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Background: Dengue is becoming a major public health concern in Guangdong (GD) Province of China. The
problem was highlighted in 2014 by an unprecedented explosive outbreak, where the number of cases was larger
than the total cases in previous 30 years. The present study aimed to clarify the spatial and temporal patterns of this

Methods: Based on the district/county-level epidemiological, demographic and geographic data, we first used
Moran'’s | statistics and Spatial scan method to uncover spatial autocorrelation and clustering of dengue incidence,
and then estimated the spatial distributions of mosquito ovitrap index (MOI) by using inverse distance weighting. We
finally employed a multivariate time series model to quantitatively decompose dengue cases into endemic,

Results: The results indicated that dengue incidence was highly spatial-autocorrelated with the inclination of
clustering and nonuniformity. About 12 dengue clusters were discovered around Guangzhou and Foshan with
significant differences by district/county, where the most likely cluster with the largest relative risk located in central
Guangzhou in October. Three significant high-MOI areas were observed around Shaoguan, Qingyuan, Shanwei and
Guangzhou. It was further found the districts in Guagnzhou and Foshan were prone to local autoregressive
transmission, and most region in southern and central GD exhibited higher endemic components. Moreover, nearly
all of districts/counties (especially the urban area) have cases that were infected in adjacent regions.

Conclusions: The study can help to clarify the heterogeneity and the associations of dengue transmission in space
and time, and thus provide useful information for public health authorities to plan dengue control strategies.

Background

Dengue is a mosquito-borne viral infectious disease,
which is transmitted from one person to another through
the bite of the infected female Aedes aegypti and Aedes
albopictus [1]. In recent decades, dengue incidence has
grown dramatically around the world [1], leading to half
the world’s population being at risk of infection and 390
million people being infected each year [2]. It is now
regarded as a big international public health concern.
In China, dengue epidemics also exhibited clear upward
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trend both in extent and severity since its reemergence in
1978 in Guangdong (GD) Province, which has always been
the hardest-hit Chinese province [3]. Particularly in 2014,
an explosive outbreak of dengue unexpectedly attacked
GD, in which the reported cases were more than 3 times
of the total number in previous 20 years [4]. During this
outbreak, it was observed that dengue is heterogeneously
distributed in time and space, and the incidence varied
greatly among districts and counties [4]. Characterizing
the spatial-temporal heterogeneity of this dengue out-
break is very important, which allows to recognize the
dengue cluster and the risky area, and further to improve
dengue control and prevention strategies.

Many previous studies were conducted to discover and
predict the spatial and temporal patterns of dengue by
using mapping techniques [5-8], dynamical models [9, 10]
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or statistical methods [6, 7, 11, 12]. The recent dengue
outbreak in China also drew similar analysis, such as infer-
ring the spatiotemporal patterns of dengue transmission
[6, 7, 9-11], and identifying the determinants of spatial
variations in the dengue epidemic [6, 11, 12]. However,
existing studies usually focused on one or several cities,
and the spatiotemporal heterogeneity of the transmis-
sion patterns remains little understood at a finer scale of
Guangdong.

This study addressed this issue by examining the spa-
tiotemporal process at district/county level that con-
tributed to the 2014 dengue outbreak in GD Province.
We first used global Moran’ I to investigate the spatial
autocorrelation of dengue incidence around the 128 dis-
tricts and counties, and then employed Anselin Local
Moran’s I (local indicators of spatial association [LISA])
and Kulldorff’s spatial scan statistics to detect the dengue
clusters and identify the disease dynamics dispersion
in these regions. Finally, we decomposed dengue cases
into endemic, autoregressive and spatiotemporal compo-
nents by a multivariate time-series model. The autore-
gressive and spatiotemporal components described an
autoregression on past counts in the same and in other
districts, respectively, which can capture occasional out-
breaks and dependencies across regions [13, 14]. The
endemic component captures the background risk of new
events by external factors (independent of the history of
the epidemic) [13, 14]. The results can help to clarify the
spatiotemporal patterns of dengue transmission at 128
districts/counties of GD, which might assist in the devel-
opment of dengue control and prevention strategies in this
province.

