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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap 

with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can 

cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients 

suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the 

disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of 

published genetic modifiers both in patients and in model organisms, and undertook bioinformatic 
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pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation 

(1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified 

defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. 

We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier 

genes were identified as modifiers of more than one ALS gene/model, consistent with the 

hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-

based bioinformatic analysis to identify pathways and associated genes that may be important in 

ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work 

suggests that shared molecular mechanisms may underlie pathology caused by different ALS 

disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease 

model. Understanding genes that modify ALS-associated defects will help to elucidate the 

molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
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Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive disease that results in selective 

degeneration and death of upper (cortical) and lower (spinal) motor neurons. First described 

by Jean-Martin Charcot in 1869 (Rowland, 2001), ALS is characterized by muscle 

weakness, paralysis, respiratory failure, and death typically within 3–5 years of symptom 

onset. Within the past two decades, over 20 genes have been identified and/or implicated in 

ALS (Baker et al., 2006; Brenner et al., 2016; Chaussenot et al., 2014; Chen Y. Z. et al., 

2004; Chesi et al., 2013; Chow et al., 2009; Cirulli et al., 2015; Couthouis et al., 2012; Cruts 

et al., 2006; Daoud et al., 2012; DeJesus-Hernandez et al., 2011; Deng et al., 2011; Deng et 

al., 1993; Elden et al., 2010; Figlewicz et al., 1994; Freischmidt et al., 2015; Greenway et 

al., 2006; Gros-Louis et al., 2004; Hutton et al., 1998; Johnson et al., 2014a; Johnson et al., 

2010; Johnson et al., 2014b; Kabashi et al., 2008; Kenna et al., 2016; Kim H. J. et al., 2013; 

Kwiatkowski et al., 2009; Leblond et al., 2014; Leung et al., 2004; Maruyama and 

Kawakami, 2013; Millecamps et al., 2014; Mitchell et al., 2010; Munch et al., 2005; Munch 

et al., 2004; Nishimura et al., 2004; Parkinson et al., 2006; Pensato et al., 2015; Rademakers 

and van Blitterswijk, 2014; Renton et al., 2011; Rosen et al., 1993; Skibinski et al., 2005; 

Skvortsova et al., 2004; Smith et al., 2014; Sreedharan et al., 2008; Sreedharan and Brown, 

2013; Takahashi et al., 2013; Teyssou et al., 2013; Teyssou et al., 2014; Ticozzi et al., 2011; 

Van Deerlin et al., 2008; Vance et al., 2009; Wu et al., 2012; Yang Y. et al., 2001). Together, 

mutations in superoxide dismutase 1 (SOD1), TAR DNA binding protein (TARDBP), fused 

in sarcoma (FUS), and chromosome 9 open reading frame 72 (C9orf72) account for 

approximately 60–70% of ALS cases with a family history. Other genes, including VAMP-

associated protein B (VAPB), valosin-containing protein (VCP), and optineurin (OPTN), 

account for 30–40% of familial cases. The proteins encoded by these genes are involved in a 

variety of pathways, including oxidative stress (Barber et al., 2006), protein aggregation 

(Bruijn et al., 1998), and neuroinflammation (Hooten et al., 2015). However, despite the 

varied roles of these proteins in healthy cell function, disease alleles of the aforementioned 
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genes can lead to ALS. Even though we have made progress on understanding some aspects 

of ALS, we do not understand how or why mutations in functionally diverse proteins can 

cause what appears to be a single disease.

Insights into ALS pathological mechanisms came from the discovery that mutations in a 

subset of these genes can also cause frontotemporal dementia (FTD), with characteristic 

degeneration of frontal and temporal lobe neurons (Ratnavalli et al., 2002). ALS and FTD 

share many pathological hallmarks, including ubiquitinated inclusions, which have been 

observed in lower motor neurons and cortical neurons of patients with ALS. Furthermore, 

approximately 50% of ALS patients develop FTD-like symptoms and around 40% of FTD 

patients develop ALS-like symptoms (Ferrari et al., 2011; Ji et al., 2017; Lomen-Hoerth et 

al., 2002; Lomen-Hoerth et al., 2003; Strong, 2008). These observations suggest that ALS 

and FTD are related and may share pathways leading to neurodegeneration (Arai et al., 

2006; Leigh et al., 1991; Liscic et al., 2008; Mackenzie and Feldman, 2005). One strategy 

that can be used to delineate shared pathways, is to find “genetic modifiers” or “modifier 

genes” of ALS and FTD genes, which can reveal pathological mechanisms.

Broadly defined, “modifier genes” are genes with alleles that ameliorate or exacerbate 

defects caused by an allele of another gene. Modifier genes, in patients, may influence 

clinical presentation of disease including disease onset, severity, penetrance, or progression. 

Classical genetic studies in model organisms have extensively used modifier gene analysis to 

dissect function and dysfunction, contributing to our understanding of neurodegenerative 

diseases (Alexander et al., 2014; Dimitriadi and Hart, 2010; Gama Sosa et al., 2012; Plantie 

et al., 2015; Therrien and Parker, 2014; Verbandt et al., 2016). Large scale forward genetic 

screens for modifiers are possible in small, genetically tractable organisms, such as S. 
cerevisiae, C. elegans, and D. melanogaster (Chen X. and Burgoyne, 2012; Sin et al., 2014). 

