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Abstract

Background: Strain-level RNA virus characterization is essential for developing prevention and treatment strategies.
Viral metagenomic data, which can contain sequences of both known and novel viruses, provide new opportunities
for characterizing RNA viruses. Although there are a number of pipelines for analyzing viruses in metagenomic data,
they have different limitations. First, viruses that lack closely related reference genomes cannot be detected with high
sensitivity. Second, strain-level analysis is usually missing.

Results: In this study, we developed a hybrid pipeline named TAR-VIR that reconstructs viral strains without relying
on complete or high-quality reference genomes. It is optimized for identifying RNA viruses from metagenomic data
by combining an effective read classification method and our in-house strain-level de novo assembly tool. TAR-VIR
was tested on both simulated and real viral metagenomic data sets. The results demonstrated that TAR-VIR competes
favorably with other tested tools.

Conclusion: TAR-VIR can be used standalone for viral strain reconstruction from metagenomic data. Or, its read
recruiting stage can be used with other de novo assembly tools for superior viral functional and taxonomic analyses.
The source code and the documentation of TAR-VIR are available at https://github.com/chjiao/TAR-VIR.
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Background
Pathogenic human viruses such as human immunodefi-
ciency virus (HIV), hepatitis C virus (HCV), Severe Acute
Respiratory Syndrome (SARS) coronavirus (SARS-CoV),
and H1N1 flu virus, still claim millions of lives each year
despite centuries studies of the vaccine and treatment
[1, 2]. Thus, characterizing human viral pathogens,
including recognizing novel ones, remains crucial. Devel-
opment of the next-generation sequencing (NGS) tech-
nologies sheds lights on characterizing the virus compo-
sition in both natural environmental and clinical samples.
In particular, viral metagenomic sequencing, which allows
us to circumvent the need for virus isolation and cultiva-
tion, can conduct comprehensive sequencing of all viruses
in a sample. Thus, multiple viruses, including new ones,
can be identified in viral metagenomic sequencing data.
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Today, viral metagenomic data have become the pri-
mary source of virome analysis and virus discovery [3].
For example, in order to test whether increased levels of
anelloviruses or other viruses in plasma are associated
with higher levels of persistent T-cell activation during
anti-retroviral therapy (ART), Li et al. detected all viruses
using metagenomic data of plasma samples from 19 adults
on effective ART [4]. Lim et al. characterized the gut
virome and bacterial microbiome in a longitudinal cohort
of healthy infant twins in order to study the dynamics of
eukaryotic RNA and DNA viruses during the first years
of life [5]. There are also global-scale studies on viruses
in natural environmental samples such as ocean water [6,
7]. In addition to these examples, a more comprehensive
review about the studies using viral metagenomic data in
diagnostics, surveillance and outbreak source tracing, and
biodiversity studies can be found in [8].
We are particularly interested in characterizing RNA

viruses in metagenomic data because many of them are
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clinically important. RNA viruses can form quasispecies,
which contain related but distinct haplotypes generated
during RNA virus replication. Different haplotypes can
lead to different biological properties such as virulence.
Accurate RNA virus characterization needs to assembly
the reads into strain-specific contigs for downstream tax-
onomic and functional analyses. Generic assembly tools
are often error prone for metagenomic data and are also
resource demanding. Thus, a commonly adopted strategy
is to classify reads into different biological entities such as
species before conducting assembly.
In this study, our goal is to develop a new pipeline that

can classify RNA viral reads and also produce the assem-
bled viral strains (i.e. haplotypes) from classified reads.
Various methods and tools have been developed [9–12]
to characterize viruses in viral metagenomic data. Despite
their promising results in virus identification and dis-
covery, there is room to improve in two aspects. First,
read classification in many of these tools rely on read
mapping against characterized reference genomes [8],
which are not always available for fast mutating RNA
viruses. For example, emerging pathogenic viruses such as
SARS-CoV could only have local conservation with avail-
able genomes. Second, most of these tools adopt generic
assembly tools, which cannot distinguish different viral
strains.

Related work
Depending on the required inputs, existing programs for
analyzing virus composition can be roughly divided into
two groups. One group take assembled contigs as input
for functional and compositional analyses. Another group
of tools classify reads first and then conduct assembly for
classified reads. Below we describe both types of tools and
their limitations.
Viral metagenomic analysis tools in group one require

metagenomic assembly. For example, Espino et al. [13]
identify viral sequences from assembled metagenomic
contigs of sizes greater than 5kb. VirSorter [14] detects
viruses in assembled contigs at least 3kb. The viral
sequences are usually screened by comparing the con-
tigs with a curated set of viral protein families. However,
conducting de novo assembly for metagenomic data is
still one of the most difficult computational problems.
Unknown number of species in a sample and heteroge-
neous sequencing coverage can lead to erroneous assem-
blies.
Therefore, most of the viral metagenomic data analy-

sis methods combine reference-based classification and
de novo assembly. This strategy classifies reads into dif-
ferent taxonomies or functional groups using reference-
based methods and then conducts de novo assembly for
reads within the same group. For example, VIP [15],
drVM [16], and VirusTAP [17] all apply this strategy. They

classify viral reads by either aligning reads to available
viral references or removing reads of the host and other
species. Next, existing assembly tools such as SPAdes
[18] are employed to the virus-like reads to produce the
final assembly results. While these tools made signif-
icant contributions in purifying the data by removing
non-virus reads and then classifying virus-like reads into
functional/taxonomic groups, their performance heavily
depends on the quality of the references.
The limitation of reference genomes poses a critical

challenge of applying reference-based tools for RNA virus
analysis in metagenomic data. While being regarded as
the most abundant biological entities on earth, only a
small portion of viruses have been sequenced and char-
acterized. Besides, for RNA viruses with high mutation
rates, high-quality reference genomes of a viral pop-
ulation are not always available. For example, many
emerging viral diseases are caused by zoonotic viruses,
which originate in vertebrates but can infect human.
The genomes of some emerging viruses may only share
medium sequence identity with their peers in animals,
creating difficult circumstances for reference-based read
classification.
For RNA virus characterization, related tools also

include haplotype reconstruction pipelines designed to
assemble viral strains in quasispecies. A majority of these
tools are reference-based and take the alignments of reads
against reference genomes as input. HaploClique [19],
ViQuas [20], VGA [21] all belong to this group.

