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Abstract Peritoneal malignant mesothelioma is a rare disease with a generally poor prog-
nosis and poor response to chemotherapy. To improve survival there is a need for increased
molecular understanding of the disease, including chemotherapy sensitivity and resistance.
We here present an unusual case concerning a young woman with extensive peritoneal me-
sothelioma who had a remarkable response to palliative chemotherapy (platinum/peme-
trexed). Tumor samples collected at surgery before and after treatment were analyzed on
the genomic and transcriptional levels (exome sequencing, RNA-seq, and smallRNA-seq).
Integrative analysis of single nucleotide and copy-number variants, mutational signatures,
and gene expression was performed to provide a comprehensive picture of the disease.
LATS1/2 were identified as the main mutational drivers together with homozygous loss of
BAP1 and PBRM1, which also may have contributed to the extraordinary chemotherapy re-
sponse. The presence of the S3 mutational signature is consistent with homologous recom-
bination DNA repair defects due to BAP1 loss. Up-regulation of the PI3K/AKT/mTOR
pathway after treatment, supported by deactivated PTEN through miRNA regulation, is as-
sociated with cancer progression and could explain chemotherapy resistance. The molec-
ular profile suggests potential benefit from experimental targeting of PARP, EZH2, the
PI3K/AKT/mTOR pathway and possibly also from immune checkpoint inhibition. In addition
to providing the molecular background for this unusual case of peritoneal mesothelioma,
the results show the potential value of integrative genomic analysis in precision medicine.

[Supplemental material is available for this article.]

INTRODUCTION

Mesothelioma is a rare and aggressivemalignancy associated with advanced age and asbes-
tos exposure, that most often arises from the mesothelial lining of the pleura, and less com-
monly from the peritoneum (7%–30%) (Kim et al. 2017). It has a poor prognosis with survival
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ranging from 7 to 27 mo depending on the histological subtype (Yap et al. 2017). Platinum-
based chemotherapy is the first-line treatment for unresectable disease. However, efficacy is
often low and disease progression is common (Mott 2012; Kim et al. 2017). To improve treat-
ment, increasedmolecular understanding of the disease is needed, including chemotherapy
sensitivity and resistance. We here present a case of a young patient with peritoneal meso-
thelioma showing an extraordinary chemotherapy response. Using integrative genomic anal-
ysis, we aimed to identify genomic drivers and molecular determinants of chemotherapy
response, and to suggest potential new therapeutic options.

RESULTS

Clinical Presentation
The case concerns a 19-yr-old female with no known asbestos exposure, presenting with
abdominal pain and cachexia, who in 2013was diagnosedwith disseminatedmalignant peri-
toneal mesothelioma, epitheloid subtype (Figs. 1 and 2). Routine molecular analysis classi-
fied the tumor as KRAS, BRAF, and NRAS wild-type and microsatellite stable. At surgery,
the disease was deemed unresectable with a peritoneal cancer index (PCI) of 39, signifying
complete involvement of the peritoneal cavity. Palliative chemotherapy (cisplatin-peme-
trexed, 10 cycles; carboplatin-pemetrexed, 6 cycles; carboplatin monotherapy 2 cycles) re-
sulted in excellent clinical and radiological response, but treatment had to be discontinued
because of allergic reactions. In 2015, laparotomy revealed PCI 16, and cytoreductive sur-
gery and hyperthermic intraperitoneal chemotherapy (cisplatin and doxorubicin) was per-
formed. In 2016, lymph node recurrences (aortic and pelvic) were resected, and in 2018,
upon radiological progression of a new pelvic recurrence and appearance of a single liver
metastasis, rechallenge with carboplatin-pemetrexed was administered, currently with pro-
gressive disease. Tumor biopsies and blood samples were obtained following written in-
formed consent at the surgical procedures in 2013 (T1) and 2015 (T2).

Genomic Analyses
Whole-exome sequencing revealed a total of 121 somatic variants in the T1 and 429 in the T2
tumor sample (Fig. 3), representing >3 times increase in number of mutations. Four and eight

Figure 1. CT images before (T1, PCI = 39) and after (T2, PCI = 16) platinum/pemetrexed chemotherapy.
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known protein-coding cancer-relevant mutations were identified in T1 and T2, respectively
(Table 1). No cancer-relevant germline mutations were detected.