These can yield unexpected insights into mechanisms and complement hypothesis-driven 

studies. Most animal models of ALS compare the consequences of expressing a human 

protein containing the disease mutation versus the wild type form of the protein. These 

models have been used to identify genetic modifiers of ALS-associated defects and we 

surveyed their results. Also, ALS alleles may cause loss of function, which may contribute 

to disease pathology. Therefore, we surveyed the results of previous studies focused on 

identifying modifiers of either disease models or ALS-gene ortholog loss of function.

Further, ALS modifier genes have also been identified in human populations and may help 

explain variation in clinical presentation or disease progression. The site of onset (bulbar or 

spinal), age of onset, progression rate, and level of cognitive impairment can differ between 

patients even within the same family (Swinnen and Robberecht, 2014). The variability 

observed in ALS patients may be, in part, due to a result of different alleles of modifier 

genes that affect progression, penetrance or onset—even if these modifier alleles do not 

cause disease per se. Risk genes are also of interest, as they may reveal pathways critical for 

disease, even if risk genes are neither necessary nor sufficient to cause disease. Genome 

wide association studies (GWAS) and linkage analysis in humans with ALS have been used 

to identify genetic modifiers (Giess et al., 2002; Gros-Louis et al., 2004; Lee Y. B. et al., 

2013).
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Here, we undertook a comprehensive literature search and identified 946 genes that act as 

modifiers of ALS-associated defects in S. cerevisiae, C. elegans, D. melanogaster, M. 
musculus, or human patients. As shared mechanisms may underlie ALS, we used a gene 

ontology bioinformatics approach to identify pathways pertinent to disease. This 

bioinformatic analysis focused on 727 modifier genes that are orthologous to human genes, 

some of which have been identified in human studies. The results suggest that shared 

pathways may underlie ALS, regardless of the disease gene involved.

Experimental Methods

Literature Search

We searched the literature in PubMed from September 7, 2016 - December 31, 2016 and 

identified studies that reported modifier genes in ALS models or modifiers of ALS ortholog 

loss of function (Fig. 1). Specifically, we examined papers in PubMed reporting genetic 

modifiers of SOD1, TDP43, C9orf72, FUS, or VAPB. For SOD1, TDP43, C9orf72, and 

FUS; two independent co-authors searched the literature. The literature review included, but 

was not limited to, genome-wide screens and candidate genes reported to modify phenotypes 

in S. cerevisiae, C. elegans, D. melanogaster, M. musculus, and cell culture models. 

Additionally, we searched for genetic modifiers of ALS in patients, which was reviewed by 

Ghasemi and Brown (Ghasemi and Brown, 2017). A database was assembled in Microsoft 

Excel with the NCBI GeneID, modifier gene name, human ortholog name, ALS model used, 

type of screen (RNAi knockdown, genome-wide screen) and impact of modifier on 

phenotype. The total number of modifier genes (946) corresponds to all modifier genes 

identified in the literature survey; we did not reexamine this list to identify and eliminate 

orthologous genes independently identified in different model organisms, which would 

modestly reduce this number. Additionally, using OMIM (Online Mendelian Inheritance of 

Man) a list of genes known to cause ALS and/or FTD was compiled. At least 2 independent 

coauthors checked each ALS gene after the database was assembled to ensure the accuracy. 

All data used in the analysis are included in the manuscript and supplemental files.

Human Ortholog Identification

Human orthologs of modifier genes found in model organisms were identified using best 

match similarity with BLAST (NCBI) at blast.ncbi.nlm.nih.gov/Blast.cgi based on protein 

sequences. If there was more than one best match, then up to three were reported in the 

“other orthologs” column in Supplemental File 1. When genes with identical statistical 

scores were called as best match, both genes were included in the bioinformatics analysis. 

For example, Hbr98DE gene is an ortholog of both hnRNPA1 and hnRNPA2B1. Human 

ortholog identification was verified with DIOPT (http://www.flyrnai.org/diopt) (Hu et al., 

2011). If no human ortholog was found, the modifier gene was not included in 

bioinformatics analysis presented herein.

Gene Ontology Bioinformatic Analysis

Gene ontology (GO) bioinformatic analysis was performed independently for lists of human 

genes and/or orthologs of modifier genes identified in other species. GO terms that describe 

Biological Processes are tested to determine if these were over-represented in the curated 
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gene lists, compared to the rest of the transcriptome, using a hypergeometric test 

implemented in the GOstat package (Falcon and Gentleman, 2007). GO terms with a p-value 

less than 0.05 after Bonferroni correction were considered overrepresented. In addition, a list 

of modifier genes associated with more than one ALS genes was assembled and 

independently subjected to GO analysis. The supplemental files containing lists of modifier 

genes and other data use in the bioinformatic analysis are available at https://doi.org/

10.26300/7asw-k867.

Results

To identify modifier genes associated with ALS, we searched the PubMed literature database 

at the National Center for Biotechnology Information (NCBI) for modifiers of SOD1, 

TDP43, FUS, C9orf72, VAPB, and other ALS genes. In total, 72 studies were found 

reporting modifier genes 1) in ALS models, 2) in human patients, or 3) for loss of function 

alleles of ALS gene orthologs. The resulting list of genes is available in Supplemental File 1. 

Here, we provide an abbreviated background for ALS genes that served as the basis for our 

search, including a brief description of ALS models used in modifier gene studies. For each 

ALS gene, gene ontology bioinformatic pathway analysis was undertaken and pathways that 

were enriched in gene ontology analysis are discussed.