Overview of our work
Here we introduce TAR-VIR, which provides a use-
ful addition to existing tools for identifying targeted
RNA viruses and their haplotypes in metagenomic data.
The “targeted” viruses are those that still possess local
sequence similarity with the reference genomes. A com-
pletely new virus that does not share any conservation
with any reference genome won’t be detected by our
method.
Our pipeline combines reference-based strategy and

de novo assembly and is optimized for the following
applications. 1) Identifying host-switching viruses such as
SARS-CoV using remotely related viruses in other hosts
as the references. 2) Reconstructing viral haplotypes that
are divergent from a known virus family. 3) Recovering
viruses and their genomes that contain genes or func-
tional sites of interest to users. TAR-VIR is faster and
more effective in identifying targeted viruses than apply-
ing generic assembly programs to the whole metagenomic
data set. This is particularly important for large and com-
plicated metagenomic data sets containing a small per-
centage of viruses. Meanwhile, TAR-VIR is more tolerant
to incomplete or low-similarity references than existing
reference-based tools.
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We applied TAR-VIR to a simulated metagenomic data
set containing five haplotypes of SARS-CoV and a real
human blood plasma metagenomic data set. The compar-
isons with both de novo assembly tools and reference-
based haplotype reconstruction tools demonstrated the
utility of TAR-VIR in recovering RNA viruses from
metagenomic data with limited references.

Results
We have developed a modular structured tool named
TAR-VIR for reconstructing viral haplotypes from
metagenomic data. The final outputs of this tool are
assembled viral contigs corresponding to different strains.
We focus on evaluating the performance of the read
recruiting stage and also its impact on the final assembly.

Exp1: reconstruct the SARS haplotypes using the bat
coronavirus as the reference
In this experiment, wemimic the scenario in which SARS-
CoV [22] is an emerging virus infecting humans. Our goal
is to reconstruct the SARS-CoV haplotypes using other
coronaviruses as references. During the breakout of SARS,
electronmicroscope image reveals the crown-like shape of
the infectious agent, providing clues to use coronaviruses
as references.
To test this, we assume that the bat coronavirus

(NC_014470.1) was sequenced and available to use as a
reference, although it was actually sequenced after the
breakout of SARS.

Data properties and evaluationmetrics
A viral metagenomic dataset containing Influenza
(NC_002023.1), hepatitis C virus (HCV, NC_004102.1),
and 5 SARS-CoV haplotypes, was simulated. The SARS-
CoV haplotypes were created from the SARS-CoV
reference (NC_004718.3) genome by mutating bases at
randomly selected locations. The sequence similarity
between any two haplotypes is above 96%. The abun-
dance of each haplotype is calculated based on a power
law equation [23]. The total sequencing depths for the
5 SARS-CoV haplotypes are 1000-x, with 438-x, 219-x,
146-x, 109-x, and 88-x for each haplotype, respectively.
The sequencing depths for Influenza and HBV are 700-x
and 300-x, respectively. All the data sets were simulated
by ART-illumina [24] as error-containing MiSeq paired-
end reads, with the read length of 250 bp, the average
insert size of 600 bp, and the standard deviation of 150
bp. In total, there are 173,703 simulated reads, of which
119,002 reads are from the five SARS-CoV haplotypes.
With the available bat coronavirus as the reference, the

simulated reads were aligned with both Bowtie2 [25] and
BWA [26]. We then applied the overlap extension compo-
nent of TAR-VIR to isolate and enrich SARS-CoV reads,
and assembled them with de novo assembly tools. Both

the read recruitment and the assembly performance were
evaluated. For the simulated data, the ground truth of the
originating haplotype and position of each read is known.
Thus read recruiting performance can be evaluated using
the reads’ positions and originating haplotypes. In sum-
mary, we examine how many reads are correctly recruited
for each haplotype and report the haplotype coverage and
depth.
The assembly performance was evaluated using the

known genomes of the 5 SARS-CoV haplotypes and
MetaQuast [27]. Similar to other works, we quantified the
assembly continuity, completeness, and accuracy in terms
of number of contigs, N50, genome coverage, and mis-
match rate. N50 is defined as the maximal length so that
all contigs above this length contain at least 50% of all
the contig bases. Genome coverage is the percentage of
the five haplotypes’ genomes being aligned by at least one
contig. Mismatch rate is the percentage of mismatches
between the aligned contigs and the references. In all
cases, contigs of at least 500 bp are aligned to the viral
reference sequences for evaluation. The assembly results
were also benchmarked with other popular assembly tools
SGA [28], SPAdes [18], and SAVAGE [29].

Performance of read recruitment
We applied both Bowtie and BWA in the read mapping
stage. By adjusting the scoring function related param-
eters, we constructed different sets of seed reads that
can be aligned to the references with different approxi-
mate match constraints. For each seed set, the recruited
reads generated by TAR-VIR with overlap cutoff 150 are
recorded. Table 1 compares the aligned and recruited
reads for each SARS-CoV haplotype. Besides approxi-
mate match rates, we also considered local and “glocal”
alignment mode, where the glocal mode requires the end-
to-end alignment of the read against the reference. Using
local alignment mode for read mapping can usually pro-
duce a larger seed set. However, it is possible that some
of the locally aligned reads are not sequenced from the
underlying haplotypes. In Table 1, we used local alignment
mode for BWA and glocal model for Bowtie. Thus, the
seed sets constructed by BWA is larger than Bowtie.
Even with the least stringent threshold, the aligned reads

have lower genome coverage than recruited reads, which
is expected because SARS-CoV does not share genome-
scale high similarity with the bat coronavirus (Fig. 1c).
In particular, with the parameter “-B 1", BWA can align
slightly more reads than what Bowtie2 can recruit with the
parameter “L, 0, -0.9" ((52,688 vs. 52,377). The recruited
reads (52,377), however, cover 20%-30% more genomes
for the five haplotypes. This indicates that alignment-
based methods tend to identify reads sequenced from
highly similar regions between the target and the ref-
erence viruses, while the recruitment method is more
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Table 1 Read recruitment results by using seed sets constructed with Bowtie2 and BWA

