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Abstract

Background: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the
clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these
higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their
therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and
development of higher-order drug combinations, very few reports from systematic large-scale studies along this
direction exist. A major reason is lack of computational tools that enable automated design and analysis of exhaustive
drug combination experiments, where all possible subsets among a panel of pre-selected drugs have to be evaluated.

Results: Motivated by this, we developed COMBImage2, a parallel computational framework for higher-order drug
combination analysis. COMBImage2 goes far beyond its predecessor COMBImage in many different ways. In
particular, it offers automated 384-well plate design, as well as quality control that involves resampling statistics and
inter-plate analyses. Moreover, it is equipped with a generic matched filter based object counting method that is
currently designed for apoptotic-like cells. Furthermore, apart from higher-order synergy analyses, COMBImage?2
introduces a novel data mining approach for identifying interesting temporal response patterns and disentangling
higher- from lower- and single-drug effects.

COMBImage2 was employed in the context of a small pilot study focused on the CUSP9v4 protocol, which is currently
used in the clinic for treatment of recurrent glioblastoma. For the first time, all 246 possible combinations of order 4 or
lower of the 9 single drugs consisting the CUSP9v4 cocktail, were evaluated on an in vitro clonal culture of glioma
initiating cells.

Conclusions: COMBImage?2 is able to automatically design and robustly analyze exhaustive and in general
higher-order drug combination experiments. Such a versatile video microscopy oriented framework is likely to enable,
guide and accelerate systematic large-scale drug combination studies not only for cancer but also other diseases.
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Background

Pharmacological treatment of complex and/or co-
occurring diseases using more than two drug compounds
simultaneously is commonplace in the clinic [1, 2]. How-
ever, many of these multidrug regimens [3-7] have not
been systematically studied using conventional in vitro
experiments with respect to their desired therapeutic
effects and potential adverse side effects. Moreover,
a growing activity in any modern drug discovery and
development (DDD) project is in vitro evaluation of
novel multidrug treatment candidates [8]. Ideally such in
vitro evaluations should not be restricted to the widely
employed single endpoint analyses, such as cell viability,
but rather provide temporal information about changes
relative to untreated controls. In order to meet this need,
the previously introduced computational framework,
COMBImage [9], was designed for label-free time-lapse
video microscopy (TLVM) based analysis of pairwise drug
combination experiments. COMBImage has already been
successfully used in different ongoing and completed
DDD projects but, as presented in more detail below, it
still has some obvious limitations. Therefore, we devel-
oped COMBImage2, which compared to COMBImage
(Table 1), offers refined quality control (QC) procedures
that now include resampling statistics and inter-plate
analyses as well as:

1 automated design of 384-well plate layouts for drug
combination experiments of any order

2 matched filter based object counting for
quantification of particular cellular objects such as
apoptotic-like cells and vesicle formations

3 identification, visualization and characterization of
prototypical response behaviors, which are used to
disentangle higher- from lower- and single-drug
effects.

As also elaborated on below, the potential of COM-
Blmage2 was illustrated in the context of a small pilot
study covering 255 treated and 53 untreated experimen-
tal wells in quadruplicate; each containing all possible
combinations of 9 drugs up to order 4, including single
drugs. Although this particular study did not provide any
outstanding pharmacological findings, it clearly demon-
strates the great potential of COMBImage?2 as a generic in
vitro DDD tool for automated design and analysis of drug
combination experiments of any order and type.

Limitations of COMBImage and other methods

Despite the novelty of COMBImage compared to other
tools [10—12], mainly related to the joint employment
of cell viability and label-free temporal quantitative
microscopy, it only supports the analysis of drug pairs.
This is a substantial limitation given the increased medical
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need for multidrug (i.e., three or more drugs) therapies,
in order to achieve better efficacy, decreased toxicity
and reduced risk for drug resistance [1, 2]. Moreover,
COMBImage offers automated quantification of tem-
poral changes in cell growth/confluence and morphol-
ogy between treated and untreated cells. Although this
enables temporal detection of either interesting drug
induced effects or anomalies, it does not allow for
dynamic monitoring of specific (sub-)cellular processes,
for example induction of apoptosis. Such a methodologi-
cal advancement would be very valuable for in vitro drug
combination analysis and in silico prediction of promising
drug combinations [13, 14].

As exemplified in the remaining part of this subsection,
attempts along this direction have been reported, but we
are not aware of any that can offer accurate cell/object
counting in adherent cell cultures studied in a large-
scale 384-well format. The previously introduced detec-
tors, LFAD [15] and LEVD [16], have been successfully
used to detect drugs that induce apoptosis and intracel-
lular vesicle formation respectively, in the context of in
vitro cancer pharmacology studies. They employ a very
similar experimental set up to COMBImage, as they are
also able to process phase-contrast images from adherent
cell cultures in a 384-well format. However, they cannot
perform object/cell counting and use the resulting infor-
mation to evaluate and visualize drug combination effects.
Recently, the real-time moving object detector R-MOD
has also been reported to offer label-free cell counting
[17]. However, also this methodology has no obvious rela-
tion to drug combination analysis and relies on imaging
flow cytometry, where suspension rather than adherent
cell cultures are used. Moreover, the images analyzed are
non-complex, as they contain a relatively small number of
freely floating cells against a homogeneous background.

Higher-order drug combinations

The use of higher-order drug combination regimens for
complex diseases is following an increasingly upward
trend [1, 2, 8]. For instance, cocktails of several drugs used
in the context of metronomic chemotherapy have recently
shown promising clinical results [6]. Moreover, polyther-
apies in the form of higher-order combinations, such as
the anti-cancer protocols CUSP9 [3, 4, 18] for recur-
rent glioblastoma (GBM) and MEMMAT [5] for recurrent
medulloblastoma, have already entered the clinic. Last
but not least, there are continuous and joint efforts, such
as the ReDO project [7], which are seeking for novel
and affordable multidrug treatments by repurposing well-
known and well-characterized drugs.

At the same time, there are still very few exten-
sive reports from systematic large-scale in vitro stud-
ies of higher-order drug combinations [1, 2, 8]. The
vast majority of multidrug regimens are the result of
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Table 1 Modular comparison of COMBImage2 and COMBImage
Readout Module Description Layout Analysis COMBImage2 COMBImage
COMBO-Pick automated experimental design P, PE, E +
COMBO-MF matched filter based object counting P, PE E intra,inter +
p intra + +
COMBO-C changes in cell confluence p inter + -
TLVM PE, E intra,inter + -
p intra + +
COMBO-M changes in cell morphology p inter + -
PE, E intra,inter + -
p intra + +
CVA COMBO-V cell viability & synergy analyses p inter +
PE, E intra,inter +
TLVM, CVA COMBO-Mine temporal data mining PE, E intra, inter + -

Abbreviations are defined as follows. TLVM: time-lapse video microscopy, CVA: cell viability assay, P: pairwise (only pairs of drugs are evaluated in a checkerboard format), PE:
partially exhaustive (particular subsets among a panel of drugs are evaluated), E: exhaustive (all possible subsets among a panel of drugs are evaluated), intra: intra-plate
analysis (experiment performed in a single experimental plate), inter: inter-plate analysis (experiment replicated in several plates)

mainly in vivo studies, without first being subject to
any kind of preceding detailed in vitro evaluation. In
general, exhaustive in vitro experiments that assess
all plausible subsets of the employed single drugs are
required in order to disentangle higher- from lower-
order effects [1, 8]. Apart from disease related insights,
such an exhaustive approach would indicate which drugs
seem to be most clinically relevant; patients should
not be treated with multiple drugs when the desirable
effects emerge merely from smaller subsets of them in
combination [2].