LATS1/2weremutated in both samples with an allelic fraction (AF)∼0.5. These genes en-
code the large tumor suppressor 1/2 protein kinases and are commonly mutated in pleural
and peritoneal mesothelioma (Murakami et al. 2011; Miyanaga et al. 2015; Sheffield et al.
2015; Woodard et al. 2017; Yap et al. 2017). The stop-gained (LATS1 p.Trp879Ter), and

Figure 2. Stained sections of tumor sample before treatment (T1). (Upper panel) Hematoxylin and eosin (HE1:
100×, HE2: 200×); (lower panel) (100×) the epithelial marker Ber-EP4 (negative) and the mesothelioma marker
calretinin (positive).

Figure 3. Venn diagram and overview of somatic mutations detected in the tumor tissue samples harvested
before (T1) and after (T2) chemotherapy. Cancer-relevant mutations include coding variants in known tumor-
suppressor genes and proto-oncogenes (coding implies those that alter the protein code or mutations at ca-
nonical splice sites). Noncoding mutations refer to silent and nonexonic mutations.
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frame-shift (LATS2 p.Val901SerfsTer43) mutations are situated in the kinase domains, likely
causing loss of protein functions.MECOM (MDS1 andEVI-1 complex locus) was alsomutated
in both samples (AF 0.34 and 0.19). The encoded protein, EVI-1, is a zinc finger transcription
factor and oncoprotein involved in cell proliferation (Hirai 1999), functioning as a transcrip-
tional activator, stimulating e.g., GATA2 and GATA3 promoters (Fuchs 2006). The missense
mutation is located in the first zinc-finger domainof theprotein, probably affectingDNAbind-
ing (Kurokawa et al. 1998).GATA3 (GATA binding protein 3) and EPHA3 (ephrin receptor A3)
were mutated only in T2. The transcription factor GATA3 suppresses metastasis through re-
versal of epithelial-mesenchymal transition (EMT) (Yan et al. 2010). Themissensemutation lo-
cated in the second transactivating domain of the protein may alter binding to cofactors
during transcription. The EPHA3 gene, encoding a receptor tyrosine kinase, carried a stop-
gainedmutation in the ligand-binding domain, causing loss of protein function. EPHA3 is in-
volved in cell adhesion, cytoskeleton organization and apoptosis (Janes et al. 2014).

Similar to the increase of mutations found in T2, copy-number analysis showed a three-
fold increase in copy-number segments compared to T1 (Fig. 4), indicating increased geno-
mic instability. Both samples had heterozygous loss of segments in Chromosome 6 and 13,
containing the mutated genes LATS1/2, respectively. Additionally, the samples had homo-
zygous loss of a segment in Chromosome 3 containing two important tumor-suppressor
genes BAP1 (BRCA1-associated-protein-1) and PBRM1 (Protein-polybromo-1), involved in
homologous recombination (HR) DNA repair, and chromatin remodeling (Wilson and
Roberts 2011; Yu et al. 2014). Furthermore, a mutational signature associated with failure
of HR repair and response to platinum therapy (S3), was found in T1 and T2 (Fig. 5). Two ad-
ditional signatures (S23 and S24) were present only in T2, exhibiting C>T and C>Amutations
that most likely are induced by the treatments (Szikriszt et al. 2016). The tumor mutational
burden (TMB) was low (0.87 and 3.82 mutations/Mb in T1 and T2, respectively), consistent
with microsatellite stable tumor.

Total RNA sequencing was performed on high-quality RNA extracted from T1 (n=3) and
T2 samples (n=1). Differential expression analysis revealed 6228 differentially expressed
genes, of which 51% were down-regulated after treatment. Among the top up-regulated
genes were AKT3, a key regulator of the PI3K/AKT/mTOR pathway, HLA-A (major histocom-
patibility complex) that presents antigens to cytotoxic T-cells, the adhesion G-protein cou-
pled receptor G6, and fibronectin (FN1), a glycoprotein of the extracellular matrix that

Table 1. Known cancer-relevant mutations (in tumor-suppressor genes and proto-oncogenes) detected in the tumor samples harvested preche-
motherapy (T1) and postchemotherapy (T2)