Bowtie2 Alignment

Number Depth Coverage

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

L,0,-0.3 55 0.13 0.01 0.06 0.15 0.12 0.01 0.01 0.01 0.01 0.01

L,0,-0.6 925 3.6 1.5 0.9 0.9 0.9 0.07 0.06 0.05 0.07 0.08

L,0,-0.9 8154 32 14 9 8 7 0.31 0.31 0.27 0.27 0.3

L,0,-1.2 13,221 49 24 15 13 10 0.43 0.45 0.42 0.44 0.43

Recruitment

Number Depth Coverage

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

L,0,-0.3 45,504 182 89 59 41 11 1.0 1.0 1.0 1.0 0.37

L,0,-0.6 46,576 183 90 60 42 18 1.0 1.0 1.0 0.96 0.55

L,0,-0.9 52,337 198 96 63 46 37 1.0 1.0 1.0 0.98 0.99

L,0,-1.2 55,485 182 89 59 41 39 1.0 1.0 1.0 1.0 0.99

BWA Alignment

Number Depth Coverage

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

B:8 24,585 89 46 28 20 18 0.4 0.37 0.33 0.31 0.34

B:4 41,564 152 78 50 37 32 0.63 0.57 0.56 0.57 0.53

B:2 51,995 195 94 63 46 39 0.79 0.78 0.77 0.70 0.74

B:1 52,688 199 94 64 47 39 0.81 0.78 0.80 0.71 0.76

Recruitment

Number Depth Coverage

h1 h2 h3 h4 h5 h1 h2 h3 h4 h5

B:8 62,609 235 117 75 55 44 1.0 1.0 1.0 1.0 0.99

B:4 72,901 270 135 89 65 53 1.0 1.0 1.0 1.0 1.0

B:2 79,755 299 146 97 71 58 1.0 1.0 1.0 1.0 1.0

B:1 78,540 294 143 96 70 57 1.0 1.0 1.0 1.0 1.0

The “Alignment” section contains results for aligned reads. The “Recruitment” section contains results for recruited reads by TAR-VIR using the aligned reads. For each row, the
aligned reads in “Alignment" section are the seed set for the recruited reads in “Recruitment” section. For Bowtie2, the “–score-min” parameter was set to allow different
alignment error rates corresponding to 5%, 10%, 15%, and 20%, respectively. For BWA, “-A” is fixed as its default value 1. “-B” was modified to allow different error rate similar
to Bowtie2. “Number” is the number of aligned or recruited reads. “Depth” is the average sequencing coverage. “Coverage” is the percentage of genome covering by at least
one read. h1 to h5 represent the five SARS-CoV haplotypes

likely to obtain reads from the whole genome of the
target viruses. Worth noting is all the recruited reads
are from SARS-CoV (no contamination from Influenza
and HBV).
Figure 1a and b compared the genome coverage of

seed reads and recruited reads. Directly aligning the
reads to the bat coronavirus covers only a small propor-
tion of the whole genome (Fig. 1a), leading to incom-
plete assembly. Using these aligned reads as seeds,
TAR-VIR is able to recruit many more reads that
nearly cover the whole genome of SARS-Cov, as shown
in Fig. 1b.
Table 1 also shows that the numbers of recruited reads

do not heavily rely on the number of the seed reads. Even
when the seed set is small (e.g. the seed sets constructed

using Bowtie2), many new reads can be recruited during
each iteration. After multiple iterations, the final set of
recruited reads can be significantly larger than the seed
set, bounded by the sequencing depth of the haplotypes.
On the other hand, if the seed sets contain many reads
from non-relevant species, the final set of recruited reads
could even include all the reads from the input, which
makes the read recruiting useless. Because of this, we pre-
fer to construct the seed set using glocal mode to ensure
high quality.

Recruited reads lead to better assembly performance
Both the aligned and recruited reads were assembled with
de novo assembly tools. PEHaplo is the default assem-
bly component in TAR-VIR. As TAR-VIR has a modular
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Fig. 1 Enriching SARS-CoV reads using the bat coronavirus genome as the reference. a and b show the aligned and recruited reads profile. The
dataset was aligned by BWA with the default parameter ("-B 4, -A 1"). BWA is chosen to include more locally aligned reads in (a). The reads were
recruited using the overlap cutoff of 150 bp. c displays the sequence identity between SARS-Cov and the bat coronavirus. The profile was generated
using VISTA [41]

structure, other de novo assembly tools including SGA,
SPAdes, and SAVAGE are also used to replace PEHaplo
for haplotye reconstruction. SPAdes was run with –meta
option, which is same as metaSPAdes [30]. As the aligned
reads cover at most 80% of the genomes even with the
least stringent alignment threshold, it is not proper to
apply the conventional reference-based assemblymethods
for this data set.
The complete de novo assembly results using both

aligned and recruited reads are presented in Additional
file 1: Table S1. Part of the results are shown in Table 2 due
to space limiation. For all assembly tools, using recruited
reads produces better results: longer contigs and higher
genome coverage. Significantly, this is not simply due to
the increased number of reads. For example, as shown in
Table 2, the reads recruited by Bowtie2 with parameter “L,
0, -0.9” is less than BWA-aligned reads when B is 1 (52,337
vs. 52,668). But the recruited reads produce contigs at
least ten times longer than the aligned reads, and twice
higher in the genome coverage. By comparing the assem-
bly performance of all tested tools on the recruited reads,
our assembly component PEHaplo consistently has higher
N50 and genome coverage than others. Overall, PEHaplo
and SGA perform better than the other two assembly
tools.

PRICE [31] applies extension-based strategies for contig
assembly. Using the seed reads as initial contigs, PRICE
can be readily used to perform targeted viral assembly
from metagenomic data. Therefore, the results of TAR-
VIR was also benchmarked against PRICE’s results, as
shown in Table 3. PRICE produced one long contig (sim-
ilar N50 to ours) for the most abundant haplotype. Thus,
its genome coverage is only about 20%.