SOD1

In 1993, the discovery that point mutations in superoxide dismutase 1 (SOD1) cause ALS 

revolutionized the field (Deng et al., 1993; Rosen et al., 1993). SOD1 is an evolutionarily 

conserved, ubiquitously expressed protein that catalyzes breakdown of superoxide radicals 

into hydrogen peroxide and water. As the second most common gene whose mutation causes 

familial ALS (fALS), mutations in SOD1 account for approximately 20% of fALS cases and 

5% of sporadic ALS (sALS) cases (Kaur et al., 2016). Over 100 mutations have been 

identified in SOD1, and almost all disease alleles are dominant in patients. From many 

studies, it seems likely that disease alleles cause a toxic gain of function, but loss of function 

may contribute to disease pathology (Bruijn et al., 1998; Saccon et al., 2013).

Two non-exclusive hypotheses for SOD1-associated ALS motor neuron degeneration 

dominate the field: the aggregation hypothesis and the oxidative stress hypothesis. Mutant 

SOD1 protein aggregates in the cytosol of SOD1 ALS patient cells are thought to confer 

toxicity or reduce SOD1 enzymatic activity (Stieber et al., 2000; Watanabe M. et al., 2001). 

Early studies in mice supported a toxic gain of function hypothesis, as SOD1 null mice do 

not exhibit ALS-like pathology and overexpression of mutant human SOD1 resulted in 

reduced enzymatic activity (Gurney et al., 1994; Reaume et al., 1996). However, how SOD1 

mutations cause ALS is still debated. More recent studies suggest that SOD1 loss of function 

also contributes to ALS dysfunction and degeneration. One possible mechanism is that 

mutations in SOD1 cause loss of function by aggregation, causing abnormal buildup of 

superoxide radicals or hydrogen peroxide, the substrate and byproducts of SOD1 action, 

respectively (Beckman et al., 1993). SOD1 activity is decreased in patients with ALS, 

suggesting that SOD1 loss of function may contribute to pathology (Rosen et al., 1993; 

Watanabe Y. et al., 1997). SOD1-mediated motor neuron death may be caused by a 
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combination of the loss and gain of function consequences of patient alleles of SOD1 (Sahin 

et al., 2017).

ALS models have been created by overexpressing mutant human SOD1 protein in numerous 

model organisms and comparing the deleterious consequences of the mutant protein to the 

consequences of overexpressed wild type human SOD1 protein. Two of the most frequently 

used patient alleles in SOD1 ALS models are missense mutations that result in a glycine to 

arginine substitution at position 85 (G85R) or a glycine to alanine substitution at position 93 

(G93A). As SOD1 loss of function may also contribute to ALS-associated defects, modifier 

genes that suppress defects associated with SOD1 loss of function alleles are also of interest. 

In the literature, we found 33 articles that, in combination, yielded 164 modifier genes in 

either SOD1 ALS model animals or animals lacking SOD1 ortholog function. These are 

listed in Supplemental File 1 in the SOD1 tab (Allodi et al., 2016; Bahadorani et al., 2013; 

Boccitto et al., 2012; Chloupkova et al., 2003; Couillard-Despres et al., 1998; Dadon-

Nachum et al., 2015; Dobrowolny et al., 2008; Giess et al., 2002; Hetz et al., 2009; Jablonski 

et al., 2015; Kieran et al., 2007; Kumimoto et al., 2013; Lambrechts et al., 2003; Lapinskas 

et al., 1995; Liu et al., 2002; Lobsiger et al., 2005; Lorenzl et al., 2006; Lu et al., 2009; Lunn 

et al., 2009; Marden et al., 2007; Ohta et al., 2016; Pitzer et al., 2008; Reyes et al., 2010; 

Riddoch-Contreras et al., 2009; Sharp et al., 2008; Silva et al., 2011; Strain et al., 1998; 

Teuling et al., 2008; Turner et al., 2014; Wang J. et al., 2009; Yang Y. S. et al., 2009; Zhai et 

al., 2005).

We hypothesized that shared pathways might link SOD1 modifier genes. To identify these 

connections, we undertook gene ontology enrichment analysis of the assembled SOD1 

modifier gene lists and identified enriched Gene Ontology (GO) pathways. Initially, this 

analysis was complicated by the diversity of model organisms used for modifier gene 

identification. To facilitate cross-species comparisons and bioinformatic analysis, the closest 

human ortholog of each modifier gene was identified based on amino acid similarity using 

reciprocal BLAST analysis. Proteins that lacked a human ortholog were excluded from 

bioinformatic analysis. This bioinformatic analysis revealed enrichment of pathways integral 

for endogenous SOD1 function: “response to reactive oxygen species” (GO:0000302) and 

“regulation of oxidative stress-induced intrinsic apoptotic signaling” (GO:1902175). The 

complete SOD1 pathway analysis is presented in Supplemental File 2, SOD1 tab, and top 

hits are illustrated in Fig. 2A (pathways with odds ratio > 5). The most enriched pathway for 

SOD1 modifier genes was “neurotransmitter reuptake” (GO:0098810). The SOD1 modifier 

genes from the literature survey that led to bioinformatic analysis identification of 

“neurotransmitter reuptake” are shown in Fig. 6.

TDP43

Ubiquitinated inclusions in affected patient neurons are a frequent pathological hallmark of 

ALS (Arai et al., 2006; Leigh et al., 1991; Ling et al., 2013; Liscic et al., 2008; Mackenzie 

and Feldman, 2005; Maekawa et al., 2009; Neumann et al., 2006). In 2006, TAR DNA 

binding protein 43 (TDP43), was identified as the ubiquitinated protein in intracellular 

aggregates in both ALS and FTD (Neumann et al., 2006). TDP43, encoded by the TARDBP 

gene, is a ubiquitously expressed nucleic acid binding protein that play critical roles in RNA 
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splicing and microRNA biogenesis (Buratti and Baralle, 2008). Over 40 missense mutations 

in TARDBP have been identified in ALS cases (Sreedharan and Brown, 2013). These 

missense mutations are almost always located in the glycine-rich C-terminal domain of the 

protein, which has important roles in protein-protein interactions and liquid-liquid phase 

separation (Wang et al. 2018; Sreedharan et al., 2008; Van Deerlin et al., 2008; Yokoseki et 

al., 2008).