The few aforementioned efforts for higher-order drug
combination analysis have resulted in end point quan-
titative frameworks that can also disentangle higher-
from lower-order drug effects [1, 2, 8]. However, they
employ mathematical models, such as Bliss [19] and
Loewe [20], which rely on specific assumptions and have
their roots in toxicology. Although well-established, this
type of toxicology-rooted synergy analysis may be com-
pletely misleading in a pharmacological context, where
the goal is to identify drug combinations that exhibit
large therapeutic windows [21]. Moreover, synergy analy-
ses in general is non-trivial to formulate and employ with
time series data, including the TLVM measurements used
here. In such cases, multivariate data analysis methods
seem more straightforward to employ in order to identify
characteristic response behaviors as well as their asso-
ciated drugs and/or drug combinations. As a first step
towards this unexplored direction, we propose here such
an approach that performs temporal data mining and is
able to disentangle higher- from lower- and single-drug
effects, without requiring any specific assumption about
the drug interactions.

Exhaustive drug combination experiments

An exhaustive drug combination experiment is defined
here to cover all possible different subsets of combinations
among a panel of pre-selected drugs at one fixed concen-
tration each. Given N, pre-defined drugs, the number of
experimental wells required for performing an exhaustive
experiment up to order ¢ can be expressed as:

Nu(Ngjo) =y (Al[”’> (1)

i=1

Thus, if N; = 8 drugs are selected to modulate 8
different targets related to the disease of interest, a sin-
gle exhaustive experiment exploring all plausible ways of
perturbing these targets requires N,,(8,8) = 255 wells.
Such an exhaustive experiment offers maximum resolu-
tion of the combinatorial space and requires advanced
data analytics. Although such brute force experiments
may become expensive, only one 384-well plate is needed
for up to N; = 8 drugs (Fig. 1). Notably, the use of multiple
concentrations per drug requires much larger experimen-
tal capacity, but such a set up does not align with an
exhaustive drug combination experiment as defined above
and thus, it is not satisfied by eq. (1).

There is no reported methodology, so far, for automated
design and label-free quantitative microscopy based pro-
cessing of exhaustive drug combination experiments. Set-
ting up such a methodological tool, which offers repro-
ducible and traceable experiments by performing quality
control (QC) at several levels and requiring very few
human interventions, is highly needed. It could facilitate
and accelerate large-scale higher-order drug combination



Chantzi et al. BMC Bioinformatics (2019) 20:304

Exhaustive Drug Combination Experiments

32767

16383 [

18191

number of experimental wells

4095 -

1923 1, , ‘ ‘ Ja

8 9 10 " 12 13 14 15
number of individual drugs

Fig. 1 Experimental Capacity for Exhaustive Layouts. The
experimental capacity required for performing exhaustive drug
combination experiments grows rapidly with respect to the number
of the individual drugs used. However, the graph shows that it is
feasible to perform exhaustive experiments in one 384-well plate for
up to 8 drugs

experiments as well as generate useful data for iterative
[22, 23] and in silico methods [13, 14].

COMBImage2

Motivated by this background, we developed COMBIm-
age2 (Table 1); a parallel computational framework for
higher-order drug combination analysis that includes
automated plate design, matched filter based object
counting and temporal data mining. It consists of 6 differ-
ent modules in total, which are briefly presented below:

1 COMBO-Pick automatically generates 384-well
randomized layouts for any type of drug combination
experiments by requiring only a simple user-defined
text specification file.

2 COMBO-V offers cell viability and synergy (end
point) analyses and visualization. The current version
of COMBO-V is able to analyze higher-order and
exhaustive drug combination experiments by
extending our previously reported scaled Bliss and
therapeutic synergy analyses [9].

3 COMBO-C offers automated quantification and
visualization of temporal changes in cell
growth/confluence. Apart from an improved
foreground segmentation approach and the ability to
analyze higher-order and exhaustive drug
combination experiments, it has also been equipped
with inter-plate QC procedures used when several
replicate plates are employed.

4 COMBO-M offers automated quantification and
visualization of temporal changes in cell morphology.
The current updated version of COMBO-M provides
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alternative visualization as temporal curves and it is
capable of analyzing higher-order and exhaustive
drug combination experiments as well.

5 COMBO-MF offers automated detection, counting
and visualization of objects present in the TLVM
movies that look like apoptotic cells, using a linear
2-dimensional matched filter approach.

6 COMBO-Mine offers data fusion and temporal data
mining for all different extracted response patterns.
In this way, it is able to identify prototypical response
behaviors over time in order to disentangle higher-
from lower- and single-drug effects in a data driven
way.

The tailor made image processing algorithms of COM-
Blmage2 are implemented using the MapReduce
programming model [24] with the goal to offer fast
and scalable analyses independently of instruments,
infrastructures and applications [9]. COMBImage2 is
distributed as a package of 6 standalone applications for
Windows together with all raw data of the corresponding
case study [25-27].

Case study

To demonstrate the potential of COMBImage2, we
designed a semi-exhaustive drug combination experi-
ment, using the CUSPv4 protocol [18], currently used in
the clinic for recurrent GBM. More precisely, we studied
for the first time, all 246 combinations of order 4 or lower
in addition to the 9 single drugs. The effects were evalu-
ated on a drug sensitive clonal culture of glioma-initiating
cells (GICs) established from GBM patient tumor sam-
ples [28]. Our results suggested that there were only two
main categories of behavioral patterns primarily induced
by single drugs. In particular, Disulfiram (Dis) seemed to
be the main player of one category, since it was part of all
other drug combinations regardless of order. The corre-
sponding phenotypic effects included increased changes
in cell morphology and increased numbers of apoptotic-
like cells early on, as well as almost zero cell survival.
Similarly, we identified higher-order drug combinations,
such as the 4-order combination consisting of Minocy-
cline (Min), Dis, Sertraline (Ser) and Quetiapine (Que),
which seemed to slightly boost the effect of Dis alone. In
the second main category, all the corresponding multi-
and single-drug responses had very similar behavior to
untreated cells.

Organization of the paper

The rest of this paper is organized as follows. Results:
Methodological and pharmacological results related to
the case study are presented; Discussion: The gen-
eral methodological and pharmacological findings are
discussed and summarized together with corresponding
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limitations; Conclusions: The importance and novelty
of this work are clearly stated; Materials and Methods:
Details related to the performed wet lab experiments,
improved QC procedures, higher-order synergy analysis,
tailor made image processing algorithms and temporal
data mining are provided.

Results

Assay quality control

Intra-plate QC

COMBImage?2 performs intra-plate QC in order to robus-
tify the analysis within an experimental plate. The intra-
plate QC procedure is fully automated and incorporated
in all different computational modules. The correspond-
ing algorithm is identical to the one reported in our
previous work [9]. Briefly, it checks if at early (ideally
untreated) time points, all experimental wells have simi-
lar feature vectors (i.e., hierarchical histograms). After an
automated comparison, the wells that have deviating fea-
ture vectors are excluded from all subsequent analyses
as they contain artifacts/noise that may falsify the results
and corresponding interpretations. Notably, the cut-off
threshold for the similarity is determined automatically,
as described in our earlier study [9]. For this task, we ide-
ally suggest the recording of one untreated time frame.
However, if this is not possible, we at least require a very
early treated time point, so that it is reasonable to assume
that there are not yet any visible treatment effects. For
instance, in this case study (Additional file 1: Figure S1),
the first treated time frame (44 after drug addition) was
used for the intra-plate QC, due to limited experimental
capacity that did not allow earlier image recording.