Exp2: characterizing hepatitis viruses from the human
plasma data
In this experiment, TAR-VIR is tested on a real metage-
nomic data set, which was sequenced from the plasma
of 19 antiretroviral-treated HIV patients (SRR2083204)
[4]. The samples were pre-amplified by random RT-
PCR amplification (RA) for both viral RNAs and
DNAs and then sequenced by Illumina Miseq, produc-
ing about 23 million reads. All these samples contain
low levels of HIV because of the antiretroviral treat-
ment. But it may contain other human pathogens. In
our study, we focused on identifying hepatitis viruses.
Although our pipeline is designed to tackle the chal-
lenges of characterizing RNA viral quasispecies, we also
include in the references DNA hepatitis viruses such
as HBV.
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Table 2 Assembly results on SARS-CoV aligned and recruited metagenomic data

Aligned Tool # Contigs N50 Genomes covered (%) Mismatch rate (%)

Bowtie2 L,0,-0.9

TAR-VIR 58 505 19.7 0.02

SGA 56 505 20.1 0.03

SPAdes 34 569 12.9 0.16

SAVAGE 54 455 17.5 0.0

Recruited Tool # Contigs N50 Genomes covered (%) Mismatch rate (%)

TAR-VIR 7 29,676 98.9 0.0

SGA 13 26,729 98.9 0.0

SPAdes 14 15,882 92.1 0.51
Bowtie2 L,0,-0.9

SAVAGE 22 12,445 97.0 0.0

Aligned Tool # Contigs N50 Genomes covered (%) Mismatch rate (%)

TAR-VIR 84 1192 55.1 0.0

SGA 85 1027 56.5 0.0

SPAdes 67 1012 44.6 0.12
BWA B:1

SAVAGE 68 669 32.3 0.0

Recruited Tool # Contigs N50 Genomes covered (%) Mismatch rate (%)

BWA B:1

TAR-VIR 6 29,706 99.5 0.0

SGA 18 12,638 99.5 0.0

SPAdes 21 10,353 89.2 0.39

SAVAGE 56 5140 89.3 0.0

The default assembly tool in TAR-VIR is PEHaplo. Definition of the metrics can be found in “Data properties and evaluation metrics” section

Preprocessing
The raw data set contains reads that come from varied
sources: human, bacteria, phages, etc. The reads of the
target viruses comprise less than 30% of the entire data
set. Since the primary focus is human viruses, removing
those reads from the host (human), bacteria, and phages
is ideal before pathogen detection. Following canonical
quality control and trimming, we used bamtagger [32] to
remove human reads, and Bowtie2 to remove reads from
bacteria and phage by aligning reads against their refer-
ence genomes. The remaining reads were corrected by
error correction tool Karect [33]. After the preprocessing
step, 8,145,722 reads were left.

Recruited reads by TAR-VIR can improve the performance of
de novo assembly
In the first step, we conducted read mapping to obtain
the seed reads. Both BWA and Bowtie2 could be used.

However, although BWA aligned more reads, many reads
yielded only short local alignments and are unlikely to
be sequenced from the target viruses. Using these reads
as seeds tends to cause contamination during the read
recruitment stage. For example, when BWA (“-B 8, -
A 1") was used to generate the seed set, roughly 3.5
million reads were recruited, while a portion of them can
be aligned to other genomes (such as phages). Although
BWA’s output can be processed to remove local align-
ments, the seed set can be more reliably produced using
Bowtie2’s output. Therefore, Bowtie2 was chosen as the
aligner for all real data experiments.
We downloaded the reference genomes of HBV

(NC_003977.2), multiple genotypes of HCV (NC_009827.1,
NC_009823.1, NC_009825.1, NC_030791.1, NC_004102.1,
NC_009826.1, NC_009824.1), and human pegivirus
(HPgV, NC_001710.1) from the viral genome database
of NCBI. The preprocessed reads were then aligned to

Table 3 Assembly results on SARS-CoV metagenomic data for TAR-VIR and PRICE

Tool # Contigs N50 Genomes Covered (%) Mismatch (%)

Bowtie2 L TAR-VIR 7 29,676 98.9 0.0

PRICE 1 29,749 20.0 1.7

BWA B:1 TAR-VIR 6 29,706 99.5 0.0

PRICE 1 29,750 20.0 1.66
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the references under mismatch rates of 5%, 10%, 15%,
and 20%, respectively. These initially aligned reads were
used as the seed read sets. Although there are multiple
genotypes for HCV, only genotype 1 has a decent amount
of aligned reads. Other genotypes have less than 50 reads
mapped. Thus, to produce a reliable evaluation of the
assembly results, only the results of HCV genotype 1
were used. The numbers of reads before and after read
recruiting are shown in Table 4.
As this is a real metagenomic data set without known

ground truth of the viral haplotypes, the evaluation met-
rics for read recruiting are different from the simulation
data set. We cannot evaluate whether every recruited read
is correct because its originating location is unknown.
Thus, instead of evaluating the depth and genome cover-
age for each haplotype, we focus on evaluating whether
using recruited reads can improve the performance of
genome assembly.
Therefore, both the aligned reads and the recruited

reads from TAR-VIR were assembled by de novo assem-
bly tools, and the results were compared in Table 5. The
assembly results demonstrate that the reads recruited by
TAR-VIR usually improve the assembly results by pro-
ducing longer contigs and higher genome coverage for
PEHaplo, SGA, and SPAdes. The improvement is not
simply due to the increased number of reads after the
recruitment stage. For example, according to Table 4, by
using 15% mismatch rate, the recruited reads are less
than the aligned reads under 20% mismatch rate (263,029
vs. 294,448). However, the assembly results using the
recruited reads are better than or comparable to the
results using the aligned reads for all the assembly tools.
Among the four assemblers used, PEHaplo of TAR-VIR
and SPAdes produced good results with large N50 and
high genome coverage. SGA generated larger number of
contigs with low N50 value. While we have tried the best
parameters for SAVAGE based on our empirical experi-
ence, its results are not consistent with the other three
tools. Better parametersmay exist for SAVAGE to produce
better results. However, the long-running time and high
memory usage of this tool made continuing to tune the
parameters difficult.