Gene HGVS protein Genomic change AF pre AF post Variant consequence Predicted effect dbSNP ID

LATS2 p.Val901SerfsTer43 13:g.21553902T>TC 0.55 0.53 Frame shift - -

LATS1 p.Trp879Ter 6:g.149997831C>T 0.66 0.55 Stop gained Damaging -

MECOM p.Pro88Ser 3:g.169099088G>A 0.34 0.19 Missense Damaging -

OPCML p.Gln49Glu 11:g.132812843G>C 0.04 - Missense Tolerated -

GATA3a p.Pro189Leu 10:g.8100592C>T - 0.13 Missense Mixed -

EPHA3 p.Gly114Ter 3:g.89259196G>T - 0.15 Stop gained Damaging -

GLI1 p.Cys177Trp 12:g.57859035C>G - 0.04 Missense Damaging -

CABLES1 p.Gln631His 18:g.20837322G>C - 0.03 Missense Tolerated -

CASC1 p.Gly242Ter 12:g.25297577C>A - 0.05 Stop gained Tolerated -

ANAPC1 p.Gln451His 2:g.112615888C>G - 0.04 Missense Tolerated 79100806

The predicted effect represents the majority prediction of several algorithms included in dbNSFP v3.5. AF, allelic fraction.
aAlthough not considered a proto-oncogene or tumor suppressor per se, we also include the transcription factor GATA3 because of its reported association to
breast cancer.
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binds to integrins in the cell membrane (Supplemental Table S1). The top down-regulated
genes are involved in sodium channels (SCNN1A and SCN9A), plasma membrane integrity
and cytoskeletal structure (SPTBN2), cell motility (SPINT2), HR DNA repair (SPIDR) and reg-
ulation of Rho GTPase-activity (ARHGAP44) (Supplemental Table S2). In addition, we found
increased expression of mesenchymal markers (e.g., FN1) after treatment and reduced ex-
pression of epithelial markers (Supplemental Table S3).

Ingenuity pathway analysis (IPA, QIAGEN) was performed with differentially expressed
genes as input. The most significantly altered canonical pathways after treatment were relat-
ed to immune regulation and cancer progression (Supplemental Fig. S1). Interleukin signal-
ing and signaling in lymphocytes and macrophages were activated, indicating an increased
presence of immune cells in T2. In fact,CD8, a marker for cytotoxic T-cells, was threefold up-
regulated (Padj = 0.03) in T2. The PI3K/AKT/mTOR pathway also showed increased activity
through p70S6k and eIF4, supported by deactivation of PTEN signaling, and is consistent

Figure 4. Copy-number aberration plot from FACETS of samples harvested before (T1) and after (T2) treat-
ment. The chromosomes are depicted with copy-number segments in blue, graded after cellular fraction
(cf; dark blue: high cf, light blue: low cf). Heterozygous loss of segments in T1 and T2 were found in
Chromosomes 1, 2, 3, 6, 13, and 22, and gains in Chromosome 6 (cf = 0.7). Additionally, T2 had losses in
Chromosomes 9, 19, 21, and X, and gains in Chromosomes 1 and 5 (cf = 0.35). The arrows point to homozy-
gous loss in Chromosome 3 (0.3 Mb, cf = 0.7) containing BAP1 and PBRM1, as well as heterozygous loss in
Chromosomes 6 and 13 containing LATS1 and LATS2, respectively.
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with AKT3 up-regulation. In addition, increased activity of pathways concerning cell adhe-
sion and cytoskeleton organization may indicate altered cell plasticity and motility, which
might be related to the mutated GATA3 and EPHA3.

By miRNA sequencing, 139 differentially expressed miRNAs (greater than or equal to
twofold change) were identified in T2 compared to T1 (19 up-regulated and 120 down-
regulated; Supplemental Fig. S2). Among the up-regulated miRNAs were miR-29, miR-19,
and miR-21 known to target and repress PTEN (Zhang et al. 2010; Liang et al. 2011;
Tumaneng et al. 2012) and promote EMT (Han et al. 2012; Jiang et al. 2014; Li et al.
2015). miR-29 is also regulated by GATA3 (Chou et al. 2013) that was mutated only in the
post treatment tumor. Interestingly, a high number of immune-cell specific miRNAs (miR-
142 [Sun et al. 2015], miR-155 [Dudda et al. 2013], miR-342 [Czimmerer et al. 2016], miR-
150 [Zhou et al. 2007]) were up-regulated, pointing to an increase of immune cells in T2.
Because mir-155 is required for CD8+ T-cell responses to cancer, the up-regulation is consis-
tent with increased expression of CD8 and HLA-A in the tumor after treatment.