Inter-plate QC

Inter-plate image QC is a novel feature of COMBIm-
age2 and more specifically of COMBO-C, which calcu-
lates and visualizes changes in cell growth over time.
This novel feature is developed and incorporated in order
to robustify the analysis among replicate plates, before
any further joint analysis. Only experimental wells that
have successfully passed the preceding intra-plate QC
(Additional file 1: Figure S1) are qualified for the subse-
quent inter-plate QC. The main idea behind the latter one
is that replicate measurements with high variability should
not be merged (Additional file 1: Figure S2). Notably, the
cut-off threshold regarding the inter-plate variability is
automatically determined by means of resampling (see
“Methods” section, Additional file 1: Figure S3).

COMBO-Pick for automated design of experiments

COMBO-Pick is an experimental module (Fig. 2) that
offers automated 384-well plate design (Additional file 1:
Figure S4) and can be used with programmable acoustic
liquid handling technologies. Currently, it is compatible
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Fig. 2 COMBO-Pick flowchart. (1) A user-defined text specification file
is imported; (2) Spatial feasibility control for 384-well format allowing
at least 40 untreated wells is performed; (3) Alternative spatially
feasible designs are suggested to the user; (4) Randomization of well
destinations; (5) A plate destination specification for either exhaustive
or pairwise drug combination experiments, compatible with Bridge, is
produced per plate. 4-5 are repeated independently for all replicate
plates, as specified by the userin (1)

with an in-house application, Bridge [29], which generates
the corresponding transfer schemes for acoustic liquid
dispension in an Echo 550 (Labcyte Inc., Sunnyvale, CA).
COMBO-Pick makes efficient use of the plate by accom-
modating as many drug combination experiments as pos-
sible, while also including a large number of untreated
control wells needed for reliable statistical analyses. Fur-
thermore, the design is randomized, meaning that each
experiment (i.e, drug/drug combination/untreated cells)
has a randomly selected position in the plate, which is dif-
ferent across replicate plates (Fig. 3). The randomization
procedure aims at eliminating potential spatial effects that
may propagate during replication. In other words, if the
experimental noise is spatially dependent, then the dif-
ferent replicates of the same experiment will be subject
to (nearly) independent noise terms that can be filtered
(often via averaging) in order to reduce experimental
variability.

COMBO-Pick requires a single specification text file
from the user, where the experiment is described in a par-
ticular way (Additional file 1: Figure S5). COMBO-Pick
checks the spatial feasibility of this specification under the
condition that at least 40 untreated wells must be accom-
modated per plate, in addition to the specified drugs/drug
combinations. When the aforementioned criterion is not
fulfilled, COMBO-Pick suggests alternative solutions by
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Fig. 3 Randomized Plate Designs by COMBO-Pick. The pilot study was replicated 4 times using a differently randomized layout each time;
R1,Ra, R3, Ra. Each layout consists of 5 different groups of wells based on the number of combined drugs: gray: 1; orange: 2; yellow: 3; cyan: 4; white:

expanding the design in more than one plates. A spa-
tially feasible user specification (Additional file 1:Figure
S5) produces randomized plate layouts (Fig. 3), which
are finally exported as destination plate specifications
for Bridge [29] providing information about compound
names, destination wells and final concentrations.

COMBO-V for higher-order combinations

COMBO-V (Additional file 1: Figure S15) is a module for
cell viability and synergy (end point) analyses. As reported
in our recent work [9], it offers both target and reference
cell focused synergy analyses, according to the Bliss model
and the recently reintroduced therapeutic window con-
cept [21]. Moreover, these two synergy scores were further
refined by us [9], in order to account for ambiguities that
arise when the same value is obtained for very different
drug combination effects. Finally, a resampling based sta-
tistical analysis is employed for the synergy scores, so as to
determine how likely these values may appear by random
chance [30]. Here, we generalize our previously reported
methodology for evaluating higher-order drug combina-
tions (see “Methods” section) and performing inter-plate
analyses. Since the current case study did not include
a reference toxicity model, only results from the Bliss
synergy analyses are provided (Additional file 1: Figure
S6-S7), although no outstanding synergies were found
(Additional file 1: Table ST1). In terms of the particular
case study, the absence of synergy is apparent already by
looking at the corresponding cell viability analysis (Addi-
tional file 1: Figure S16). There, Dis alone resulted in very
low survival index (= 10%), while all drug combinations
that were associated with values at the same low level con-
tained Dis, suggesting absence of synergy. However, here
we employed Bliss synergy analysis, in order to show how

COMBO-V can be used for higher-order combination
experiments.

COMBO-C for higher-order drug combinations

COMBO-C (Additional file 1: Figure S8) is a module for
cell confluence/growth analyses. As reported in our recent
work [9], it offers quantification and visualization of tem-
poral changes in cell growth (Additional file 1: Figure S9).
The MapReduce implementation [24] provides fast analy-
ses and potential for scalability if the data volume becomes
too big for the memory of a single computer. Here, we gen-
eralize this methodology for all kinds of higher-order drug
combinations including exhaustive experiments. Further-
more, another important improvement of COMBO-C is
the ability to perform inter-plate QC, as described in a
previous section above, by employing (non-parametric)
resampling statistics (see “Methods” section). Notably,
this inter-plate QC procedure of COMBO-C is employed
for the corresponding inter-plate analyses of all modules.

COMBO-M for higher-order drug combinations

COMBO-M (Additional file 1: Figure S10) is a module for
morphology based analyses of drug effects. As reported
in our recent work [9], it offers quantification of temporal
changes in cell morphology which is currently represented
in the form of hierarchical histograms. The feature extrac-
tion is parallelized using the MapReduce programming
model [24], which also enables a grid search based param-
eter optimization of the two parameters (i.e., scale reduc-
tion of resolution, number of bins) for the histograms.
Here, we generalize this methodology for higher-order
drug combinations including (semi-)exhaustive experi-
ments and provide a new more convenient way of visualiz-
ing the results as temporal curves. Moreover, COMBO-M




Chantzi et al. BMC Bioinformatics (2019) 20:304

is now able to perform inter-plate analyses when several
replicate plates are employed for the same experiment
(Additional file 1: Figure S11).

COMBO-MF

COMBO-MF (Fig. 4) offers a MapReduce implementation
of an optimized matched filter based image processing
algorithm (see “Methods” section). Although it is cur-
rently adjusted to detect and count apoptotic-like cells
present in phase-contrast images from large cell popu-
lations (Fig. 5) in 384-well format, its functionality can
easily be extended for other objects of interest, given a
corresponding prototype specification. It is able to evalu-
ate drug combination experiments of any order, including
pairwise and exhaustive plate layouts, as well as per-
form inter-plate analyses when several replicate plates are
employed (Additional file 1: Figure S14).