Comparisonwith reference-based and extension-based
assemblymethods
With the reference genomes available, reference-based
tools can be applied for viral metagenomic data anal-
ysis. Therefore, we also benchmarked TAR-VIR against

reference-based haplotype reconstruction tools including
Haploclique [19], drVM [16], and ViQuas [20]. VirusTap
[17] can also conduct reads classification and then assem-
bly. While we were planning to compare TAR-VIR with
VirusTap, a large data set could not be uploaded to the
website-based VirusTap. In addition, about 3000 jobs
were waiting at the website. Therefore, the results from
VirusTap could not be reported.
The reads aligned with the mismatch rate of 15% were

used as input for Haploclique and ViQuas. For drVM, the
reference genomes were built from human viruses, and it
ran on the raw fastq files (with simple quality control and
trimming) dumped from SRA file with default parameters.
The seed read set of TAR-VIR were also the reads mapped
with 15% mismatch rate. The assembly results are shown
in Table 6.
The results show that TAR-VIR performs better than

Haploclique and drVM by producing fewer but longer
contigs with higher genome coverage. With the com-
plete and also the likely “true” virus genomes as the
reference, ViQuas has produced near-complete genomes.
However, it produces almost 400 contigs with similar
lengths (full genomes), indicating a high probability of
overestimation of the haplotypes. Since the ground truth
of the actual number of haplotypes in this data set is
unknown, we intended to test this hypothesis using a
dataset with known haplotypes. Therefore, we tested
ViQuas on the SARS-CoV simulated data set with 5 hap-
lotypes. It reported 113 contigs, each covering 99.98% of
the genome with high mismatch rate (> 9.0%). Thus, the
long contigs produced by ViQuas are not likely the true
haplotypes.
Similar to SARS-CoV data, we also benchmarked our

results against the extension-based tool PRICE. The ini-
tial contigs of PRICE were also the reads mapped with
15% mismatch rate. PRICE generated 164 contigs, with a
N50 value of 791, and genome coverage of 87.3%. PRICE’s
results have a slightly larger genome coverage but a much
smaller N50 value comparing to TAR-VIR.

Assembling the whole data set directly
As SGA and SPAdes are highly efficient and have been
used by various virus analysis pipelines, it may be possi-
ble to directly apply them to all the preprocessed reads
for recovering the three viruses ((HBV, HCV genotype 1,
and HPgV). Thus, we applied SGA and SPAdes to the pre-
processed reads. The assembled contigs were compared
with the reference genomes of the three viruses. SGA took

Table 4 Overlap extension results using different seed set R0

Align mismatch Seed # Recruited # Align mismatch Seed # Recruited #

5% 21,925 200,650 10% 67,973 222,065

15% 162,454 263,029 20% 294,448 340,705

‘#’ represents ‘number’. The shaded regions in this table and Table 5 highlight the case where less recruited reads can produce better assembly results than aligned reads only
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Table 5 Assembly evaluation results on aligned and recruited reads using the genomes of HBV, HCV, and HPgV as references

Align Tool

Bowtie2 aligned Bowtie2 Recruited

Contig # N50 Genome cov. (%) Contig # N50 Genome cov. (%)

5% TAR-VIR 11 920 27.3 97 3643 82.3

SGA 14 645 26.8 63 675 68.4

SPAdes 5 1177 27.6 15 3636 79.6

SAVAGE 13 698 21.6 49 806 40.4

10% TAR-VIR 61 794 67.4 31 2635 84.0

SGA 26 663 56.4 72 706 69.5

SPAdes 15 1251 65.4 19 3373 79.3

SAVAGE 30 631 40.6 32 915 26.5

15% TAR-VIR 97 939 80.9 14 3579 83.1

SGA 56 617 57.7 74 722 70.2

SPAdes 20 1689 77.6 16 3986 81.0

SAVAGE 32 639 29.9 24 999 27.6

20% TAR-VIR 38 1852 84.5 77 5678 86.4

SGA 78 661 59.5 374 537 64.5

SPAdes 23 2,710 83.8 10 4830 84.6

SAVAGE 19 671 19.1 15 823 5.5

‘cov.’ is the abbreviation for ‘coverage’. The default assembly component in TAR-VIR is PEHaplo

about 1 h to finish. It generated 2659 contigs, from which
123 contigs can be aligned to the three viruses with the
similarity threshold of 90%. The 123 contigs can cover
42.36% of the reference genomes. SPAdes failed to report
the results within 24 h. The results from SGA verified that
although the preprocessed data set contains all the reads
from the target viruses, the sheer data size and the low
proportion of the three viruses make generic assembly dif-
ficult. Meanwhile, assembling a large data set consumes
significant computing resources.

Identifying viruses containing target genes
In some situations, the researchers are only interested in
the viral genomes containing a partial or complete gene. In
these cases, it is difficult for existing reference-based virus
identification tools to construct the whole viral genome.
Here, we demonstrate that with the overlap extension
method, the most of a genome can be built from a partial
gene reference.
In this experiment, we show that with a non-complete

gene sequence of length 1073 bp for HPgV as reference,
most of the genome can be assembled. The reference
sequence (Sequence name: 10MYKJ037) was downloaded

from Virus Pathogen Database and Analysis Resource
(ViPR) [34], which is a partial coding DNA sequence
(CDS) of HPgV isolated from Malaysia in 2010. The total
length of HPgV genome is 9392 bp. From the results of
our previous experiments, overlap extension from aligned
reads under mismatch rate of 15% was able to recruit
adequate reads while keeping away unreliable reads as
seeds. Therefore, we aligned the raw reads to this CDS
reference by allowing mismatch rate of 15%, from which
19,714 reads were aligned. ViQuas and drVM were used
to assemble the aligned reads. However, ViQuas could
only produce contigs similar to the short CDS sequence.
In addition to provided CDS reference, drVM also down-
loaded references from Internet. It correctly recognized
the HPgV but failed to produce any contig. The results
confirm that reference-basedmethods do not apply in this
case. With overlap cutoff of 150 bp, 118,339 reads were
recruited from the overlap extension step. They were then
assembled by PEHaplo of TAR-VIR, SGA, SPAdes, and
SAVAGE, as shown in Table 7.
While the length of reference strain being only 11.42%

of the whole HPgV genome, the contigs assembled from
recruited reads by TAR-VIR and SPAdes are able to cover

Table 6 Assembly results comparison with reference- and extension-based methods

Tool Contig # N50 Genome cov. (%) Tool Contig # N50 Genome cov. (%)

TAR-VIR 14 3579 83.1 ViQuas 396 9646 100.0

Haploclique 50,419 304 71.1 drVM 413 829 81.9
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Table 7 Assembly results on recruited reads with a partial CDS sequence for HPgV as reference

Tool Contig # N50 HPgV cov. (%) Tool Contig # N50 HPgV cov. (%)

TAR-VIR 5 7959 86.0 SPAdes 6 8957 94.0

SGA 41 591 49.0 SAVAGE 35 580 49.5

the nearly complete genome. The results reveal that even
with a gene/CDS sequence as reference, sufficient reads
can still be collected to construct the virus at the whole
genome level. As there is only one target virus, SPAdes
produced the best results. Applying SPAdes to the whole
human plasma data set failed to finish on the cluster after
24 h, but by using recruited reads, SPAdes can produce
better assemblies with the minimum amount of resources.

