeted endocrine therapies such as bicalutamide and enzalutamide213.

Triple negative breast cancer (TNBC) has recently been re-organized into several 

subcategories214. One of these subsets of triple negative breast tumors, termed luminal 

androgen receptor (LAR) tumors, in which AR has been shown to be a driver of EMT and 

tumor progression. LAR breast cancer cells are sensitive to androgen therapies, such as 

bicalutamide and enzalutamide, in vitro and in vivo 215–217. Other molecular subtypes have 

also exhibited sensitivity to enzalutamide in vivo216. The underlying mechanisms for growth 

suppression by anti-androgens in these cancers has yet to be fully delineated. However, it 

has been demonstrated that AR plays a role in promoting growth-factor receptor, PI3K/AKT, 

and WNT/β-catenin signaling in TNBC cells216,217. While AR is a driver of EMT through 

these signaling cascades, and HCO may be a critical component of EMT during breast 

cancer progression (discussed above), the potential for AR to alter HCO during EMT is 

unexplored.

Thyroid hormone signaling in breast cancer.

The actions of non-steroidal NRs in breast cancers are not well characterized218. Both 

thyroid hormone receptor alpha (TRα) and thyroid hormone receptor beta (TRβ) are 

expressed in breast tissue. In BRCA-positive breast cancer TRα and TRβ exhibit opposing 

roles in prognostic survival; greater expression of TRα strongly correlates with a decrease in 

overall survival whereas expression of TRβ is associated with improved survival219. 

Additionally, the isoform of TRα has been observed to be critical as expression of TRα2, a 

splice variant without a triiodothyronine (T3) binding site, is associated with improved 

survival220. TRα2 acts antagonistically to TRα1, which exhibits a functional LBD, by 

binding to TREs and blocking TRα1 from interacting with the chromatin. This blocks 

thyroid hormone mediated actions arising from TRα1.
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Notably, there is compelling evidence that loss of TRβ, a member of the thyroid hormone 

receptor (TR) family, through genomic modifications and epigenetic silencing is 

characteristic of breast and other solid tumors221–227. TRβ is silenced or mutated in nearly 

60% of invasive breast cancers219,228–231. Of clinical significance, expression of wild-type 

TRβ is associated with a good prognosis in BRCA-positive breast cancer219 as well as early 

breast cancer232 and indicates a positive responsivity to chemotherapy230,233. TRβ, both 

unliganded and liganded, regulates gene expression via interaction with co-regulators and 

chromatin remodeling complexes234–240. Disruption of TRβ in breast cancer is therefore 

expected to alter the assembly of co-factors needed for transcriptional programming. In 

xenograft studies, loss of TRβ in malignant breast cells results in tumor growth and 

progression whereas restoration of TRβ function reverses these effects and critically blocks 

estrogen-induced breast cell tumor growth241–245. These observations indicate that not only 

does TRβ repress tumorigenic signaling, but TRβ may specifically counter ERα tumorigenic 

signaling in ER+ breast cells. Remarkably, the mechanisms by which TRβ blunts breast 

tumor growth and protects normal breast epithelial cell function are currently unknown. 

TRβ, both unliganded and liganded, regulates gene expression via interaction with hormone 

response elements and recruitment of co-regulators and chromatin remodeling 

complexes237,239,246–248. The impact that the recruitment of these chromatin remodelers has 

on HCO requires further investigation. It will be of particular interest to determine whether 

TRβ signaling counters the estrogen-mediated alterations in HCO discussed above and 

whether maintainence of the normal mammary epithelial cellular identity requires the long 

range enhancer-promoter contacts mediated by TRβ.

Nuclear receptor crosstalk has implications for breast cancer outcomes and treatment.

In early stage, hormone receptor positive, and dedifferentiated breast cancers, the dynamic 

gene expression programs are framed by an array of NRs and their cofactors. The studies 

that have defined NR-regulated transcription and NR-binding events have largely been 

studied as isolated events using single hormones. This over-simplified approach to 

understanding nuclear receptor function has become inadequate as it becomes increasingly 

clear that hormones and NRs do not act alone. Emerging evidence shows that co-expressed 

NRs exhibit extensive crosstalk with each other in normal tissue and in hormone-driven 

cancers.

The role of steroid hormone receptor crosstalk in breast cancer has been recently reviewed; 

specifically interactions between ER and PR, ER and AR, and crosstalk from glucocorticoid 

receptor249. Briefly, ER and PR have been demonstrated to form protein-protein interactions 

and PR expression can drive ER-mediated upregulation of over 200 genes in vitro207. 