TDP43 is predominantly found in the nucleus, with a minor fraction of the protein cycling 

through the cytosol. However, cytosolic TDP43 dramatically increases in patients carrying 

TARDBP fALS alleles, in many sALS patients, and in a large fraction of fALS patients 

carrying mutations in other causal genes. TDP43 mislocalization may contribute to the 

degeneration of motor neurons in ALS/FTD. One hypothesis is that mutant TDP43 acts 

through a gain of toxic function mechanism by aggregating and inhibiting the endogenous 

function of normal TDP43. In this model, TDP43 loss of function defects would contribute 

to neurodegeneration. Alternatively, mutations in TDP43 could alter endogenous RNA 

splicing and microRNA biogenesis via disruption of functional interactions (Conicella et al., 

2016) or mutant TDP43 protein may act in an abnormal cellular compartment, resulting in 

neurodegeneration and indicative of a gain of toxic function mechanism.

We found eleven published studies that, in combination, reported 93 modifier genes of 

TDP43 ALS/FTD phenotypes (Supplemental File 1, TDP43 Tab), for either mutant TDP43 

overexpression, wildtype TDP43 overexpression, or TDP43 ortholog loss of function 

(Armakola et al., 2012; Chou et al., 2015; Elden et al., 2010; Figley and Gitler, 2013; 

Jablonski et al., 2015; Kim H. J. et al., 2014; Kim S. H. et al., 2012; Liachko et al., 2013; 

Sreedharan et al., 2015; Zhan et al., 2013; Zhan et al., 2015). We undertook bioinformatics 

analysis, as described above, with these TDP43 modifier genes and found only 4 enriched 

GO pathways with odds ratio above 5 (Fig. 2B). Pathways are listed in Supplemental File 2, 

TDP43 tab, and include “G/M2 cell cycle regulation” (GO:0000086, GO:0044839) and 

“regulation of viral transcription” (GO:0019083, GO:0032897), for which TDP43 roles have 

already been described (Ignatius et al., 1995; Yamashita et al., 2014). Modifier genes that led 

to bioinformatic analysis identification of “G/M2 cell cycle regulation” are shown in Fig. 6.

FUS

Originally characterized as a liposarcoma oncogene, mutations in the Fused in Sarcoma gene 

(FUS) were found in a cohort of 197 British ALS patients in 2009. The FUS protein is a 

ubiquitously expressed RNA-binding protein involved in splicing and stress granule 

formation (Lagier-Tourenne and Cleveland, 2009). Mutations in FUS cause approximately 

4–5% of all familial ALS cases. Patient mutations can be found throughout the FUS protein, 

but mutation of the C-terminal nuclear localization signal (NLS) is most frequently observed 

(Ju et al., 2011; Ling et al., 2013). In some cases, FUS mutations result in FTD, and patients 

with FUS-linked FTD usually show ALS symptoms (Nolan et al., 2016). These FTD 

patients present with FUS-immunoreactive inclusions; these inclusions are also present in 

the motor neurons of FUS ALS patients who lack FTD symptoms (Deng et al., 2010; Hewitt 

et al., 2010; Rademakers et al., 2010).
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In most FUS ALS patients examined, mutant FUS is mislocalized from the nucleus and 

protein aggregates form in the cytoplasm (Dormann et al., 2010; Vance et al., 2009). 

Furthermore, cytoplasmic FUS incorporates into membraneless organelles - phase separated 

liquid structures (e.g. stress granules), which may drive mutant FUS aggregation (Bosco et 

al., 2010; Burke et al., 2015; Patel et al., 2015). Cytoplasmic aggregation of FUS may inhibit 

the maturation of RNAs integral for the survival of motor neurons, as nuclear FUS is 

important for mRNA splicing (Colombrita et al., 2015; Sun S. et al., 2015). Alternatively, 

mutant FUS may act via a gain of function mechanism where patient mutations may subvert 

DNA repair mechanisms, leading to cumulative increases in DNA damage (Hill et al., 2016).

We found five articles that identified 72 modifiers of FUS (Armakola et al., 2012; Chen Y. et 

al., 2016; Farg et al., 2013; Ju et al., 2011; Sun Z. et al., 2011) (Supplemental File 1, FUS 

tab). Many of these suppressor and enhancer genes were identified in genome-wide modifier 

screens in yeast expressing mutant human FUS at high levels (Sun Z. et al., 2011). Our 

bioinformatic analysis identified 34 GO terms/pathways that were enriched (Fig. 2C, 

Supplemental File 2, FUS tab). Many of these are related to cellular pathways associated 

with normal FUS protein function, including “RNA processing” (GO:0006396) and 

“translation” (GO:0006412). The FUS modifier genes associated with the most enriched GO 

term “nuclear-transcribed mRNA poly(A) tail shortening” (GO:0000289) are shown in Fig. 

6.