Computational time andmemory usage
We evaluated the time and memory usage of TAR-VIR
on the real human plasma data. After preprocessing,
8,145,722 reads were left. The data size is 2.9 GB, and
the total length of the sequences are 2,447,741,491 bp. To
reduce memory usage, the raw data was split into 5 parts,
with 5 BWTs being built for the whole data. The splitting
process is embedded in our program, and the number of
segments can be set by users. For each partition, the file
sizes for the BWT, Occ array, and the read ID array are
490M, 200M, and 13M, respectively. The total size of built
indexes is 3.5 GB. The detailed time and memory usage
for the overlap extension is shown in Table 8 below. A user
can load each partition separately to reduce the memory
usage. In that case, the memory usage is about the size
of each partition. In addition, we may further reduce the
memory usage of the recruiting process by applying more
compact implementation of the BWT [35].
For all the assembly tools, Table 8 recorded their run-

ning times and memory usage on the recruited reads. Our

experiments have shown that applying the assembly tools
to the recruited reads can be more efficient and accurate.
In addition, some tools cannot return results when being
applied to the whole metagenomic data.
All the experiments were tested on an MSU HPCC

CentOS 6.8 node with Two 2.4Ghz 14-core Intel Xeon E5-
2680v4 CPUs and 128GB memory. We used 4 threads for
the assembly component of TAR-VIR, 8 threads for SGA,
16 threads for SAVAGE, 8 threads for PRICE, 1 thread for
Haploclique and ViQuas, and 2 threads for drVM.

Discussion
Our results on both simulated and real metagenomic data
have demonstrated the utilities of TAR-VIR in viral read
classification. In this section, we discuss three practical
issues related to using TAR-VIR.
TAR-VIR requires seed reads as input, which can

be constructed using read mapping against homologous
genomes or genes of interest to users. We compared
several modes of popular read mapping tools including
Bowtie2 and BWA. It is true that using local alignment
mode for read mapping can produce a larger seed set.
However, the size of the recruited reads depends more
on the sequencing depth rather than the number of seed
reads. Our experimental results also show that even a
small seed set can recruit sufficient reads to cover the
targeted genomes if the reads from these genomes share
overlaps larger than the threshold. The quality of the seed
set is more important to the performance of the read

Table 8 Time and memory usage for overlap extension and assembly on viral metagenomic data from human plasam

Time (m: minutes, h: hours) Memory (GB)

Mismatch rate 5% 10% 15% 20% 5% 10% 15% 20%

Overlap extension
Building index 127m 127m 127m 127m 2.4 2.4 2.4 2.4

Recruitment 8m 14m 20m 23m 3.5 3.5 3.5 3.5

De novo Assembly

TAR-VIR 5m 7m 18m 20m 2 2.8 3.5 4

SGA 2m 2m 3m 5m 0.9 0.9 0.9 0.9

SPAdes 5m 5m 6m 8m 1 1 1 1

SAVAGE 2h 8h 14h 18h 31 45 51 59

Reference-based assembly

HaploClique 33h 5

Viquas 72h 4

drVM 23m 1

Extension-based assembly PRICE 1h46m 5

The de novo assembly time and memory usage were evaluated on recruited reads based on mismatch rate from 5% to 20%. HaploClique, Viquas, drVM and PRICE were
applied only on recruited reads based on mismatch rate of 15%
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recruiting step. The local alignment mode may introduce
contamination from unrelated species, leading to a read
set containing non-targeted genomes. Thus, we recom-
mend to use glocal mode to construct the seed set. If local
mode is chosen, users should screen the read mapping
results using alignment length and score.
A related issue is the choice of the overlap threshold.We

have provided guidance on choosing appropriate overlap
cutoffs based on the analysis of the common string sizes
between different species. However, when the sequenc-
ing coverage is low, a smaller overlap threshold should
be used. This is a similar problem to choosing overlap
threshold or kmer size for assembly. Users can start with
the recommended overlap threshold and test smaller ones
gradually. If the size of the recruited set increases sig-
nificantly at one step during the test, the process should
stop.
TAR-VIR has a modular structure and the default

assembly tool is PEHaplo. Users can replace PEHaplo
with other assembly tools depending on the applications.
For example, TAR-VIR can be extended to find bacte-
rial species containing genes of interest to users. Thus, an
assembly tool designed for bacterial species can replace
PEHaplo.

Conclusions
In this study, we presented a novel pipeline for viral reads
classification and strain-level assembly from viral metage-
nomic data named TAR-VIR. When a virus in a metage-
nomic dataset is only remotely related to a characterized
virus in public databases, our pipeline can be applied to
first classify the reads belonging to these viruses and then
conduct strain-level assembly. Or if a user is interested in
detecting a virus that contains a given gene, our method
can be employed to recover the whole genome of the
gene-containing virus.
We also made contributions by conducting careful anal-

ysis of the common region sizes between and within viral
quasispecies. These analyses laid the foundation for using
overlap detection to classify reads of the same quasis-
pecies without introducing contamination. Our unique
implementation of the indexing structure also make our
method economical in both memory and CPU usages.
We demonstrated the tool’s utilities on a simulated viral

metagenomic data containing SARS-Cov and a real viral
metagenomic data set sequenced from human plasma.
The simulated data enables us to evaluate the perfor-
mance of read classification to the resolution of each
single read. It shows that TAR-VIR can successfully clas-
sify enough reads to cover the whole genome. In addition,
it produced contigs covering five different haplotypes.
On the human plasma data, we were able to enrich

enough reads from the target viruses for downstream
assembly even with a small seed read set. With a partial

CDS sequence for HPgV as reference, TAR-VIR was able
to produce near complete genome assemblies. The results
clearly showed the effectiveness of TAR-VIR. In summary,
TAR-VIR provides complementary functions to existing
virus detection tools when the quality or complete refer-
ences are not available.