Methods

Study site

GD Province was selected as the study area because it was
the most seriously affected region by dengue in China.
This province is situated in the southern China, which
is an economic, finance, industry and transport center in
China. It has an area of 179,800 km? and about 100.7
million inhabitants. GD is administratively divided into
21 prefecture-level cities (see Fig. 5), including 128 coun-
ties/districts (see Fig. 1). The climate is subtropical humid,
with short, mild, dry winters and long, hot, wet summers.
The annual mean temperature is 21.8°C and the annual
accumulate precipitation is 1789 mm.

Data collection

Dengue is a legally notifiable communicable disease in
China since 1989. Dengue cases were diagnosed accord-
ing to the unified diagnosis criteria issued by the Chinese
Ministry of Health, including clinically diagnosed and
laboratory confirmed cases. Dengue cases data reported
between 2014 and 2018 was used in this study. The data
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was obtained from Guangdong Provincial Center for Dis-
ease Control and Prevention (GDCDC), with regard to
the number of reported apparent and confirmed dengue
cases per county/district. The MOI data is retrieved from
GDCDC. In GD, mosquito ovitraps are placed widely to
monitor mosquito density. MOI is computed as the pro-
portions of positive mosquito ovitraps. Population data
for each county/district in GD in 2014 were retrieved from
the Guangdong Statistical Yearbook.

Data analysis

Spatial autocorrelation analysis

The spatial autocorrelation of the dengue numbers was
evaluated by using Global Moran’s I statistic, which can
measure the correlation among spatial observations, and
allows to find the global pattern (clustered, dispersed,
random) among regions. The formula is defined as [15]

Y Wi (i — %) (% — %)
Zi,j Wi i (xi — %)?

’

where 7 is the number of spatial units indexed by i and j; x;
is the variable of interest in spatial unit i; x is the mean of x;
wjj is the spatial weight of relationship between units i and
j. The above formula can provide an index of dispersion
from -1 to +1, corresponding to maximum negative and
positive autocorrelation, respectively [15].

Dengue clustering
The presence of dengue clustering was identified by
two cluster detection programs: Anselin’s Local Moran I
(LISA) test statistics and Kulldorff’s spatial scan method.
Using the input area data (case, population and geo-
graphic information), they can output the location,
approximate size and significance level of identified clus-
ters. Based on the spatial time series of reported cases,
the evolution is divided into in four periods (from June
to August, September, October, and from November to
December).

First, LISA was used to identify the localized cluster-
ing with specific districts. For the spatial unit i, LISA is
computed as [16]

L= xiS_zxZWzi(xi—f?)»
j

where S? is the variance of x. A positive or negative
value of I; means spatial clustering of similar or dissim-
ilar incidence rate, which allows to classify regions into
five categories: high-high, low-low, high-low, low-high,
and non-significant. The high-high and low-low areas
indicated the hot and cold spots of dengue incidence,
respectively. While the high-low and low-high areas were
the outliers [16].
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Fig. 1 Location of the study area. The districts with blue and red colors are Yuexiu and Liwan, respectively. The regions with red and purple
boundary are the cities of Guangzhou (the provincial capital of Guangdong) and Foshan, which accounted for 82.8% and 7.8% of the total dengue

Next, Kulldorff’s spatial scan statistics were used to
identify the specific clusters of varying sizes within
the study area, which was implemented by SaTScan
v9.4.4 (https://www.satscan.org/). The statistic software
can generate circles consisting of regions whose incidence
rates are significantly higher than the regions outside the
circles [17]. This was achieved by gradually scanning a
window across space, and the window with the maximum
likelihood was the most likely cluster. A Poisson-based
model was used for this study. This method has previously
been validated for plotting and understanding local spa-
tiotemporal clusters of many epidemics, such as dengue
[18, 19] and malaria [20]. Here the maximum cluster size
was set to 5% of the total population at risk.