Apoptotic-like object counting

COMBO-MF builds on our earlier work [15], where the
detections were made at the level of individual pixels,
by now offering quantification at the level of distinct
objects, meaning counting of apoptotic-like cells. This is
performed by means of two new tailor made algorithms
(Algorithms 1 and 2). In contrast to our previous work
[15] where the prototypic object was manually designed,
now it is selected by the user as a local image patch
from the corresponding image library. In order to facili-
tate this selection, we suggest that the user should look
at wells for which the cell viability is low and the change
in cell morphology is high, after running COMBO-V and
COMBO-M, respectively. In this way, there should be
multiple images with such apoptotic-like formations to
choose from. The size should be close to the average size
in the population of apopototic-like cells observed. Here,
we show that the choice of the prototypical object among
several similar options has almost no impact on the results
of COMBO-MF (Additional file 1: Figure S12), by employ-
ing four different prototypes (Fig. 6). Given that all four
prototypical objects yield very similar results (Additional
file 1: Figure S12), the first one (Fig. 6a) was further used
for the main analysis.

The MapReduce programming model [24] is employed
for the matched filter signal processing along with the
aforementioned object counting procedure. In particular,
the Map function employs the two different object count-
ing methods per time frame (Algorithms 1 and 2), while
the Reduce function produces the final average results
per experimental well. By default, the current MapReduce
implementation is executed on a local parallel pool by
deploying all available cores of the machine used. Here, 8
cores were used (see “Methods” section). For the current
study, the average running time per 384-well plate (5236
images) was approximately 5 min.
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Algorithm 1 Taboo-based counting of apoptotic-like
objects

Inputs

I filtered image

7*: optimal detection threshold

D: diameter of the circular prototypic object

Output

N: number of circular detected objects in [

1: function TABOOCOUNTING(/, T*, D)

2: N <0

3 for each pixel (x,y) in I do
4 if I(x,y) > t* then

5: Id(xyy) <~ I(x’y)

6: else

7: Iy(x,y) <0

8: end if

9: end for

10: M <« max{l(x,y)}
11: xp < x coordinate of M
12: ym <y coordinate of M

13: while M > 0 do

14: N« N+1

15: for each pixel (x,y) in I; do
16: if (x — xa0)? + (v — ya)* <= (3)? then
17: Iy(x,y) <0

18: end if

19: end for

20: M < max{l;(x,y)}

21: xp < x coordinate of M
22: ym < y coordinate of M

23: end while

24 return N

25: end function

Matched filter threshold tuning

The optimal detection threshold for the matched filter
is adaptively determined by supervised learning using
an interval optimization search (see “Methods” section,
Additional file 1: “Threshold Tuning Explained” section,
Figure S13 and Algorithm SA1-SA2). To reduce the
risk of overfitting, 4-fold cross validation was employed
and repeated 2 times. The optimal detection thresh-
old value is determined as the median value of the
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Algorithm 2 Position-based counting of apoptotic-like
objects

Inputs

I filtered image

7*: optimal detection threshold

D: diameter of the prototypical object

Output

N: number of detected objects in I that look like the
prototypic object

1: function POSITIONCOUNTING(/, T*, D)

2: N <0
3: i< 0
4 for each pixel (x,y) in I scanned column wise do
5: if I(x,y) > t* then
6: i<—i+1
7 Xa() < x, Y () <y
8: end if
9: end for
10: Ny < i
11: c<«0
12 for each adjacent pair i (i,i + 1) in X; do
13: AX(Q) < |Xz0) — XG+ 1)
14: if AX(i) > 2 then
15: c<c+1
16: Jstare(€) <~ i+1
17: end if
18: end for
19: Jstart < {1, Jstart: Ny}
20: for each element b in Jiur — {N;} do
21: Y — {Ya() | Jstarr(B) <j < Jstare(b+ 1)}
22: c<«1
23: for each adjacent pair (i,i + 1) in V' 5 do
24 AY(p) < [Y2() — Y5Gi+ D)
25: if AY(p) > % then
26 c<c+1
27: end if
28: end for
29: N <« N+c¢
30: end for
31: return N

32: end function

thresholds obtained from the cross validation partitions
(Additional file 1: Figure S13). In terms of the current
case study, 8 training images were used; 2 from each
replicate plate [25]. This threshold tuning procedure is
a new development, which serves the need to provide
individual object/cell counts. In order to increase the
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chances of having a successful cross validation based
threshold tuning procedure, we recommend the use of
at least 8 training images, where each one of them con-
tains simultaneously non-apoptotic- and apoptotic-like
objects.

COMBO-Mine

COMBO-Mine (Fig. 7) is a tailor made computational
methodology for temporal drug combination analysis,
which performs data fusion and mining for the extracted
response patterns; changes in cell confluence/growth
(Additional file 1: Figure S9), changes in cell morphology
(Additional file 1: Figure S11), apoptotic-like cell counts
(Additional file 1: Figure S14) and cell viability (Additional
file 1: Figure S16).

Discovery and interpretation of prototypical response
patterns

COMBO-Mine (Fig. 7) currently employs top down hier-
archical clustering using K-means at each level (see
“Methods” section, Additional file 1: Figure S17-S18) to
discover prototypical response behaviors. The main idea
is to organize the large combinatorial response space
into groups with distinct prototypical behaviors that the
user is able to characterize as either interesting or unin-
teresting without any particular model assumption. For
each (sub-)group identified, an exhaustive subset search
is performed to narrow down the unique single drugs
and/or drug combinations that induce the corresponding
prototypical temporal (and viability) profiles. Notably, all
drugs/drug combinations that belong to such a unique
subset are ranked equally much as they are part of the
same group.

This exhaustive subset search helps to disentangle
higher- from lower- and single-drug effects. To exemplify,
let us assume that there are two drugs X and Y at concen-
trations ¢y and cy, respectively. If the response patterns
f(ex) and f(cx, cy) for cx and the combination concen-
tration (cx, cy) form together a particular group/cluster A
with an average (prototypical) response pattern fy, then
the exhaustive search identifies cx as representative of f4.
Similarly, in the more concrete example related to the cur-
rent case study (Fig. 8), only the drug names are illustrated,
since each drug was used at one fixed concentration (see
“Methods” section).

Case study

COMBImage2 was employed in the context of a semi-
exhaustive in vitro study of the higher-order CUSP9v4
cocktail [18]. In this study, we evaluated for the first time
all possible combinations of up to order 4 on an in vitro
clonal culture of GICs. One fixed concentration was used
for each one of the 9 individual drugs (see “Methods”
section), resulting in 246 different combinations; 36 of
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Fig. 4 COMBO-MF Flowchart. THRESHOLD TUNING: (1)-(3) Matched filtering on training images; (4)-(5) Cross validation for optimal detection
threshold. INTRA-PLATE ANALYSIS: (1) Image datastore selected by the user; (2) COMBO-Pick specification imported by the user; (3)
MapReduce-based intra-plate quality control; (4)-(5) MapReduce-based quantification of apoptotic-like cells; (6) Table (CSV) with results; (7)
Temporal graphics (EPS, PDF). INTER-PLATE ANALYSIS: (1) Intra-plate analysis employed separately for all replicates; (2) Results from (1) gathered
and parsed; (3) Outlier removal based on the Inter-Plate QC as performed by COMBO-C; (4) Table (CSV) with merged inter-plate replicate values; (5)
Temporal graphics (EPS, PDF)

order 2, 84 of order 3 and 126 of order 4. The experiment
was replicated 4 times so as to perform more mean-
ingful and reliable statistical analyses. COMBO-Pick was
employed in order to design and produce the plate lay-
outs for this experiment (Fig. 3), which were used for
the acoustic liquid drug transfer (see “Methods” section).
Each and every of the four plates were first analyzed
separately (intra-plate analysis) and then jointly (inter-
plate analysis) by the computational modules COMBO-V
(Additional file 1: Figure S15), COMBO-C (Additional
file 1: Figure S8), COMBO-M (Additional file 1: Figure
$10) and COMBO-MF (Fig. 4). At the end, COMBO-
Mine (Fig. 7) was employed to combine all these results
and perform temporal data mining in order to identify
prototypical response behaviors and corresponding drugs
and/or drug combinations.