Methods
Following a stand-alone error-correction step, our
pipeline performs the following three steps. First, we con-
struct the set of “seed reads” by mapping the reads against
provided reference sequences, which could be sequenced
genomes or functional sites such as genes. All the reads
that can be mapped to the reference constitute the set of
“seed reads”. The read mapping process can be conducted
using existing tools such as Bowtie2 [25]. Second, we
recruit reads that form significant overlaps with the seed
reads. Newly recruited reads will be added to the seed
set. This process will iterate until no new reads can be
recruited. Third, we conduct strain-level assembly using
the reads identified in the second step.

Two scenarios
The above pipeline is visualized for two scenarios in
Fig. 2. In scenario 1, users are trying to detect viruses that
contain a functional site, such as a gene. Unlike the well-
studied gene-centric assembly in metagenomic data, our
goal is to recover the whole genome that contains a par-
ticular gene. In this method, the gene is provided as a
reference, and readsmapped to it are the seed reads. Over-
lap detection is then applied to recruit more reads that
belong to the same viruses as the seed reads. The read
recruitment process is presented in Fig. 2a.
In scenario 2, the goal is to identify viruses that lack

quality reference genomes. This is particularly important
for host-switching viruses, which may not always con-
serve high sequence similarity with their related peers in
other hosts. For example, SARS-CoV shares about 80%
of sequence identity with the bat coronavirus according
to BLAST [36]. And the identity is lower than 50% at
different loci. Thus, conventional read mapping meth-
ods cannot capture all reads from the targeted viruses
when they lack high similarity with the available refer-
ences. Figure 2b presents the process of identifying reads
of the target virus with a remotely related virus as the ref-
erence. Although the mapped reads are scattered along
the reference genome with low coverage, sufficient reads
belonging to the target virus can be recruited through
overlap detection.

Validity of read recruitment using overlap detection
In this section, we will conduct careful analysis to examine
whether using overlaps will be both sensitive and accu-
rate for classifying reads in the same quasispecies. An
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A

B
Fig. 2 Two scenarios. a. The reference is a gene or a functional site (long green bar). The reads are represented by short lines. Short green lines can
be mapped to the reference sequence and define the set of seed reads. The first iteration of overlap detection will identify new reads (blue lines)
overlapping with the seed reads. The second iteration of overlap detection will identify more reads (red lines). b. The reference is a remotely related
genome (long green bar). The seed reads can be mapped to the reference genome and are represented by short green lines. Two iterations of
overlap detection will recruit new reads (blue lines and red lines, respectively)

ideal read recruiting process should only capture the reads
from the targeted viral quasispecies. If many microbes
share long common regions with the targeted viruses, the
overlap extension will recruit a large number of reads
from unrelated species. Therefore, we computed the sizes
of longest common substrings (LCSs) between different
viruses. The LCSs between viruses and other microbial
species were also examined. The details for LCS calcu-
lation can be found in Additional file 1: Section 1. The
results are shown in Additional file 1: Figure S1(A-C).
In summary, the sizes of LCSs between different viral

genomes or between human viruses and bacteria are usu-
ally smaller than 100 bp. LCSs longer than 100 bp are
mostly between viruses from the same genus or differ-
ent genotypes of the same virus. For example, Vaccinia
virus and Variola virus share an LCS of 469 bp, and HCV
genotype 7 and HCV genotype 5 share an LCS of 154 bp.
Meanwhile, it is also necessary to evaluate whether

reads belonging to the same quasispecies can be recruited
using overlap detection. As the characterized haplotypes
for different RNA viruses are very limited, instead of com-
puting the LCS using available data, we estimated the
LCSs within a quasispecies using a probability model.
With the mutation rate μ at each base during virus repli-
cation, the probability distribution of LCS length between
two viral strains that are n generations apart can be cal-
culated with dynamic programming [37]. As an example,
the probability distribution of LCS sizes between two HIV
strains is shown in Additional file 1: Figure S1(D).
The result reveals that the LCSs between different hap-

lotypes of the same viral population are usually much
longer than LCSs between different viruses or an Illumina

read size, which is about 250 bp for MiSeq reads in our
experiments. Thus, evenwith the initial seed reads aligned
to only one haplotype, the reads of other haplotypes can
be recruited through the long common regions shared by
different haplotypes. The reads sequenced from the com-
mon regions act like baits to recruit reads from different
haplotypes.
In order to use the LCS size distribution to provide guid-

ance for overlap cutoff choice, we plot the ROC curve
using the data from Additional file 1: Figure S1. In the
ROC curve, the true positive rate (TPR) for a given size
l defines the probability that two strains within a quasis-
pecies have a LCS at least l. The false positive rate (FPR)
for a given size l defines the probability that two differ-
ent microbial species have an LCS at least l. TPR can
be derived using the area size in Additional file 1: Figure
S1(D) while FRP can be computed using Additional file 1:
Figure S1(A)-(C). The final ROC curve has a AUC close to
1, which is expected because of the small overlap between
the LCS values for haplotypes and different species. The
ROC curve is shown in Additional file 1: Figure S2. Mean-
while, because there are 142,021,586 pairs of viruses vs.
other microbes, which can lead to a very small FPR value,
we thus also show the actual number of virus-vs-other
pairs with LCS size above l in Additional file 1: Figure
S3. For example, there are 86 virus-vs-other pairs (out of
142,021,586) with LCS value above 100 bp. In practice,
not all these microbes live in the same niche and thus are
included in the same metagenomic data set. Thus, this is
the worst-case contamination analysis using characterized
genomes. Additional file 1: Figures S1-S3 show that choos-
ing overlap size above 100 can lead to high sensitivity and
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near zero FPR. With a bigger cutoff, the FPR can be fur-
ther reduced. But if the cutoff is too big, reads from low
coverage regions cannot be recruited.