Endemic-epidemic multivariate time-series model

The endemic-epidemic multivariate time-series model
proposed by Held and Paul [13, 14], is designed for analyz-
ing the spatiotemporal components of surveillance data.
Let Yj denote the number of cases in region i at time ¢,
which is assumed to follow negative binomial distribution
with conditional mean

Uit = evit + AiYie—1 + @i Z wji Y1, (1)
J#

and overdispersion parameter ¥; > 0 such that the
conditional variance of Yj; is wi(1 + ¥iunie). In Eq. (1),
eitvir is the endemic component, which is used to mod-
els seasonal variation and trends; the other two compo-
nents are the observation-driven epidemic components:
an autoregressive component A;Y;;_1 at previous time
step (reproduction of the disease within unit i,), and
a spatiotemporal component ¢;; Zj £ WjiYje—1 (transmis-
sion from other units) [14]. The three components have
log-linear predictors of the forms:

log(vie) = & + 5" + > [y sin(wst) + & cos(wst)]
S
log(x;) = a® + sz)’
log(¢) = ¥ + b”,
where ™ is intercept, and bl(x) (x = v, A, ¢) is regional
random effect which accounts for geographic heterogene-

ity. The endemic log-linear predictor v;; incorporates a
periodic wave of frequency by letting w; = 27/52 for
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weekly data in this paper. The spatiotemporal weight wj;
which describes the transmission strength from unit j to i
is assumed to follow a well-recognized power-law distance
decay [11, 21]. The analysis was carried out by the “hhh4”
model provided in R package surveillance [13, 14].

Results

Descriptive analysis

As shown in Fig. 2, during 1990 and 2013, about 16
thousand indigenous dengue cases were recorded in GD
Province. In 2014, the number hit a historic record,
where 45,123 cases were reported in GD, accounting for
0.042% of the total population. Since then, dengue inci-
dence stayed in a relatively high level, as 8,281 cases
were notified in GD during 2015 and 2018. In each year,
cases occurred like convex curve through Summer and
Autumn. For the big outbreak in 2014, the indigenous
cases were first reported in mid-June, with slow increase
in July and August. The number in these three months
was 1942 cases. A rapid increase and the peak of the epi-
demic were observed in September and October, which
accounted for 17,405 and 23,905 cases, respectively. Dur-
ing these two months, the dengue infections displayed
clear spatial expansion trend. After that, the dengue inci-
dence reduced significantly, where the number reported
in November and December was 1871 cases. At dis-
trict/county level, the largest number of cases occurred in
Baiyun district, followed by Haizhu, Yuexiu and Liwan dis-
tricts, all of which located in the city of Guangzhou. The
Geographical distributions of dengue cases were shown
in Fig. 3.
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Spatial autocorrelation

Table 1 shows a significant positive spatial autocorrelation
of dengue incidence for the four periods, where the values
of global Moran’s I ranged from 0.164 to 4.999. It means
that the districts/counties close together tend to have sim-
ilar baseline of incidence rates, and clustered patterns
existed during this outbreak. Such phenomenon was more
evident in the highly epidemic period, i.e., September and
October.

Spatial and temporal clustering
Figure 4 shows the SaTScan-generated cluster circles and
local Moran’s I clusters overlain on the map of dengue
incidence in GD Province in the four periods. Based on
the LISA statistics, it is observed that the high-high clus-
ters only exhibited in the districts/counties of Guangzhou
and Foshan, suggesting that high incidence rates poten-
tially occurred these regions with interactive transmis-
sion. During June and August, the high-high clusters first
emerged in the 8 districts of Guangzhou (Yuexiu, Liwan,
Haizhu, Baiyun, Tianhe, Huangpu, Panyu, and Nansha).
As time went by, the clusters geographically expanded
to the west and the north. The cluster covered another
two districts (Luogang and Nanhai) in September, as well
as Huadu and Chancheng in October. During November
and December, in addition to adding a new district
(Pengjiang), the clusters restricted in Guangzhou (except
Zengcheng and Conghua).