COMBO-Mine revealed two main response pat-
terns/groups (Fig. 9). In particular, Dis was part of all drug
combinations in one of the groups, regardless of order.
This suggested that Dis alone was responsible for the cor-
responding prototypical response behaviors; total inhibi-
tion of cell growth, increased changes in cell morphology
and increased number of apoptotic-like cell counts already
at 12/, as well almost zero cell survival at 68/ after drug
addition (Figs. 9 and 10). Inside the “Dis” group, two sub-
groups were identified. One of them included drug combi-
nations with slightly larger response behaviors, especially
in terms of apoptotic-like cell counts (Fig. 9). The smallest
unique (non-redundant) subset for this subgroup included
6 drug combinations; [Aprepitant (Apr), Dis], [Auranofin
(Aur), Dis], [Captopril (Cap), Dis], [Celecoxib (Cel), Dis],
[Dis, Itraconazole (Itr)] and (Min, Dis, Ser, Que). The
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counting algorithms, respectively

Fig. 5 Apoptotic-like Object Counting. (a) Raw images where the prototypic object of size 33 x 32 pixels is overlaid on the left upper corner;
(b) Prototypic-like detected objects. The green circles and orange crosses correspond to the detections made by the taboo- and position-based

second main group demonstrated uninteresting response
patterns as they resembled those of untreated cells.

Discussion

COMBImage?2 is a parallel] and modular computational
framework for drug combination analysis of any order
that includes automated plate design, matched filter based
object counting and temporal data mining (Table 1). The
drug combination effects are analyzed by means of label-
free quantitative video microscopy jointly together with
conventional end point measurements. COMBImage2 is
able to extract multiple temporal cellular phenotypes,
including changes in cell growth and morphology as well

as apoptotic-like cell counts. In addition to higher-order
Bliss synergy (end point) analyses, it provides a tem-
poral data mining approach, which is able to organize
the drug combination effects into groups with similar
response behaviors. In this way, it offers a straightfor-
ward and data driven method for identifying characteris-
tic response behaviors over time as well as their associated
drugs and/or drug combination. This helps the user to
disentangle higher- from lower- and single-drug effects
by visually identifying interesting drug induced behavioral
patterns without requiring any specific assumption about
the drug interactions. Different aspects and limitations of
COMBImage?2 are discussed below.
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Fig. 6 Prototypical Objects. COMBO-MF was evaluated using four similar prototypical objects of sizes: (@) 33 x 32 pixels; (b) 38 x 40 pixels; (c)
38 x 36 pixels and (d) 37 x 43 pixels

Pharmacological aspects using a drug sensitive GIC clone [28]. The drug concen-
The potential of COMBImage2 was demonstrated in the  trations (Table 2) were determined by means of a separate
context of a semi-exhaustive in vitro experiment using the ~ dose response experiment. The goal from this pre-analysis
CUSP9v4 cocktail [18]. More precisely, the effects of all ~ was to fix the drug concentrations at clinically relevant
possible combinations of order 4 or lower were studied levels [31-34], while achieving very little individual drug

S @ S0 ® Similarity @
raphics ubset i
| Search | Grouping

Fig. 7 COMBO-Mine Flowchart. (1) Results from all four analysis modules, COMBO-C, COMBO-M, COMBO-MF and COMBO-V, are required; (2) The
extracted response patterns from (1) are organized into groups with similar behavior. For this grouping, multilevel K-means clustering is currently
employed; (3) The smallest non-redundant subset of drugs and/or drug combinations for each group is identified by an exhaustive algorithmic
search as shown in Fig. 8. (4) Each group is visualized by the corresponding average temporal profiles as determined by (2) and represented by the
smallest non-redundant subset obtained from (3)
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r(Apr,Dis) , (Aur,Dis), (Cap,Dis), (Apr;Min;Dis), (Apr;Dis;Que),
(Min,Aur,Dis), (Aur,Cap,Dis), (Aur,Dis,Ser), (Cap,Cel,Dis),

Iter 1 (Cap,Dis,Ser), (Apr;Min;Aur;Dis, (Apr;Dis;litr;Ser),
(Apr;Gap;Cel;Dis), (Min,Aur,Dis,ltr), (Min,Dis,Ser,Que),
|{(Aur;,Cap;Dis;Que), (Aur;Dis;ltr:Ser), (Cap,Dis, Itr,Ser) J

Iter 2 r(Aur,Dis) , (Cap,Dis), {Min;Aur;Dis), (Aur;Cap;Dis), )
(Aur;Dis;Ser), (Cap,Cel,Dis), (Cap,Dis,Ser), (Min;Aur;Dis;lir),
L(Min,Dis,Ser,Que), (Cap,Dis, ltr,Ser) J
~

Iter 3 (Cap,Dis) , (Cap,Cel;Dis), (Cap;Dis;Ser), (Min,Dis,Ser,Que),
L(Cap,Dls,Itr,Ser) )

Stop

[ (Min,Dis,Ser,Que) )

Result [ (Apr,Dis) , (Aur,Dis), (Cap,Dis), (Min,Dis,Ser,Que) ]

Fig. 8 Exhaustive Subset Search. Each group of the extracted response patterns is only represented by the smallest set of drugs and/or drug
combinations that uniquely explains all of them in the same group. To illustrate the employed algorithmic procedure of this search, an example of
our case study is used. In each iteration (iter 1 — 3), the drug combination of the lowest order is traced in all remaining ones of higher order. All
higher-order combinations that include the to-be-traced lower-order combination, are subsequently removed. Thus, when the algorithm
terminates, the corresponding non-redundant set of drug and drug combination names is formed

effects in vitro (i.e., no lower than 90% cell viability com-
pared to untreated controls). The fixed concentration of
0.67uM (Table 2) for Dis resulted in approximately 95%
cell viability in the initial dose response experiment, while
the same concentration resulted in approximately 10% cell
viability in the main exhaustive experiment (Additional
File 1: Figure S16). This unexpectedly strong cytotoxic
effect of Dis made the pharmacological results less inter-
esting than expected and desired. Despite these complica-
tions, COMBImage2 was successfully employed to design
and analyze a semi-exhaustive drug combination experi-
ment, showing great potential for similar applications in
general. As a final note, we did not use the standard-of-
care drug, Temozolomide (TMZ), as in the corresponding
clinical set up, since our goal was to disentangle any
combination effects of the 9 repurposed drugs.