C9orf72

In 2011, expansion of GGGGCC (G4C2) repeats in the non-coding region of chromosome 9 

open reading frame 72 (C9orf72) was identified in ALS patients. C9orf72 expansion is one 

of the most common causes of ALS and FTD and accounts for approximately 40% of fALS 

cases (Rademakers et al., 2012). The number of G4C2 repeats varies dramatically between 

patients; Southern blot analysis from one family revealed pathogenic repeats ranging from 

700–1,600 (DeJesus-Hernandez et al., 2011; Haeusler et al., 2016). In addition to the typical 

ALS motor neuron functional defects, C9orf72 ALS patients may have earlier disease onset, 

cognitive and behavioral impairment, and decreased survival compared to other patients 

(Rademakers et al., 2012).

Why G4C2 repeats cause disease is still unclear; studies have suggested the C9orf72 protein 

has roles in the endolysosomal pathway and vesicle trafficking (Aoki et al., 2017; 

Corrionero and Horvitz, 2018). Three non-exclusive mechanisms have been proposed: 

decreased C9orf72 protein expression, toxic expanded G4C2 repeat RNAs, and/or toxic 

dipeptide repeat (DPR) proteins generated by repeat-associated non-AUG (RAN) translation 

of G4C2 repeat RNAs (Haeusler et al., 2016).

Considerable evidence suggests that high level expression of either G4C2 repeat-derived 

RNAs or DPR proteins can be toxic. G4C2 repeat RNA may sequester RNA binding proteins 

and splicing factors, thus disrupting their normal functions and causing neurodegeneration 

(Lee Y. B. et al., 2013; Mori et al., 2016; Xu et al., 2013). This model is supported by the 

observation that overexpression of Pur-α, an RNA-binding protein that physically interacts 

with repeat RNAs, suppresses G4C2-mediated neurodegeneration in mouse neuronal cells 

and D. melanogaster (Xu et al., 2013). However, DPR proteins are also toxic. These are 
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produced through RAN translation of G4C2 repeat RNA, which occurs in the absence of an 

AUG initiation codon and from both sense and antisense G4C2 repeat strands (Zu et al., 

2013). Different DPR proteins have varying levels of toxicity: the arginine-rich DPRs, 

poly(GR) and poly(PR) are most toxic (Jovicic et al., 2015; Kwon et al., 2014; Wen et al., 

2014), poly(GA) is moderately toxic, and poly(GP) and poly(PA) are the least toxic 

(Freibaum et al., 2015; Wen et al., 2014).

We found eight articles that identified modifier genes for G4C2 RNA and/or DPR toxicity 

(Supplemental file 1, C9orf72 tab) (Boeynaems et al., 2016; Freibaum et al., 2015; Jovicic et 

al., 2015; Kramer et al., 2016; Lee K. H. et al., 2016; Mori et al., 2016; Xu et al., 2013; 

Zhang et al., 2015). Multiple unbiased genetic screens were undertaken in D. melanogaster 
and S. cerevisiae for modifiers of poly(PR) toxicity (Boeynaems et al., 2016; Jovicic et al., 

2015). Screens in a D. melanogaster eye poly(PR) model yielded modifiers encoding 

proteins that directly interact with poly(GR) and poly (PR) peptides (Lee K. H. et al., 2016). 

In a candidate-based screen using D. melanogaster expressing (G4C2)30 repeats, RanGAP 

was identified as a suppressor of neurodegeneration (Zhang et al., 2015). No modifiers of 

C9orf72 loss of function have been reported.

From these eight studies, we assembled a list of 285 genetic modifiers with human orthologs 

of G4C2 toxicity (Supplemental File 1, C9orf72 tab). Gene ontology bioinformatic analysis 

revealed 98 enriched GO pathways (Supplemental File 2, C9orf72 tab). These include 

“nuclear pore assembly”, “protein import”, and “protein export” (Fig. 3, Fig. 4). 

Additionally, “gene silencing by miRNA” (GO:0035195) and metabolism-associated 

pathways were enriched in this dataset. Genes associated with the most enriched pathway in 

our bioinformatics analysis, “nuclear pore complex assembly” (GO:0051292), are presented 

in Fig. 6.

VAPB and other ALS genes

Most studies that report ALS modifier genes focus on SOD1, TDP43, C9orf72, or FUS. 

Mutations in other genes also lead to ALS and insights into disease pathogenesis may arise 

from analysis of these other disease genes. In 2004, a P56S mutation in the Vesicle-

Associated Membrane Protein-Associated Protein B/C (VAPB) gene was identified in seven 

different Brazilian families with afflicted individuals showing ALS and/or late-onset spinal 

muscular atrophy (Nishimura et al., 2004). VAPB protein interacts with SNARE proteins 

and regulates vesicular transport. Although the severity, presentation, and progression of 

disease varies between families, the VAPB P56S mutation was dominant (Nishimura et al., 

2004). The P56S mutation lies in the VAPB protein Major Sperm Protein (MSP) domain, 

which likely mediates protein dimerization and other protein-protein interactions.

The functional consequences of VAPB P56S that lead to ALS are poorly understood, but 

both gain of function (Kuijpers et al., 2013; Ratnaparkhi et al., 2008) and loss of function 

mechanisms (Kabashi et al., 2013) have been proposed. In normal cells, VAPB mediates 

membrane interactions between mitochondria and the endoplasmic reticulum, which are 

critical for mitochondrial calcium regulation and ATP production (Stoica et al., 2014; Stoica 

et al., 2016). Mutations in either TDP43 or FUS can disrupt VAPB function, ultimately 

leading to disrupted mitochondrial calcium uptake and decreasing ATP production (Stoica et 
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al., 2014; Stoica et al., 2016). We found two articles describing genetic modifiers of VAPB 

(Deivasigamani et al., 2014; Sanhueza et al., 2015), as well as one article describing genetic 

modifiers of OPTN (Akizuki et al., 2013) and one article describing VCP modifier genes 

(Ritson et al., 2010) (Supplemental File 1, Other tab). We searched for modifier genes of 

other fALS-linked genes, but did not uncover additional modifier studies in the published 

literature. VAPB modifiers were identified in two different D. melanogaster screens. 