Based on the retrospective scan analysis by SaTScan,
many clusters with statistically significant high inci-
dence in different periods were detected. As shown in
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Fig. 2 Monthly number of dengue cases reported in Guangdong Province from 1990 to 2018. The inside figure shows the weekly number of

dengue cases in 2014
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Fig. 3 The geographical distribution of dengue incidence and population size at county/district level in Guangdong Province in 2014. The map is

Fig. 4, during June and August, three significant clus-
ters were detected, which covered 7 districts (Liwan,
Yuexiu, Haizhu, Baiyun, Nansha, Panyu and Tianhe). In
September, another new cluster was observed in Foshan
(Nanhai, Sanshui and Sihui). In October, the clusters
cover more districts in Foshan and Guangzhou (Huangpu,
Chancheng, Nanhai, Qingcheng and Huadu), as well as
Qingcheng District in Qingyuan. After that, the clusters
scattered around cities of Guangzhou, Foshan, Qingyuan
and Jiangmen, will relatively low relative risk and small
log likelihood ratio. The first likely cluster existed in
October, as a circle center in Baiyun district and a

Table 1 Spatial autocorrelation statistics on dengue epidemics
in Guangdong (GD) Province in 2014

Period Incidence(1/10000) Moran's| z-score p-value
June-August 0.184 0.164 3327 <001
September 1.651 0499 8375 <001
October 2.267 0.494 8517 <001
November-December 0.177 0.369 6.778 <001

radius of 16.03 km to include Yuexiu and Tianhe dis-
tricts, with 10,648 observed cases (1090.96 expected).
The second likely cluster existed in September, as a cir-
cle center in Liwan district and a radius of 17.41 km to
include Yuexiu, Haizhu and Tianhe districts, with 7,943
observed cases (832.89 expected). It was observed that
the most likely clusters through the four periods were
always concentrated in the city of Guangzhou, but as
the infection propagated, the cluster center vary from
Liwan, Baiyun, to Luogang, with different radius and
relative risk.

Spatial MOI distributions

Figure 5 illustrate the spatial distributions of MOI. About
6 hundred records of MOI are collected during July
and October 2014. These records were marked around
GD, mostly in Guangzhou, Foshan, Shenzhen, Zhong-
shan, Zhuhai and Dongguan), which are also the high
dengue prevalence areas in recent decade. Based on these
records, it was found three clusters with high MOI. locat-
ing in Shaoguan and Qingyuan, Shanwei, and Guangzhou,
respectively.
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Fig. 4 SaTScan-generated cluster circles and local Moran's | clusters overlain on the map of dengue incidence in Guangdong Province for the study
period: (a) June - August, (b) September, (¢) October, and (d) November - December of 2014. The RR and LLR represent relative risk and log

Endemic-epidemic components

Figures 6 and 7 show that the endemic-epidemic com-
ponents of dengue data by the multivariate time series
model, where the cases were decomposed into endemic,
autoregressive and spatiotemporal components.

The variances of the random effect for the three parts
were estimated to be 0.485, 1.731 and 2.635, respectively.
It means that there was little variation in the autoregres-
sive component, but vast variation in the endemic and
spatiotemporal components. As shown in Fig. 6, it is found
a homogeneously low random effect of the autoregres-
sion in most of the districts, but a little high value in
Guagnzhou and Foshan, as well as Leizhou district, indi-
cating that these regions were affected by large local out-
breaks. Further, it is observed that the random intercepts
of the endemic and spatiotemporal components exhibited
significant heterogeneity across districts, in which south-
ern and central GD admitted a relatively high endemic
incidence with a few cases from other districts.

Figure 7 shows the time series of fitted components
for the 25 districts/counties with most dengue cases.

Some special features are observed: (1) Dengue cases in
Yuexiu, Baiyun, Huadu and Nanhai have vast autore-
gressive components, indicating that these districts were
predominantly affected by the previous infection in their
own regions; (2) Baoan, Chaoyang and Jiangcheng have
extremely big endemic distributions and thus admitted
high risk of local transmission; (3) Dengue cases in most
districts have spatiotemporal components of dengue
cases, especially in Huangpu, Luogang, Zengcheng,
Dongguan and Zhongshan, indicating that these dis-
tricts easily suffered dengue infection from the adjacent
districts; (4) Liwan, Haizhu, Tianhe, Panyu, Nansha,
Zengcheng, Conghua, Xiangzhou, Chancheng, Shunde,
Pangjiang, Jianghai and Qingcheng have similarly big com-
ponents of autoregressive and spatiotemporal incidence,
which means that the risk of dengue infection in these
districts mainly come from local and neighboring regions.