Computational aspects

Automated design of drug combination experiments
COMBO-Pick (Fig. 2) is a new module, which auto-
matically generates experimental layouts for 384-well
plates based on a simple user-defined text specifica-
tion file. It is able to produce plate layouts for any
kind of drug combination experiments that can be used

by programmable acoustic liquid handling technologies.
Although COMBO-Pick is currently made compatible
with an in-house program, Bridge [29], it can be eas-
ily adjusted to other similar softwares. The automated
plate design offers multiple advantages, mainly includ-
ing efficiency, flexibility, scalability and traceability. By
offering optimized and randomized plate layouts, the
experimental capacity is efficiently used, while potential
spatial effects are reduced. Notably, the pairwise layouts
reported in our earlier study [9], which were manually
designed, have been optimized by COMBO-Pick, mean-
ing that there is now larger spatial capacity per 384-well
experimental plate than before.

Inter-plate image QC

Although replicating an experiment across several dif-
ferent plates might be expensive, it is very useful
for increasing the reliability of the subsequent data
analytics and statistics. More precisely, such indepen-
dent inter-plate measurements allow us to take into
account the observed experimental variability, in order to
avoid potential misinterpretations. For this task, COM-
Blmage2 employs (non-parametric) resampling statis-
tics, which are easy to implement given the current
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Fig. 9 COMBO-Mine Results. The employment of COMBO-Mine in the context of the current CUSP9 case study revealed 2 main groups with 2
subgroups each. Each (sub)group is visualized by the corresponding four average response patterns (three image based temporal profiles and one
endpoint cell viability value) and characterized by the smallest non-redundant set of drugs and/or drug combinations in it

computer power, while at the same time are model

counts for video microscopy based drug combination
independent.

analysis. The cell counting goes far beyond the previously
mentioned LFAD [15], where the detections were made
only at the level of individual pixels. In order to provide
consistent automated and observed cell counts, the detec-
tion threshold for the matched filter is tuned by cross

Apoptotic-like object counting
COMBO-MF (Fig. 4) offers automated label-free
quantification and visualization of apoptotic-like cell

(2) Dis

(1) Untreated Cells (3) (Min, Dis, Ser, Que)

(1) (4) Apr (5) (Apr, Min)

Untreated Cells

Fig. 10 Selected Microscopy Images for the CUSP9v4 case study. Example images of the sensitive GIC clone at t = 68h after drug addition, based on
the similarity grouping of the extracted response patterns as provided by COMBO-Mine. The images show: (1) untreated cells (shown twice), and
cells treated with (2) Dis ; (3) (Min, Dis, Der, Que) ; (4) Apr; (5) (Apr, Min)
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Table 2 Drugs and concentrations. Fixed concentrations for the
individual drugs of the CUSPv4 protocol [18] used for the case
study

Drug Concentration (uM) Abbreviation
Aprepitant 26 Apr
Minocycline 044 Min
Auranofin 0.15 Aur
Captopril 0.12 Cap
Celecoxib 1.6 Cel
Disulfiram 0.67 Dis
ltraconazole 03 Itr

Sertraline 0.5 Ser
Quetiapine 3 Que

validation based supervised learning, using only 8 training
images that have been manually annotated [25]. We show
that the exact choice of the prototype is not crucial for
the performance (Fig. 6, Additional File 1: Figure S12). It
should be noted that this approach is not expected to pro-
vide near perfect counting, but rather a sufficiently good
way of localizing drug treated wells with high number of
apoptotic-like cells along with associated temporal infor-
mation. The MapReduce implementation of COMBO-MF
offers scalability when the data volume is too big to fit into
the memory of a single computer. It would be very inter-
esting to compare the matched filter based cell counting
of COMBO-MF with convolutional neural network
approaches reported, for example the already mentioned
R-MOD [17]. However, in this case there is a requirement
for at least 200 manually annotated training images
along with 5 million parameters to be tuned, which do
not allow a direct quantitative comparison in terms of
this work.

Discovery and characterization of prototypical reponse
patterns

COMBO-Mine (Fig. 5) performs data fusion and mining
of all extracted response patterns; changes in cell growth
and morphology, apoptotic-like cell counts and cell viabil-
ity. In this way, it offers a data driven way of disentangling
higher- from lower-order and single-drug effects, when
their evaluation includes time series in addition to end
point measurements.

It currently employs top down hierarchical clustering
using K-means at each level (see “Methods” section) to
discover prototypical response behaviors. Although other
machine learning methods should also be evaluated in
the future to explore potential improvements, here we
introduce, for the first time, a tailor made computational
methodology for temporal drug combination analysis
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based on quantitative video microscopy. The main idea is
to organize the large combinatorial response space into
distinct groups that the user is able to characterize as
either interesting or uninteresting without any particular
model assumption about the drug interactions. In order
to demonstrate the potential of this temporal data mining
approach against conventional synergy (end point) analy-
ses, we compare below the corresponding results from our
CUSP9V4 case study.

As shown by our Bliss synergy analyses (Additional
file 1: Figure S6-S7), six drug combinations were identified
as weakly synergistic (Additional file 1: Table ST1), since
the corresponding scaled Bliss index values (see “Methods”
section) were very close to zero (Additional file 1: Figure
S6-S7 and Table ST1). COMBO-Mine was able to detect
the absence of synergy by partitioning the combinato-
rial space into two main groups. In particular, one of
them showed very similar response patterns to untreated
cells (Fig. 9). Not unexpectedly, this group included all
six drug combinations identified as weakly synergistic by
the aforementioned Bliss analysis (Additional file 1: Table
ST1). The second group exhibited single-drug effects,
including inhibition of cell growth, large morphological
changes, induction of apoptosis and very low cell viabil-
ity, all seemingly induced by Dis alone. Thus, being able to
discover and characterize prototypical response patterns
seems much more informative than ranking the drug com-
binations with a particular model based synergy score.
In conclusion, the employment of COMBO-Mine in the
context of similar drug combination studies may reveal
interesting and unique single-/lower-/higher-order drug
effects, which might be missed by conventional synergy
end point analyses.

Conclusions
In brief, we report:

e COMBImage2; a modular, parallel, robust,
automated and instrument independent
computational framework for drug combination
analysis of any order that includes automated plate
design, matched filter based object counting and
temporal data mining. In particular, compared to
COMBImage [9], COMBImage2 offers:

— randomized and optimized design for drug
combination experiments of any order and
type, including pairwise and exhaustive
layouts, in 384-well format

— refined higher-order Bliss synergy analyses
coupled with (non-parametric) resampling
statistics

— robust inter-plate analyses by employing
resampling based quality control
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— quantification and visualization of temporal
changes in cell growth and morphology as well
as apoptotic-like cell counts

— tailor made computational methodology for
temporal drug combination analysis that helps
the user to discover prototypical response
behaviors and disentangle higher- from lower-
and single-drug effects

e A small pilot in vitro study, which did not provide any
outstanding pharmacological findings, as only single-
drug effects were observed for the semi-exhaustive
experiment of the CUSP9v4 protocol [18]. However,
it clearly shows how COMBImage2 can be generally
used to design, robustly analyze and visualize
higher-order drug combination experiments, based
on label-free quantitative video microscopy and
single end point (cell viability) measurements.