Progesterone treatment aids in the recruitment of ER to over 14,000 EREs in T47D cells 

through a progesterone-dependent protein-protein interaction172. However, progesterone 

treatment repressed the oncogenic properties of E2 in a xenograft of these cells172,192.

TR/ER interaction at common DNA motifs with opposite transcriptional effects has been 

described250 and an overlap in estrogen and T3 responsive genes has been noted in breast 

cancer251. As with PR, TRβ, both unliganded and liganded, regulates gene expression via 

interaction with co-regulators and chromatin remodeling complexes 234–239. Disruption of 
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TRβ in breast cancer is therefore expected to alter the assembly of co-factors needed for 

transcriptional programming. Addition of T4 stimulates breast cancer cell proliferation 

although the effect is likely non-genomic mediated through T4 -αvβ3 integrin and kinase 

signaling252. In the presence of ER, T3 blunts cell proliferation253. The role of ligand, T3 or 

T4, has yielded controversial results revealing the complexity of NR cross-talk and 

interactions that are context dependent.

It is well-established that BRG1 facilitates gene expression control by steroid NRs 210,254,255 

and is recruited to ER-responsive promoters 256–257. PR directly interacts with BRG1 in the 

absence of additional accessory factors to suppress gene expression in breast cancer 210 and 

thus may inhibit ER activity to diminish resistance to estrogen-based therapy 172. Our recent 

studies established that TRβ interacts with BRG1258 to synergistically induce changes in 

chromatin accessibility resulting in decreased expression of an oncogene, RUNX2, in 

opposition to ERα action. As TRβ and ERα can differentially regulate gene expression 

mediated through the same DNA binding site and BRG1 cooperatively enhances gene 

suppression and activation respectively, overlapping genome occupancy by these factors 

should reveal a subset of coordinately regulated genes central to maintain a normal breast 

phenotype or tumor suppression program. Our findings point to a convergence of TRβ and 

ERα signaling whereby TRβ counters ERα genomic occupancy, nuclear organization and 

transcriptional programs in hormone-dependent cancers. The BRG1 dependent crosstalk 

between ER and PR as well as TR and ER may be a generalizable mechanism of epigenomic 

crosstalk between members of the NR superfamily of genes. Given the importance of 

hormone signaling in regulating the epigenome and gene expression in breast cancer, a 

deeper understanding of how these signaling cascades impact cellular phenotypes will 

inform therapeutic strategies. Understanding the role(s) that HCO has in mediating these 

processes is still in its infancy.

The challenge of cellular division and implications for genomic 

organization.

Mitosis represents a major reconfiguration of the interphase genome organization every cell 

cycle. This raises a fundamental question of biological and clinical importance: what 

mechanisms control reacquisition and preservation of cellular identity during proliferation 

and growth? As cells prepare for mitosis their chromosomes are packaged into rod-like 

structures. During prophase TAD structures are lost in a condensin (structural maintenance 

of chromosomes complex) dependent manner. In early prometaphase a helical arrangement 

of consecutive 400kb outer loops containing 80kb inner loops emanate from a central spiral-

staircase on a condensin scaffold. These loops progressively increase in size to ~12kb during 

prometaphase, while secondary loops are formed259. During this process, while many 

protein factors are excluded from the condensing mitotic chromosome, a fraction of 

transcription factors and chromatin remodelers are retained. This retention of binding during 

mitosis is termed bookmarking260.
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Mitotic Gene Bookmarking in Biological Control.

The first evidence of mitotic bookmarking by a transcription factor was reported in 2003 by 

our group 261. RUNX2 was shown to remain associated with chromatin throughout mitosis 

occupying both cell growth-related ribosomal RNA (rRNA) genes that are transcribed by 

RNA Pol I, as well as cell proliferation and phenotype-related genes regulated by RNA Pol 

II 262. Consistent with these findings, components of RNA Pol I and II machineries are 

retained on mitotic chromosomes263–265. Subsequently, our group provided evidence that, 

during differentiation of multipotent mesenchymal stem cells (MSCs) into myoblasts, 

osteoblasts or adipocytes, mitotic bookmarking of the ribosomal RNA (rRNA) genes by 

Myc was replaced by respective lineage-specifying factors MyoD, myogenin, RUNX2, and 

C/EBPβ. Myc is an activator of rRNA genes during proliferative stage of MSCs. The 

replacement of Myc by these factors suppresses RNA Pol I-mediated transcriptional control 

of rRNA genes through an interaction with the upstream binding factor 1 (UBF1; 262,264,266. 

Concomitantly, these lineage-specifying factors occupy RNA Pol-II regulated genes 

involved in cell proliferation and fate determination.