DISCUSSION

Loss-of-function mutations in tumor suppressors LATS1/2 together with LOH of both genes
would leave the tumor cells with only one copy of LATS1/2, the majority harboring the mu-
tations. LATS1/2 proteins are involved in the Hippo signaling pathway, which plays an essen-
tial role in tissue growth control and is commonly deregulated in cancer (Gomez et al. 2014).
Loss of functional LATS1/2 will activate transcriptional coactivators (YAP/TAZ) to promote
cell migration, proliferation, and survival (Fig. 6; Meng et al. 2016). The homozygous loss
of tumor suppressors BAP1 and PBRM1, found in both tumor samples may also contribute
to cancer progression, because defective chromatin remodeling and HR repair over time
will give rise to genomic instability (Thompson and Schild 2001; Hopson and Thompson
2017) and increased mutation rate, consistent with the findings in our study. Taken together,
LATS1/2 mutations and loss of BAP1 and PBRM1 are likely genomic drivers of the disease.

In addition to being mutational drivers, the combined loss of BAP1 and PBRM1may ex-
plain the observed extraordinary chemotherapy response. HR repair-deficient cancer cells

Figure 5. Relative contribution of known mutational signatures in T1 and T2. Mutational signatures are differ-
ent combinations of mutation types generated by different biological processes that improve our understand-
ing of cancer etiologywith potential implications for prevention and treatment. Signatures found in both tumor
samples were associated with aging (S1), failure of HR DNA repair and responders to platinum treatment (S3).
Signatures associated with C>Tmutations (S23) and C>Amutations (S24) were found only in T2 and are prob-
ably related to treatment, whereas a signature of T>Cmutations (S5) was found exclusively in T1. See also https
://cancer.sanger.ac.uk/cosmic/signatures for a more thorough explanation of the proposed etiologies and as-
sociated cancer types underlying each signature.
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(here due to BAP1 loss) are not capable of repairing the massive DNA damage caused by
chemotherapy and will in most cases undergo cell death. In addition, PBRM1 loss could fur-
ther increase sensitivity, because BAF180 (encoded by PBRM1) as part of the SWI/SNF com-
plex might play a critical role in protecting DNA from damage (Freeman et al. 2014). The
majority of mesothelioma patients harbor BAP1 alterations with heterozygous loss being de-
tected in about 30%–60% of cases (Bott et al. 2011; Borczuk et al. 2016; Joseph et al. 2017;
Leblay et al. 2017; Hmeljak et al. 2018), whereas homozygous deletion seem to be a rare
event in peritoneal mesothelioma and infrequent also in pleural mesothelioma (which is
far more extensively studied). However, biallelic inactivation of BAP1, which also includes
heterozygous deletion combined with an inactivating mutation, seems to be a more com-
mon occurrence, and often correlates with loss of BAP1 expression assessed by immunohis-
tochemistry (Joseph et al. 2017; Leblay et al. 2017). It is therefore unlikely that loss of BAP1
alone could explain the exceptional chemotherapy response in this case. Mutations and ho-
mozygous deletions of PBRM1 are rarely detected in peritoneal mesothelioma, whereas het-
erozygous deletion is reported at a frequency of 35% (Borczuk et al. 2016). Simultaneous
complete loss of BAP1 and PBRM1 has not previously been described in peritoneal meso-
thelioma, and seems to be a rare event also in clear-cell renal cell carcinomas in which
loss of gene expression of BAP1 and PBRM1 rarely coexist (Peña-Llopis et al. 2012).
Complete deletion of PBRM1 alone or in combination with BAP1 in this case could therefore
represent a distinct genotype that could be hypothesized to confer increased sensitivity to