COMBImage2 is the first methodological tool reported
so far, which is able to automatically design and process
higher-order exhaustive drug combination experiments
using joint label-free video microscopy and conven-
tional end point measurements. It uniquely combines
refined higher-order drug combination analyses, quan-
titative video microscopy, laboratory automation, qual-
ity control procedures, resampling statistics, MapReduce
parallelization and temporal data mining. All these non-
trivial components have been for the first time inte-
grated into a generic and modular framework that is
able to provide reliable, robust, information rich and
scalable drug combination analyses of any order. Apart
from the extraction of multiple temporal cellular phe-
notypes, which goes far beyond the currently available
methods, COMBImage2 also provides a novel data min-
ing approach for evaluating the response patterns and
disentangling higher- from lower- and single-drug effects
without requiring any specific assumption about the
drug interactions. Furthermore, such a versatile video
microscopy oriented framework is likely to enable sys-
tematic large-scale drug combination studies not only
related to cancer, which is the main practice today, but
also other diseases. For example, it could be employed
for antimicrobial susceptibility testing to identify promis-
ing higher-order combinations of antibiotics and disease
models where (de)differentiation of the cells is of inter-
est. Taken together, COMBImage2 demonstrates a novel
methodological framework with the potential to improve,
guide and accelerate early stages of drug combination
discovery and development.

Methods
In the following, details regarding the wet lab exper-
iments, image-based assay QC procedures and all
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computational methods developed and employed are pre-
sented in detail.

Wet lab

Cell cultures

The GBM clonal cell culture, L/3065 — ¢271 [28], was
cultured in neural stem cell media (1:1 mix of DMEM-
F12 GlutaMAX medium and Neurobasal medium (Life
Technologies/GIBCO-Invitrogen) containing 1% peni-
cillin G/streptomycin sulfate (Sigma-Aldrich, St. Louis,
MO), supplemented with B-27 without vitamin A (1:50;
Invitrogen), N2 supplement (1:100; Invitrogen), 10 ng/mL
EGF and 10 ng/mL FGF-2 (PeproTech, Rocky Hill, NJ).
Cells were seeded in poly-L-ornithine (P4957, Sigma-
Aldrich) and laminin (L2020, Sigma-Aldrich) coated 384-
well plates (164688, Thermo Fisher Scientific) at a density
of 1000 cells/well using a BioMek 4000 (Beckman Coul-
ter). All cells were seeded 24 h prior to treatment with
compounds.

Chemical compounds

The CUSP9v4 protocol [18] was employed in the con-
text of the current case study. For each one of the
9 single drugs, a fixed concentration was determined
by an initial in-house dose response experiment and
reported blood-plasma levels [31-34]. The goal was to
choose for each drug a concentration that induces very
little effect in vitro (i.e., approximately 90% cell via-
bility), while at the same time lying within in vivo
levels. Table 2 includes the fixed concentrations for
all 9 drugs.

Label-free video microscopy recording

Phase-contrast time-lapse microscopy images were
acquired using the IncuCyte FLR (Essen BioScience Inc.)
located inside the incubator. The microscope had a 20x
objective with the ability to capture high quality phase-
contrast microscopy images, 1040 x 1392 pixels each.
Seventeen frames/images per experimental well were
acquired, one every 4/4. The total size of image data per
384-well plate was 5.6GB (5236 images).

Experimental capacity

For the case study, 255 drug treated wells were required
per 384-well plate, according to eq. (1), in addition
to 53 untreated control wells (Additional file 1: Figure
S4). The experiment was performed in quadruplicate
(Fig. 3).

Assay for determination of survival index

Cell survival was determined by means of the Fluoro-
metric Cytotoxicity Assay (FMCA), [35, 36]. Cell survival
for a particular combination concentration vector ¢, of
n drugs, known otherwise as survival index and denoted
here as S, is calculated as:
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S(c,) = f(cn) _]Nib’lan

fControl _fblank

Here f(c;,) corresponds to the fluorescence signal from
the experimental well of c,,, while fblank and fwmml denote
the median fluorescence signal from the blank and growth
control wells, respectively. For drugs causing growth inhi-
bition and/or cell killing the range of S spans from 0 to 1
indicating minimal and maximal cell survival respectively,
compared to untreated cells.

2)

Bliss synergy analysis

The conventional Bliss synergy analysis as well as our
recently reported rescaling method [9] were generalized
the equations for higher-order drug combinations. For a
particular combination concentration vector c, of n drugs
the conventional Bliss index B is defined as:

n
B(en) = [ [ Sten) — S(ew) 3)
i=1

Here, []7_; S(¢;) and S(c,,) denote the expected (accord-
ing to Bliss) and observed survival index values, respec-
tively. B(c,) = 0 means independent action of the # drugs,
whereas B(c,) > 0 and B(c,) < 0 are defined as syn-
ergy and antagonism, respectively. The values of B range
from [—1,1] indicating maximal Bliss antagonism and
synergy, respectively. However, B can be ambiguous; the
same B value can be achieved by several different pairs of
]_[;721 S(c;) and S(cy,) values. To discriminate between such
cases, avoid misinterpretations and maintain many of the
original properties of B, we defined a novel scaled version

[9], denoted Bg, as:

Bs(cu) =B(cy) - [1 — min []"[ S(ei), S(cn) H (4)

i=1

B(cy) - [1 — S(cy)] if B(c,) > 0
=10 if B(c,) =0
B(cy) - [1 =11 S(e)]  if B(cy) <O

Here, min{ [T (i), S(cs)
value among the expected and observed survival index
values, respectively. Thus, in the case of synergy, Bg
suppresses cases associated with high observed survival
values, while in the case of antagonism it suppresses
cases associated with high predicted survival values [9].
Notably, similar rescaling methods have been indepen-
dently proposed in the field of genetics [37], but no
comparison with our approach has been done so far.

} denotes the minimum

Assay QC

Inter-plate variability estimate

Using the relative change as defined in (8), the change
in cell growth over time for a particular well w can be
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obtained by the corresponding growth curve (Fig. 11).
When w is replicated in more than one plates, the inter-
plate variability estimate denoted as Vy, is here calculated
as the area between the replicate growth curves:

Ve=Y (Ac;f“x(t) - Acfv”f”(t)) (5)
t

Here AC"%* and AC"" denote the maximum and min-
imum changes among replicates for time point ¢ Using a
simple example case with 4 inter-plate replicates (Fig. 11),
the area V,, shown in orange is calculated as:

Ve=Y" (AC}?(t) - AC&?(;:)), T = {438, ,68)
teT

(6)

Notably, Fig. 11 corresponds to the simplest case when
one replicate has the largest change in cell growth for all
time points. In most cases, the maximum value corre-
sponds to different replicates for different time points.

Null hypothesis significance testing for inter-plate
variability In order to estimate the statistical distribution
for the inter-plate variability, N = 10000 simulations were
performed using resampling. In particular, for each sim-
ulation j, one untreated well was randomly selected with
replacement from each of the 4 plates. Then, the associ-
ated variability V,,; was calculated using (5). This resulted
in a null distribution:

Vi = {Vu,l’ Tt Vu,N} (7)
Inter-Plate Variability
300 T T T

- - - replicate #1 /I.

------- replicate #2 ’
g -----replicate #3 .,"
£ 200 || — replicate #4 I.’
2 4
o y
=) p
£ / e
& 100| e 7
c . ‘
] i ,/
-‘:-’ e < I,

0
4

recording time (hrs)

Fig. 11 Inter-Plate Variability Estimate. The area spanned by the 4
growth curves is calculated and used as the inter-plate variability
estimate for a particular well w. For convenience, this example
illustrates the simplest case, where one replicate has the biggest
change in cell growth for all time points
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which was used to define a QC threshold for the inter-
plate variability (Additional file 1: Figure S3). More specif-
ically, the 957 percentile 795 was employed here as the
null threshold, meaning that for higher values, the null
hypothesis was rejected. Such a rejection indicates an
outlier, since the observed inter-plate variability is atypi-
cal and seldom occurring by random chance (Additional
File 1: Figure S2). As a consequence, the probability of
false alarm (i.e., the probability of falsely detecting a non-
outlier as an outlier) was 5%. Notably, this probability as
well as the number of simulations N for the null hypothe-
sis significance testing are user-defined parameters in the
general framework.