Mitotic bookmarking of RNA Pol-II genes by various transcription factors has been 

demonstrated to be a key component regulating cellular identity in a host of physiological 

conditions. These include GATA1 in hematopoeisis 267 components of the MHC Class II 

enhanceosome in B lymphoblastoids 268; FOXA1 in liver development 269, and hepatocyte 

nuclear factor 1 β (HNF1β) in the early steps of pancreas, kidney, and liver development 
270. Clinically relevant mutations found in HNF1β of patients suffering from renal 

multicystic dysplasia and diabetes; these mutations prevented HNF1β to mitotically 

bookmark DNA, highlighting clinical relevance of mitotic gene bookmarking 271. Together, 

these findings identified mitotic gene bookmarking as a wide-spread epigenetic mechanism 

for coordinate control of cell growth, proliferation and phenotype maintenance.

In pluripotent or totipotent cells or breast cancer cells that have lost aspects of their cellular 

identity, the presence of both activating and suppressing histone marks at a single genomic 

locus, designated bivalency, has been posited to be critical for a poised plastic state of 

chromatin160,272–274. Interestingly, in pluripotent cells bivalent control of a large subset of 

genes is confined to mitosis, while histone mediated epigenetic suppression is constitutive 

throughout the cell cycle275. Mitosis restricted presence of activating histone modifications 

poises phenotypic genes for the potential to subsequently be expressed at lineage 

commitment. At that time, histone specific repression is relinquished. It has recently been 

observed that bivalency may be recapitulated when phenotype-specific genes are 

downregulated in early-stage cancer276. Such oncofetal epigenetic control may reflect loss 

of cell type specificity and reemergence of progenitor-like properties.

Mitotic bookmarking and nuclear organization.—The retention of factors on mitotic 

chromatin has been implicated in higher order chromatin organization. For example, it has 

been posited that the chromatin organizer proteins, CTCF and SMC3, have been shown to be 

retained on mitotic chromosomes277–279. Analysis of drosophila CTCF (dCTCF) occupancy 

identified sites that are bound throughout the cell cycle and those that are bound only in 

interphase or mitosis. dCTCF binding sites that fell within the same class (ie. Throughout 
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the cell cycle versus only in interphase or mitosis) were highly enriched at TAD 

boundaries280. In contrast, a more recent study demonstrated that CTCF binding is lost in 

prometaphase. ATAC-seq determined that while CTCF sites became closed during 

metaphase, transcription start sites were accessible, consistent with the view that 

transcription factors bookmark. Dekker and colleagues, along with other investigators 
37,279,281–284 have found that the histone variants and modifications are maintained during 

mitosis suggesting a major role for epigenetics in bookmarking. In addition, epigenetic 

modifying complexes are also maintained on mitotic chromosomes. For example, the 

polycomb protein PSC is partially retained during mitosis, and its occupancy is enriched at 

TAD boundaries285. Given the potential role for the segregation of active versus inactive 

chromatin in delineating TAD structures, bookmarking by epigenetic histone modifications 

may provide the basis for maintaining cellular identity and HCO.

Mitotic Gene Bookmarking in Cancer.

Given the documented examples of mitotic gene bookmarking thus far, it comes as no 

surprise that this epigenetic mechanism has significant roles in promoting a cancerous 

phenotype. For example, in acute myeloid leukemia, bookmarking by RUNX1-ETO (an 

oncogenic fusion protein between the DNA binding domain of RUNX1 and the entire ETO 

protein including its NHR domain) has been demonstrated at growth-related rRNA genes, as 

well as RNA Pol-II genes involved in myeloid cell differentiation. In comparison to normal 

RUNX1, RUNX1-ETO results in the opposing regulatory effects on mitotically bookmarked 

genes 286 regulating vital cellular processes such as differentiation, proliferation, apoptosis, 

and self-renewal to promote leukemogenesis287. Given the roles of RUNX1 in estrogen 

signaling, and in suppressing EMT and CSC phenotypes in breast cancer, bookmarking by 

RUNX1 could be a fundamental mechanism maintaining the normal mammary epithelial 

phenotype.

Reestablishing chromatin domains and nuclear bodies upon exit from mitosis.
—The rod-like chromosomes found in mitosis rapidly decondense into chromosome 

territories (CTs) following completion of cell division and initiation of G1. Within CTs, 

TADs are decondensed during G1 corresponding with their level of activity79. These TADs 

are then replicated as units with more active TADs being replicated earlier than those that 

are less active288. This is consistent with the longstanding evidence that highly transcribed 

genes tend to replicate earlier in S phase289. This correlation is not absolute and reflect the 

presence of genes that are minimally expressed within TADs that are predominantly more 

active and vice versa. TAD structures may therefore be more determinative for replication 

timing than expression of individual genes.