Figure 6. Simplified overview of the main pathways (Hippo, PI3K/AKT/mTOR, DNA repair, and chromatin re-
modeling) affected by themolecular alterations foundby integrative genomic analysis in this case of peritoneal
mesothelioma. Depicted mutations and copy-number loss (stars) were present in tumor samples before (T1)
and after (T2) chemotherapy, whereas components marked up- or down-regulated (triangles) refer to the state
in T2 compared to T1.
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DNA damaging agents. Interestingly, in a 2015 case report otherwise very similar to our
study, BAP1 and PBRM1 aberrations were not detected, and the response to similar treat-
ment was poor (Sheffield et al. 2015). The suggested immune response in T2 could also con-
tribute to the therapeutic effect, as it could keep the tumor in a state of functional dormancy
(Mittal et al. 2014). Infiltrating CD8-expressing T lymphocytes are associated with improved
clinical outcomes in a broad range of tumor types (Barnes and Amir 2017).

No standard-of-care is defined in platinum/pemetrexed-resistant peritoneal mesothelio-
ma, and targeted treatments must be considered experimental. Tumors with defective HR
repair (i.e., BAP1 loss) may be sensitive to PARP inhibitors (McCabe et al. 2006), and a trial
recently opened for use of niraparib in BAP1 deficient cancers, including mesothelioma
(NCT03207347), suggesting PARP inhibition as a potential experimental treatment option.
Another alternative based on BAP1 and PBRM1 deficiency is inhibition of EZH2 (enhancer
of zeste homolog 2), the enzymatic subunit of polycomb repressive complex 2 (PRC2)
(Kim and Roberts 2016; Morel et al. 2017). The inhibitor exploits synthetic lethality by selec-
tively killing chromatin remodeling-deficient tumor cells that rely on PRC2 for survival (Morel
et al. 2017). A functional dependency of EZH2 activity has been described for PBRM1 and
BAP1 aberrations in tumors and cell lines, respectively (Kim et al. 2015; LaFave et al.
2015). The EZH2 inhibitor tazemetostat is being explored clinically, including in BAP1-
deficient mesothelioma (NCT02860286), indicating that this could be a novel therapeutic
possibility. Increased activation of the PI3K/AKT/mTORpathway in T2may suggest targeting
this commonly deregulated pathway in mesothelioma (Suzuki et al. 2009). Clinical benefit
was observed for PI3K-mTOR inhibitor apitolisib in two cases of peritoneal mesothelioma
(Dolly et al. 2017) and AKT-inhibitors are effective in mesothelioma cell lines (Yamaji et al.
2017). Importantly, increased activity in this pathway could explain platinum resistance at re-
challenge (Ohmichi et al. 2005). Immune check-point inhibition is being explored in pleural
mesothelioma (NCT03048474, NCT02716272), but in our case the evidence to support such
treatment is not conclusive. Low TMB, consistent with the tumor being microsatellite stable,
would suggest restricted likelihood of immunotherapy response (Goodman et al. 2017), as
would a more mesenchymal phenotype in T2 (Shields et al. 2017). On the other hand, in-
creased CD8 expression in T2 could indicate increased cytotoxic T-cell infiltration, which
is associated with response to immune checkpoint inhibitors (Tumeh et al. 2014; Shields
et al. 2017). A recent study in patients with clear cell renal cell carcinoma showed that loss
of functional PBRM1 was associated with increased overall survival after anti-programmed
cell death protein-1 treatment (Miao et al. 2018). Total loss of PBRM1 in our casemight there-
fore suggest response to such treatment.

In conclusion, integrative molecular analysis revealed LATS1/2 as the main mutational
drivers of the disease together with total loss of both BAP1 and PBRM1, which also may con-
tribute to the extraordinary chemotherapy response. The molecular profile suggests poten-
tial benefit from experimental targeting of PARP, EZH2, the PI3K/AKT/mTOR pathway, and
possibly also from immune checkpoint inhibition.

METHODS

Patient Samples
Tumor tissue was harvested at two timepoints, before (T1, n=3) and after (T2, n=1) chemo-
therapy. The tissue samples were frozen in liquid nitrogen immediately after resection and
stored at −80°C. Two HE-stained sections per sample were assessed for tumor content
(>50%) by a pathologist. The tissue samples were homogenized and disrupted using
TissueLyzer LT from QIAGEN. DNA/RNA was then extracted from the lysate using the
AllPrep DNA/RNA/miRNA Universal Kit automated on the QIAcube (QIAGEN). DNA/RNA
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concentrations were evaluated using ThermoFisher NanoDrop spectrophotometer and RNA
integrity was evaluated by Agilent Technologies Bioanalyzer RNA 6000 Nano kit. All tumor
samples had high nucleic acid purity (Abs260/280 >1.8) and RIN values around 9. DNA from
EDTA-blood of the patient was used as normal reference for WES-sequencing.