Novel image processing and analysis features

Adaptive foreground segmentation

COMBImage uses threshold-based segmentation in order
to divide the images into foreground and background pix-
els [9]. This binary classification offers noise reduction,
since all background pixels are ignored from subsequent
computational analyses. Here, we report an advancement
of our previous work by following the same notation.
Instead of a user-defined background intensity interval
7, COMBImage2 currently provides an adaptive multi-
thresholding method for determining the extreme points
of 7. In particular, the Otsu’s method [38] is applied
to the background intensity distribution twice, indepen-
dently for the two regions defined by splitting the pixels
according to the global background intensity estimate ftp,.

Quantification of changes in cell growth and morphology
As introduced in COMBImage [9], the change in cell
growth/confluence ¢, (¢;) for a particular experimental
well w and time point ¢; relative to the first time point ¢,
is defined as:

cw(ti) — cw(to)

ACy (L) = W (8)

Similarly, for a particular experimental well w and time
point t;, morphological features in the form of hierarchi-
cal pixel histograms (PHHC) are extracted as a column
vector h,(%). In order to quantify and express relative
changes in morphology between consecutive time points,
we introduce a new measure denoted AM,, defined as:

by @)

AM,(t;) = —hy (o)1

(b (20) 111

©)

AM,, gives the value zero at £p and subsequently positive
values at later time points if the changes in morphol-
ogy are increasing. This relative measure establishes a
reference value AM,,(¢y) = 0 and compensates for differ-
ences in cell seeding that often make the results between
different experimental wells incomparable.
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Matched filter for object counting

The linear matched filter A linear two-dimensional
matched filter is used to detect apoptotic-like cells. The
detector corresponds to a sliding image patch of size N x N
and therefore N filter coefficients. In the form of a N2 x 1
dimensional column vector r, the matched filter calculates
the optimal test statistic for discrimination between the
two hypotheses:

Hy :
H12

r=b+n

r=s+n (10)

Here, b denotes the background, s denotes the signal
prototype to be detected and n ~ N(0, C). Given a filter
coefficient vector w and a particular local image patch r,
the output of the filter is:

y=wTr (11)

where y is a scalar product corresponding to the value
of the central pixel in r. The filter coefficient vector w is
calculated as:

w=Cl(s—b)=s—b (12)

Since the goal here was to detect isolated apoptotic-
like cells in a non-structured background, the covariance
matrix was set equal to the identity matrix, C = I. Details
about the derivation of (12) are provided in Additional
file 1: “Matched Filter” section.

Object counting For a given threshold of the matched
filter output, object counting is performed using two in-
house developed algorithms referred to here as taboo- and
position-based counting, respectively (Fig. 5 and Algo-
rithms 1 and 2). Briefly summarized, the basic idea of the
taboo method is to start with the pixel centered at the
largest matched filter output, increase the counter by one,
and then put the pixel as well as its closest neighbors on
a taboo list, until all pixels in the image are covered. For
the position-based counting algorithm, the basic idea is to
first find pixel intervals along the horizontal dimension of
the image that correspond to detected objects. Then the
same procedure is employed along the vertical dimension
but only for each of the horizontal intervals already iden-
tified as containing at least one object. Finally the total
number of object containing intervals along the horizon-
tal direction are summed together, in order to determine
the total number of objects detected.

Threshold tuning The optimal detection threshold for
the matched filter in (12) is determined adaptively by
supervised learning using a customized interval optimiza-
tion search (Additional file 1: Algorithm SA1-SA2). This
allows for automated and generic tuning of the thresh-
old, regardless of application. For the supervised learning,
the actual number of prototypic-like objects present in
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the training images are specified by visual inspection,
while the predicted number is automatically retrieved by
the two aforementioned tailor made algorithms (Algo-
rithms 1 and 2). The average difference between the
observed and predicted number of objects is used as the
loss function, which is initially minimized among a set of
starting points and then within a data dependent search
interval.

To reduce the risk of overfitting during the tuning of
the matched filter threshold, cross validation is employed
(Additional file 1: Figure S13). For each partition j, an
optimal detection threshold ‘L'j* is found and the corre-

sponding test errorﬁest(t.*) is calculated using the images
belonging to the leave-out fold. At the end, a decision is

made accordingly; if median {ﬁest (rﬁ)} is greater than 5,
j

the framework terminates due to overfitting and suggests
re-training using more data. Otherwise, the final optimum
is obtained as median{tj*}, which is used for further pro-

cessing. Notably, the number of corresponding partitions
for the cross validation is a user-defined parameter in the
general framework.

Mining of extracted response patterns

In order to organize and thereby simplify the temporal
drug combination effects in terms of the all four differ-
ent phenotypic responses, multilevel K-means clustering
is used. This algorithm is employed as implemented in
MATLAB R2018b [39] with the default similarity mea-
sure, which is the sum of squared errors (SSE). More
precisely, this clustering method is known as K-means++
[40], which combines an improved initialization method
with “Lloyd’s generalized algorithm” [41]. All extracted n-
dimensional profiles per well are normalized with their
own standard deviation before being stacked in a common
N x 1 vector, where N = 4n and 4 reflects the four dif-
ferent analysis results; changes in cell growth (COMBO-
C), changes in morphology (COMBO-M), apoptotic-like
cell counts (COMBO-MF) and cell viability (COMBO-V).
Notably, each cell viability value is firstly transformed into
an x 1 vector with the same value in all elements, in order
to match the length of the corresponding image-based
time series data.

The number of clusters K to be used in each hierarchical
level is determined among a set of different values and in
particular, K; = {1,2,---,10}. The clustering procedure
is repeated R (user-defined) times for all different values
of K in the set K; (Additional file 1: Figures S17-S18). For
each repetition r of a particular K, the corresponding SSE
denoted as £ is calculated as:

K Ng
Eer =YY I - I% K €K, (13)
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Here, x,(:z denotes the N-dimensional profile for repe-
tition r of drug combination i that belongs to cluster k&
and c,(:) represents the N-dimensional centroid of cluster
k. In order to express the decrease in SSE when transi-
tioning between two consecutive K values, we define the
corresponding relative change as:

AEk_1x = M
Ex—1

- 100, where K = 2,---,10

(14)
Here, EK and EK_l denote the two minima min{EK,,}
r

and min{EK,l,r}, respectively. The smallest K that results
r
in SSE drop bigger than 20% compared to the previous
value K — 1, is selected (Additional file 1: Figure Sl7-§18).
For a selected K, the partition corresponding to min{Eg,}
r

is further used.

Programming environment and computing resources
COMBImage2 was developed in MATLAB R2018b [42].
The computations in the context of the current case study
were performed on resources provided by the Swedish
National Infrastructure for Computing (SNIC) at SNIC
Science Cloud (SSC).

Additional file

Additional file 1: Supplementary information. Additional text, results,
figures and tables. (PDF 1519 kb)
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