Discussion
This study explored the spatiotemporal variation and
association of the dengue transmission in GD Province
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Fig. 5 The marked oviposition positive index (MOI) data during July and October 2014 in Guangdong and the corresponding estimation of the
spatial MOI distributions by using inverse distance weighting. The labeled name is the 21 prefecture-level cities. The map is our own

in 2014. By using Moran’s I statistics and Spatial scan
method, as well as a multivariate time series model, we
were able to clarify the spatiotemporal distribution pat-
terns, detect the dengue clusters, and evaluate the spa-
tiotemporal components of dengue infections. To our
knowledge, this is the first attempt to infer the dengue
transmission patterns in GD Province at district/county

level. Several notable findings could provide meaningful
clues for public health authorities to implement effective
interventions on dengue infection.

We found a significant positive spatial autocorrelation
on the dengue incidence in the four time periods. Further
analysis on the spatial autocorrelation of the yearly inci-
dence between 2015 and 2018, yields the global Moran’s I

Fig. 6 Maps of the estimated random intercepts at district/county level based on a multivariate time series model, which is divided into three parts:
(a) spatiotemporal, (b) autoregressive and (c) endemic components. The maps are our own
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Fig. 7 Fitted components of dengue cases in 25 districts/counties with most cases by a multivariate time series model. Black dots are drawn for
weekly counts. The light gray, blue, and orange area shows the estimated endemic, autoregressive, and spatiotemporal contributions. X-axis

as 0.147, 0.041, 0.139 and 0.315, respectively. These pos-
itive values highlight that the districts and counties at
geographical proximity shared a similar level of vulnera-
bility to dengue, and such feature was more evident as the
disease developed. In other words, dengue infections do
not spread uniformly or randomly but occurred in clus-
ter, and thus suggest possible measures of early detection
for disease surveillance. Our results are consistent with
previous findings that dengue is inclined to spatially cor-
relate with clusters [8]. It is possible because that dengue
transmission are affected by a series of factors related to
environment, climate, society, demography and vectors
[6, 22, 23], and such factors have similar attributions in
adjacent sites.

To locate the hotspots for future surveillance strategy,
we identified the prominent spatial clustering covering
specific districts. In 2014, though dengue infection rapidly
spread over most of districts in GD, it was highly localized
in particular locations and times. We identified 12 sig-
nificant clusters during the four periods, which included
about 22 districts lied in the cities of Guangzhou, Fos-
han, Qingyuan and Jiangmen. The most likely cluster with
the largest relative risk occurred in central Guangzhou

in October. Both cluster detection methods identified
similar significant clustering, suggesting that the result
is robust. It is found that the cluster center, the radius,
and the relative risk varied across different districts as
the infection propagated, but the 5 districts, i.e., Liwan,
Yuexiu, Haizhu, Tianhe and Baiyun, always recorded
in clustering, indicating their important role in dengue
transmission. Compared to other regions, eastern Foshan,
southwestern and central Guangzhou are more vulner-
able to dengue, which appeared as a dengue hotspot
in mapping and cluster assessment. The outbreak infor-
mation in one district of the hotspots can serve as an
early warning device for a possible outbreak in neigh-
boring districts. Our findings are consistent with previ-
ous analysis, where they found similar dengue clusters
at rough scale [7, 9-12]. To further verify the location
of dengue clusters, we performed similar analysis on the
incidence data in 2016 and 2017. As shown in Fig. 8,
beside a new cluster observed in east GD (Chaoan and
Xianggqiao), the districts in Guangzhou (except Nansha,
Panyu and Conghua) and in Foshan (except Gaoming)
are also marked as the hot regions. The almost over-
lapped clusters in recent years indicated that the marked
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Fig. 8 SaTScan-generated cluster circles and local Moran’s | clusters overlain on the map of dengue incidence in Guangdong Province in (a) 2016
and (b) 2017. The RR and LLR represent relative risk and log likelihood ratio, respectively. The maps are our own

hotspots are not made by chance. Possible reasons that
contribute to such clustering patterns could be: (1) South-
western and central Guangzhou is the downtown, with
particular features: dense population density [4], higher
temperature (due to the urban heat island effect) [10],
in the process of urbanization [6], and a transporta-
tion hub [4, 10]; (2) Eastern Foshan is near Guangzhou,
which share large human mobility between these two
regions [9, 12].