Chimeric reads
One recent study revealed that chimeric reads, which
contain sequences from more than one species, can
be generated in vitro during the preparation of high-
throughput sequencing libraries [38]. These chimerasmay
have overlaps with more than one species, thus introduc-
ing contamination from the host or unrelated microbes.
Figure 3a illustrates how contamination can be introduced
via chimeric reads. In our experiments, we set the over-
lap threshold longer than half of the read size to prevent
recruiting these chimeric reads or extending from them.
To justify our choice of the overlap threshold for prevent-
ing contamination via chimeric reads, consider a chimeric
read that is a concatenation of the sequences from the
target virus and another species. There are two cases.
In the first case, if the region from the target virus is
shorter than half of the read size, this chimeric read will
not be recruited. In the second case, if the region from
the target virus is longer than half of the read size, this
chimeric read will be recruited. However, as the other
part of this chimeric read must be shorter than half of
the read size (i.e. overlap threshold), this read will not be
extended in the next iteration. Figure 3b shows this case.
If the chimeric read contains regions from more than two
species, it becomes harder for this read to form an overlap
above the cutoff with reads from the target virus.
In our experiments, we set the overlap cutoff as 150 for

all reads of 250 bp long.

Sequencing errors
Sequencing errors will shorten overlaps between reads
andmay prevent recruiting all reads belonging to the same
quasispecies. To recruit sufficient reads for assembly, we
can construct either approximate overlaps by allowing
mismatches/gaps or exact overlaps on error-corrected
reads. Considering the risk of contamination by approxi-
mate overlap detection, we chose to use stand-alone error
correction tools paired with exact overlap detection. The
default error correction tool in our pipeline is Karect [33].

Low sequencing depth will lead to small overlaps and thus
affects the performance of read recruitment. There is a
possibility that the reads from regions of low coverage
cannot be recruited and assembled.

Read recruiting
In order to describe the algorithm, we formally define
overlap. Let ri and rj be two reads. If there is a proper suf-
fix of ri that is the prefix of rj or vice versa, ri and rj form an
overlap. In practice, we will also account for the overlaps
formed by ri and r′js reverse complement. There are a few
data structures and methods available for efficient over-
lap detection [28, 39]. We apply the methods with BWT
and FM-index [28] for efficient search. In the first step,
all reads are concatenated into a single sequence T[ 1..n]
using $ as a delimiter, where n is the number of reads in T.
Then, multi-key “quicksort” is applied to sort all the suf-
fixes ofT for constructing a generalized suffix array SA(T)

[40]. Then BWT(T) can be constructed using the follow-
ing equation, where BWT[ i] and SA[ i] are abbreviated
representations of BWT(T)[ i] and SA(T)[ i], respectively.

BWT[ i]=
{
T[ SA[ i]−1] , if SA[ i]> 0
$, if SA[ i]= 0 (1)

With T and BWT(T), the backward search can be used
to detect overlaps between a query read and all other
reads. After matching τ (the overlap threshold) charac-
ters, we search for the delimiter ‘$’ to find the prefixes
overlapping with the query’s suffix.

Unique implementation strategies
Although there are available implementations of the
BWT-based overlap detection, ours differs from the exist-
ing ones in the following aspects. The first difference is
the storage of the read ID information. For a constructed
BWT and a query, the output of the backward search is
the set of reads (i.e., their IDs) that form overlaps with the
query. Theoretically, different reads can be distinguished
by appending unique delimiters at the end of each read.
In our implementation, we use ‘$’ as the delimiter for
all reads. The read ID array RID is created only for suf-
fixes starting with ‘$’. This works because the backward
search algorithm needs to retrieve the read ID in the final

A B
Fig. 3 Chimeric reads may introduce contamination. The reference is a gene or a functional site (long green bar). The reads are represented by short
lines. Green reads are sequenced from the reference. Red color represents sequences from another species. a. When the overlap cutoff is small, a
chimeric read can be extended and thus recruits reads from other species. b. When the overlap cutoff is bigger than half of the read size, a chimeric
read could be recruited but will not be extended in the following iterations
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step, where the character to search is ‘$’. This modification
reduced the size of RID from |T | integers to n (number of
reads) integers, where T is roughly the product of n and
the read size.

Iterative search
Overlap detection will be iteratively applied to recruit
reads sequenced from targeted viruses. Let R0 be the
set of seed reads that can be mapped to given reference
sequences (i.e., seed read set). First, BWT(T) forT is built.
The seed reads in R0 are used as queries to BWT(T).
Then newly identified reads that overlap with the seed
reads will be used as new queries to the BWT. The itera-
tions will continue until no new reads can be retrieved. Its
pseudocode is described in Additional file 1: Section 2.

Running time andmemory usage
In the above pipeline, once the BWT is constructed, the
suffix array will be deleted. The running time of suffix
array and BWT construction is linear to |T |. The memory
usage of BWT is the product of |T | and the size of each
character and thus is linear to |T |. The memory usage of
the RID is the product of n and the size of saving a read ID.
When creating BWT for all reads becomes too expen-

sive, our program supports distributed construction of the
BWT and FM-index for large input. Specifically, the pro-
gram can automatically partition input data into multiple
smaller files. BWT is then constructed for each divided
data set. The read overlap detection can be run in paral-
lel for each BWT. The identified reads are combined and
used as the query for the next iteration of read recruit-
ment. In this case, the largest memory footprint is deter-
mined by the size of each divided read set. By default, the
number of partitions is five. This number can be modified
by users.

Strain-level assembly
The final outputs of our program are assemblies of viral
strains. All recruited reads will be used as input to assem-
bly programs. As our program has a modular structure,
this step can be executed by any assembly tool cho-
sen by the users. By default, we include in the pack-
age our in-house developed tool PEHaplo [37] for viral
haplotype reconstruction. PEHaplo does not require any
reference sequences and conducts strain-level assembly
using paired-end reads. For the input paired-end reads,
PEHaplo constructs a paired-end overlap graph, which
augmented standard overlap graphs by adding edges con-
necting nodes that can form ends of read pairs. Then,
a greedy path finding algorithm is applied to search for
the paths with the best supports from paired-end reads,
where the supports are quantified by the number of con-
tained read pairs and also their distances. For the detailed
algorithm and implementation of PEHaplo, we refer the
readers to the manuscript.

Additional file

Additional file 1: Supplementary information for LCS sizes, iterative
search, complete assembly results for SARS-CoV data, and tool commands.
(PDF 790 kb)
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