Deivasigamani et al. upregulated or downregulated D. melanogaster VAPB (dVAP) ortholog 

levels, which results in altered bristles (Deivasigamani et al., 2014). Sanhueza et al., found 

that high level expression of dVAP[P58S] in the D. melanogaster eye leads to reduced eye 

size and used this observation to identify 85 modifier genes (Sanhueza et al., 2015). Only 

one pathway, “single-organism cellular localization” (GO:1902580), was significantly 

enriched in our gene ontology bioinformatics.

Modifier genes associated with more than one ALS gene

If patient alleles in the genes listed above lead to a single disease, which we call ALS, then 

one would expect commonalities in disease mechanism and pathological processes. 

Accordingly, one might expect common pathways to arise from modifier gene analyses. This 

hypothesis is supported by previous work demonstrating that some modifier genes impact 

ALS-associated defects in more than one ALS model. In total, 946 modifier genes were 

identified from the literature with 727 corresponding human orthologs (Supplemental File 

1). To look for commonalities between ALS modifier genes, we compiled a list of modifier 

genes with impact on more than one ALS causal gene (Table 1). For example, if a gene 

modified defects in both an SOD1 ALS model and a TDP43 ALS model, it was included in 

Table 1 (and in Supplemental File 1, multiple ALS genes). In addition, Table 1 includes 

modifier genes identified in ALS patient GWAS or genetic studies that have been validated 

in ALS models, as these are likely relevant to disease. In total, 43 modifier genes have 

functional impact on more than one ALS gene and are listed in Table 1.

Two genes, KPNB1 and TARDBP, were identified as genetic modifiers in more than two 

ALS models. KPNB1 was reported as a modifier of C9orf72, VAPB, and TDP43 ALS 

models. In an RNAi screen conducted in D. melanogaster C9orf72 model of ALS, decreased 

KPNB1 function enhanced PR25-mediated eye degeneration (Boeynaems et al., 2016). In 

HeLa cells, KNPB1 knockdown enhanced the cytosolic localization of TDP43 (Kim S. H. et 

al., 2012). Additionally, overexpression of the D. melanogaster ortholog of KPNB1, 

Fs(2)Ket, resulted in suppression of the rough eye phenotype in a VAPB model of ALS. 

TARDBP was reported as a modifier of C9orf72, VAPB, and VCP. RNAi knockdown of 

TARDBP in a C9orf72 model suppressed a viability defect and the rough-eye phenotype in a 

D. melanogaster model (Lee K. H. et al., 2016). TARDBP has also been reported as a 

suppressor of VCP-related degeneration (Ritson et al., 2010) and acts as a suppressor in an 

overexpression model of VAPB (Deivasigamani et al., 2014). While TARDBP was 

intentionally selected for assessment in these studies, the nuclear pore complex protein, 

KPNB1, was independently identified in less biased screens.

To identify common pathways associated with modifier genes, we undertook bioinformatic 

analysis with the genes listed in Table 1. Forty-two GO terms were enriched in this analysis. 
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Pathways enriched in in this modifier gene list included GO terms associated with protein 

transport or metabolic processes. The most enriched GO term was “protein import into 

nucleus, translocation” (GO:0000060).

Discussion

Modifier gene studies have the potential to dramatically increase our understanding of ALS 

pathogenesis and to provide insight into variation in patient symptoms, penetrance of 

disease, and disease progression. Modifier gene studies can provide insights into pathways 

associated with neuronal dysfunction and neurodegeneration in ALS. Furthermore, common 

genetic modifiers may link ALS caused by mutations in different genes, suggesting a 

common mechanism of motor neuron degeneration. Additionally, modifier genes can be 

used to identify pathways and targets for therapeutic intervention. Many genetic modifiers of 

ALS have been discovered through hypothesis-driven experiments, forward genetic screens, 

or genetic studies in human populations. But, to our knowledge, a comprehensive listing and 

analysis of modifier genes pertinent to ALS has not been undertaken previously.

It is likely that both loss and gain of function mechanisms contribute to ALS pathology. 

Therefore, we included modifiers of both loss- and gain of function in our survey, as well as 

overexpression of wildtype or mutant protein. In total, we compiled a list of 727 modifier 

genes with human orthologs. Many modifier genes were found in S. cerevisiae, C. elegans, 

D. melanogaster, M. musculus, and cell culture models of ALS. Additionally, genetic 

modifiers were identified in ALS patients through linkage analysis and genome wide 

association studies. In total, we identified 72 articles in the published literature that reported 

727 modifier genes with human orthologs for SOD1, TDP43, FUS, C9orf72, VAPB, VCP, or 

OPTN. We searched for modifiers of other ALS-linked genes, but did not find any in the 

published literature. Interestingly, the 727 genes identified as modifiers of ALS corresponds 

to roughly 5% of human genes, consistent with the complexity of this disease. We appreciate 

the enormous effort these original studies represent and we hope to highlight the importance 

of these studies and leverage their results to identify common pathways pertinent to ALS. 

We note that additional modifier genes have been reported in subsequent studies, including 

those by Kramer et al. 2018 (Kramer et al., 2018).