The differential acetylation of genomic regions of mitotic chromatin may be the primary 

mechanism by which nuclear bodies are re-established from mitosis into G1 and S phase. 

Nucleolar organizer regions (NORs) contain the rRNA genes discussed above are present on 

five different acrocentric chromosomes are bookmarked during mitosis262,264,266. This 

bookmarking provides a basis for the reassembly of these NOR-bearing chromosomes and 

biogenesis of nucleoli63,290 (Figure 3). Interestingly, it was discovered that there is a 

dominant nucleolus that associates with more of these acrocentric chromosomes. 

Fritz et al. Page 15

Genes Chromosomes Cancer. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, particular subsets of these NOR-bearing chromosomes preferentially 

associated with the same nucleolus291. Epigenetic bookmarking of the histone genes may 

also be critical for the HCO of the histone locus body wherein the regulation of the histone 

genes occurs during S phase62,292. The HLB that contains the major histone gene locus is 

contained within a TAD. In this TAD, three subclusters of histone genes form an active 

chromatin hub, while two inactive histone genes are excluded. Other regions loop back into 

this hub suggesting additional potential regulatory roles for HCO in histone gene expression. 

As expected with the increased proliferative state of breast cancer cells, this region is the 

most upregulated cluster of genes in breast cancer in vitro and in tumor samples relative to 

matched controls. In addition, CTCF is present within the HLB and occupies the TAD 

boundaries around the major histone gene locus, and therefore may play a critical role in the 

determination of the HCO of this nuclear body41.

Conclusions.

Cells establish and retain structural and functional integrity of the genome to support cellular 

identity and prevent malignant transformation. Mitotic bookmarking sustains competency 

for normal biological control, and propetuates gene expression associated with transformed 

and tumor phenotypes. Regulatory cascades that include RUNX and hormone signaling are 

altered in EMT and breast CSCs, thereby contributing to breast cancer onset and 

progression. And downstream, epigenetic mechanisms including histone modifications and 

higher order chromatin organization are perturbed. In turn, higher order chromatin 

organization provides a blueprint for control of gene expression within the three dimensional 

context of nuclear architecture. Elucidation of mechanisms that mediate the genomic 

organization of regulatory machinery will provide novel insight into control of cancer-

compromised gene expression. This understanding can translate to enhanced capabilities for 

tumor diagnosis, prognosis, and provide options for targeted therapy.
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Figure 1. Cancer-compromised higher order chromatin organization.
A.) An epithelial-to-mesenchymal transition (EMT) occurs during breast cancer progression 

during which cells relinquish their epithelial cell (EC) tight junctions and polarity while 

acquiring mesenchymal cell (MC) characteristics that include migration and invasiveness. 

B.) An inset of a portion of the nucleus is shown. The nucleo-cytoplasmic link is illustrated 

wherein forces from within the cytoplasm can be transferred into the nucleus. The 

intermediate filament (IF) protein, vimentin (VIM), is increased in expression during EMT. 

Portions of two chromosome territories (CTs) are shown (grey and green). Compartments 
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within one CT are shown. An open, euchromatic, A compartment is blue and closed, 

heterochromatic, B compartment is red. C) In the loop extrusion model, cohesin extrudes 

DNA until two convergent CTCF motifs are encountered. Genes that are responsive to a 

stimulus (e.g. hormones) are enriched to reside within the same TADs. Alterations in the 

genome that occur within cancer nuclei such as translocations, deletions, and inversions may 

result in the disruption of proper enhancer (E)- promoter (P) interactions and result in 

aberrant regulation. Mutation of CTCF binding sites are frequent in cancers and mutation of 

these sites has been shown to disrupt looping.
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Figure 2. Mutations in the DNA binding- Runt homology domain of RUNX1 in breast cancer.
The structure of RUNX1’s Runt homology domain (RHD; rendered based on the Protein 

Data Bank code 1H9D293 is shown in two orientations rotated 90 degrees relative to each 

other (front and side). CBF‐β is shown in purple, DNA binding-RHD is in green, and DNA 

is in blue. Mutations found in the RHD in breast tumor patient samples (red) suggests a loss 

of RUNX1 function in breast cancer.
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Figure 3. Mitotic bookmarking maintains nuclear organization, cellular identity and genome 
regulation in daughter cells.
Bookmarking is the retention of transcription factors and epigenetic modifications on mitotic 

chromosomes. Genes that are bookmarked (green) are active in early G1 compared with 

genes that are not bookmarked during mitosis (red). Bookmarking of the nucleolar organizer 

regions (NORs) is key to the biogenesis of nucleoli upon exit from mitosis.
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