Using the recorded MOI data, we found three signif-
icant high-MOI areas located in Shaoguan, Qingyuan,
Shanwei and Guangzhou. The proportions of positive
mosquito ovitraps in Shaoguan and Qingyuan are almost
ninety percent, which signifies high mosquito density
there. However in reality, these regions admitted low
dengue incidence. That is probably due to the sparsity of
human population and human movement, yielding sel-
dom circulation of dengue viruses. But in Guagnzhou,
relative high MOI combined with the above-mentioned
features easily triggers dengue occurrence.

By fitting a multivariate time series model to dengue
cases, we further clarified the spatiotemporal pattern of
dengue transmission. First, we found significant spatial
variation in the endemic and spatiotemporal component
across the districts, while the autoregressive component
was more spatially homogenous, similarly to the pat-
terns in city level [11]. Second, we observed that the
autoregressive, endemic and spatiotemporal components
have different contributions to each district/county. It is
important to note that nearly all districts have cases that
were infected in adjacent regions. Such feature is more
evident in and around urban area, possibly because fre-
quent human mobility resulted in many interconnected
infections between these places. The result reminds us
that joint control efforts in surrounded regions could be

necessary for dengue intervention. As a matter of fact,
simultaneous intervention in multi-area since October
2014 had significant effect to control the dengue out-
break in Guangzhou [24]. For those districts with more
autoregressive components (Yuexiu, Baiyun, Huadu and
Nanbhai), rigorous intervention strategies should be imple-
mented in case of sudden local infection. For those dis-
tricts with more endemic component, active surveillance
should be adopted since they are more susceptible to
dengue infection.

The spatiotemporal analysis presented in this paper
differs from the existing studies, both in methodology
and scope. By using Richards model and G* statistic [7],
wavelet analysis [9], and compartmental model [10], these
researchers found that the initial hot spot for the out-
break was Yuexiu district, and then the disease spread to
its neighboring districts in Guangzhou and other cities
in GD province in 2014. By using Moran’s I method and
geographical detector, Cao et al. [6] found that central
Guangzhou was the hot spot of dengue infection, and that
temperature, precipitation and road density were the main
factors leading to dengue transmission in Guangzhou in
2014. By using geographically weighted regression model,
Ren et al. [12] found that population size, road density,
and economic status are the determinants of spatial vari-
ability of the 2014 dengue epidemic across Guangzhou
and Foshan. Cheng et al. [11] decomposed dengue risk in
the 21 cities of GD by a multivariate time series model.
They found that endemic component contributed much
more in the Pearl River Delta area, while areas with rel-
atively low incidence are highly dependent on spatiotem-
poral and local autoregressive spread. These analyses were
mainly based on the city level of GD [6, 7, 9, 11] or dis-
trict level of Guangzhou [7, 10, 11]. Our study focus on
the 128 districts and counties of GD, a finer scale and
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a larger area, allowing for better understanding dengue
transmission patterns.

Several limitations existed in our study worth noting.
(1) The incidence data are based on passive surveillance
system. We were unable to calculate the unreported and
asymptomatic cases. (2) The cases were recorded in the
residence of the patients, which could lead to inconfor-
mity with the real location where they were infected. (3)
The statistic model employed here could not explicitly
incorporate climatic and socio-ecological factors, such as
climate and human migration. More efforts are needed to
assess the effects of these factors on the spatiotemporal
evolutions of dengue.

Conclusions

This paper analyzed the spatiotemporal diffusion pat-
terns contributed to the large dengue outbreak in GD in
2014. The results showed that dengue distribution was
strongly correlated in space, and was highly clustered
around Guangzhou and Foshan, with a slight movement
of clustering over time. Further analysis revealed that
autoregressive, endemic and spatiotemporal transmission
in each district and county had different contributions
to human infection, and most of districts/counties (espe-
cially the urban area) had cases that were infected in
adjacent regions. This study can help to clarify the het-
erogeneity and the associations of dengue transmission
in time and space, and thus provide insightful informa-
tion for public health authorities to plan dengue control
strategies.
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