Many of the pathways that were enriched in our bioinformatics analysis are associated with 

the endogenous functions of genes implicated in ALS and are established as dysregulated in 

ALS patients, including “response to reactive oxygen species” (GO:0000302) in SOD1 and 

“RNA processing “(GO:0006396) in FUS. Interestingly, metabolic processes were identified 

as enriched pathways in all of our modifier gene lists. This commonality highlights the 

importance of previous studies demonstrating that metabolism is affected in ALS patients 

(Mattiazzi et al., 2002).

FUS and TARDBP encode RNA-associated proteins and it has been suggested that they act 

in the same pathways in ALS pathogenesis (Honda et al., 2013). The analysis of FUS and 

TARDBP modifier genes could be interpreted to support this hypothesis. When GO 

pathways are examined, 2 of the 12 enriched GO terms found from the list of TDP43 

modifier were also included in the list of 60 FUS-modifier enriched GO terms: “cellular 

macromolecule metabolic process” and “viral transcription”. There were over 2000 GO 
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pathway terms available in our bioinformatic analysis; the small overlap we observed 

between FUS and TDP43 is significant, but may reflect the importance of RNA-binding 

proteins in these processes.

The comprehensive literature search reveals that relatively few ALS modifier genes have 

been tested in other models of ALS or have been identified in more than one independent 

modifier screen. Overall, only 43 modifier genes are reported to modify more than one ALS 

gene. Of these 43 genes, KNBP1 and TARDBP were reported to be modifiers in more than 

two ALS models. An inherent bias against the publication of “failure to suppress cross-

species” may partially account for this, as well as a bias against reporting negative results, or 

a lack of motivation to re-test modifier genes identified in other species/models. To fully 

understand why mutations in specific genes cause ALS and to identify therapeutic targets, 

we suggest that modifier genes should be tested in multiple ALS models. This should expose 

commonalities and differences between ALS caused by mutations in different genes and 

inform the selection of therapeutic targets.

ALS modifier gene studies have already increased our understanding of pathways that may 

be dysregulated in this devastating disease. We provide the first comprehensive review of 

published ALS modifier genes and undertook bioinformatic analysis. These data suggest that 

common pathways may underlie ALS caused by mutations in different genes. We expect that 

as additional modifier genes are identified and tested in additional models of ALS, more 

commonalities between the different ALS genes will be found and additional therapeutic 

targets will be developed for the treatment of this disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ALS Amyotrophic Lateral Sclerosis

C9orf72 Chromosome 9 open reading frame 72
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FTD Frontotemporal Dementia

FUS Fused in sarcoma

OPTN Optineurin

sALS Sporadic ALS

SOD1 Superoxide dismutase 1

TDP43 TAR DNA binding protein 43

VCP Valosin-containing protein

VAPB Vesicle-Associated Membrane Protein-Associated Protein B/C
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Fig. 1. 
Schematic representation of the workflow used to compile and analyze the list of genetic 

modifiers of ALS.
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Fig. 2. 
GO terms enriched for SOD1, TDP43 and FUS A) Diagram (top) shows relationship 

between GO terms enriched in gene ontology analysis of SOD1 genetic modifiers. Arrows 

indicate related terms that are “nested” inside a broader category. GO terms above odd ratios 

of 5 or greater are listed (below); the most highly enriched genes are at the top of the list. 

Darker red hues indicate a higher odds ratio (the magnitude of enrichment). For example, 

“neurotransmitter reuptake (GO:0098810)” has an odds ratio of 29.86 and is shown in red. 

This indicates that we observe more genes associated with “neurotransmitter reuptake” in 
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the list of SOD1 genetic modifiers than expected. Though it is enriched in our dataset, 

“intrinsic apoptotic signaling pathway (GO:0097193)” has an odds ratio of 5.35 and is 

shown in white. In this case, we still observe more genes than expected with “intrinsic 

apoptotic signaling pathway” in our dataset, but not to the same extent as “neurotransmitter 

reuptake” genes. B) GO terms enriched in TDP43 modifiers, presented as in panel A. C) GO 

terms enriched in FUS modifiers, presented as in panel A.
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Fig. 3. 
Diagram of GO terms enriched for C9orf72. Illustration of the relationship between GO 

terms enriched in gene ontology analysis of C9orf72 genetic modifiers. Arrows indicate 

related terms that are “nested” inside a broader category. Darker red hues are GO terms that 

were more enriched in the modifier list.
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Fig. 4. 
List of GO terms enriched for C9orf72. GO terms with odd ratios of 5 or more are listed; the 

most highly enriched genes are at the top of the list.
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Fig. 5. 
GO terms enriched for genes reported to be modifiers of multiple ALS genes. Diagram (top) 

shows relationship between GO terms enriched in gene ontology analysis. Arrows indicate 

related terms that are “nested” inside a broader category. Darker red hues are GO terms that 

were more enriched in the modifier list. GO terms above odd ratios of 5 or greater are listed 

(below); the most highly enriched genes are at the top of the list.
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Fig. 6. 
Modifier genes in the most enriched GO term for ALS genes. The most enriched GO term 

for each ALS genes is listed. Each pie chart contains the names of all human genes (or 

orthologs) that were associated with the top GO term. Genes are grouped and color coded 

based on originally reported perturbation of the modifier gene and their impact on ALS-

associated defects. For example, knockdown of the NUP98 D. melanogaster ortholog 

ameliorated ALS-associated defects in a D. melanogaster C9orf72; this gene was classified 

as “downregulation suppressed”.
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Table 1.

Genetic modifiers that may modify multiple ALS genes. This list includes the human orthologs that were 

identified as modifiers of more than one ALS-causal genes (e.g. SRRT orthologs were reported as modifiers in 

both SOD1 and TDP43 models). Additionally, human genes reported as modifiers through GWAS or linkage 

analysis studies are also included in this list.

Human Gene Organism Modifier for Reference

ATXN2 Yeast, Human TDP43, Human (Elden et al., 2010; Figley and Gitler, 2013; Lee T. et al., 2011)

BMP2 Nematode, Fly SOD1, C9orf72 (Wang J. et al., 2009; Zhang et al., 2015)

CCNB1 Yeast, Fly FUS, VAPB (Sanhueza et al., 2015; Sun Z. et al., 2011)

CCT4 Nematode, Fly SOD1, C9orf72 (Lee K. H. et al., 2016; Wang J. et al., 2009)

CDC6 Yeast, Fly C9orf72, VAPB (Deivasigamani et al., 2014; Jovicic et al., 2015)

CHGB Mouse, Human SOD1, Human (Gros-Louis et al., 2009; Ohta et al., 2016)

COA4 Nematode, Yeast SOD1, FUS (Sun Z. et al., 2011; Wang J. et al., 2009)

DAZAP1 Fly C9orf72, VCP (Ritson et al., 2010; Zhang et al., 2015)

DBR1 Yeast TDP43, FUS (Armakola et al., 2012; Figley and Gitler, 2013)

DNAJA1 Yeast, Fly SOD1, C9orf72 (Lee K. H. et al., 2016; Strain et al., 1998)

FBXW7 Nematode, Yeast SOD1, FUS (Sun Z. et al., 2011; Wang J. et al., 2009)

GNAQ Fly C9orf72, VAPB (Deivasigamani et al., 2014; Zhang et al., 2015)

HNRNPC Yeast, Fly C9orf72, FUS (Lee K. H. et al., 2016; Sun Z. et al., 2011)

IMPA1 Yeast, Fly FUS, VAPB (Deivasigamani et al., 2014; Sun Z. et al., 2011)

IPO5 Fly C9orf72, VAPB (Deivasigamani et al., 2014; Lee K. H. et al., 2016)

KPNB1 HeLa cells, Fly TDP43, C9orf72, VAPB (Boeynaems et al., 2016; Kim S. H. et al., 2012; Sanhueza et al., 2015)

MMP9 Mouse, Human SOD1, Human (Kaplan et al., 2014; Lorenzl et al., 2006)

MRPL33 Yeast TDP43, FUS (Armakola et al., 2012; Sun Z. et al., 2011)

NAA20 Fly C9orf72, VAPB (Deivasigamani et al., 2014; Zhang et al., 2015)

NCL Yeast, Fly C9orf72, FUS (Lee K. H. et al., 2016; Sun Z. et al., 2011)

NOB1 Nematode, Yeast SOD1, C9orf72 (Jovicic et al., 2015; Wang J. et al., 2009)

NUP50 Fly TDP43, C9orf72 (Boeynaems et al., 2016; Freibaum et al., 2015; Zhan et al., 2013)

NUP107 Fly FUS, C9orf72 (Boeynaems et al., 2016; Sun Z. et al., 2011)

PDE6D Nematode, Fly SOD1, VAPB (Deivasigamani et al., 2014; Silva et al., 2011)

PELO Yeast, Fly TDP43, C9orf72 (Armakola et al., 2012; Jovicic et al., 2015)

PGM1 Yeast, Fly TDP43, C9orf72 (Kim H. J. et al., 2014; Zhang et al., 2015)

PIAS1 Nematode, Fly SOD1, VAPB (Sanhueza et al., 2015; Wang J. et al., 2009)

POLD3 Yeast, Fly C9orf72, VAPB (Deivasigamani et al., 2014; Jovicic et al., 2015)

PPP1R3C Fly, Yeast C9orf72, FUS (Sun Z. et al., 2011; Zhang et al., 2015)

RAN Human cells, Fly TDP43, C9orf72 (Freibaum et al., 2015; Kim S. H. et al., 2012)

RBM10 Fly C9orf72, VAPB (Lee K. H. et al., 2016; Sanhueza et al., 2015)

SAMD4A Yeast TDP43, C9orf72 (Jovicic et al., 2015; Kim H. J. et al., 2014)

SCARB1 Fly C9orf72, VAPB (Sanhueza et al., 2015; Zhang et al., 2015)

SIRT1 Fly C9orf72, VAPB (Sanhueza et al., 2015; Zhang et al., 2015)

SLC17A5 Nematode, Fly SOD1, C9orf72 (Wang J. et al., 2009; Zhang et al., 2015)

SOD1 Fly SOD1, VAPB (Deivasigamani et al., 2014; Kumimoto et al., 2013)
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Human Gene Organism Modifier for Reference

SRRT Fly C9orf72, VAPB (Deivasigamani et al., 2014; Freibaum et al., 2015)

TARDBP Fly TDP43, C9orf72, VAPB, VCP (Deivasigamani et al., 2014; Lee K. H. et al., 2016; Ritson et al., 2010; 
Sreedharan et al., 2015; Wang J. W. et al., 2011)

TNPO1 Fly C9orf72, VAPB (Boeynaems et al., 2016; Deivasigamani et al., 2014)

TOP1 Nematode, Fly SOD1, C9orf72 (Lee K. H. et al., 2016; Wang J. et al., 2009)

UBR5 Yeast, Fly TDP43, C9orf72 (Kim H. J. et al., 2014; Lee K. H. et al., 2016)

UQCRC2 Nematode, Fly SOD1, VAPB (Deivasigamani et al., 2014; Silva et al., 2011)

XPO1 Nematode, Fly SOD1, C9orf72 (Silva et al., 2011; Zhang et al., 2015)
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