Whole-Exome Sequencing (WES)
WES of DNA from two fresh frozen biopsies and one matching control sample (blood) was
performed at the Genomics Core Facility Oslo (Oslo University Hospital, Norway). Library
preparation was performed using SureSelectXT Human All Exon V6+Cosmic (Agilent), fol-
lowing manufacturer’s instructions. Exome libraries were sequenced paired-end 2×100 bp
using sequencing by synthesis (SBS) chemistry v3 on an Illumina HiSeq2500. Raw sequenc-
ing data was converted to FASTQ files and demultiplexed using the Illumina bcl2fastq v2
software. Sequencing coverage data is presented in Table 2.

We applied a bioinformatics pipeline to detect acquired single nucleotide variants and
short insertions and deletions in the two tumor samples. Initially, sequence reads of the con-
trol sample and the tumor samples were aligned to the human reference genome (build b37
with an added decoy contig) using BWA-mem v0.7.15 (Li and Durbin 2009). Next, marking
of duplicates was performed with Picard tools (v.2.5.0); GATK tools (v3.7) were used for two-
step local realignment around INDELS (each tumor-normal sample pair was processed joint-
ly), followed by base quality recalibration and calculation of coverage statistics (McKenna
et al. 2010). Somatic SNV detection on the two tumor-normal pairs was performed with
MuTect and Strelka (Saunders et al. 2012; Cibulskis et al. 2013). Strelka alone was used
for somatic INDEL detection. The total set of somatic variants identified by MuTect and
Strelka were further limited to those with a minimum sequencing depth of 20 (both normal
and tumor samples). For copy-number detection, we used FACETS, which performs allele-
specific copy-number analysis corrected for tumor purity, ploidy, and clonal heterogeneity
(Shen and Seshan 2016). Finally, we applied the Personal Cancer Genome Reporter
(Nakken et al. 2018) an annotation pipeline intended for clinical interpretation of somatic
SNVs/InDels and copy-number aberrations, which is built upon a combination of
Ensembl’s Variant Effect Predictor (VEP) and vcfanno (McLaren et al. 2016; Pedersen et al.
2016). Germline variants (SNVs/InDels) in the control sample were identified using the out-
lined “Best Practices for Germline SNP & Indel Discovery in Whole Genome and Exome
Sequence” developed through GATK/Broad Institute. Specifically, we called germline vari-
ants with GATK’s HaplotypeCaller tool (v3.7) on the existing alignment for the control sam-
ple. The variants were subsequently annotated using an in-house developed cancer
predisposition report tool (https://github.com/sigven/cpsr).

Mutational Signatures
We assessed the relative contribution of 30 established mutational signatures (COSMIC)
within the somatic base substitution sets of the tumor samples. Specifically, we applied
the deconstructSigs framework (PMID:26899170), in which signatures with a weight less

Table 2. Mean coverage data of exome sequencing

Sample Mean coverage % bases ≥100

Normal 170.93 78.4

T1 245.97 88.8

T2 233.71 85.4
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than 0.06 were discarded, and the search space per tumor sample were limited to a maxi-
mum of six mutational signatures (default settings in v 1.8.0).

RNA Sequencing
Total RNA sequencing of high-quality RNA from four tumor samples, before (n=3) and after
(n=1) chemotherapy, was performed at the Genomics Core Facility Oslo (Oslo University
Hospital). RNA sequencing libraries were generated using TruSeq Stranded Total RNA
Gold Sample Preparation Kit v2 (Illumina Inc.), and 1 µg total RNA startingmaterial according
to the manufacturer’s instructions. The libraries were quality controlled using Agilent Tape-
station for size distribution, and quantified using Agilent qPCR kit for Illumina sequencing li-
braries. Paired-end sequencing (2× 75 bp) has been performed on an Illumina NextSeq500
sequencer using v2 chemistry. Raw sequencing data was converted to FASTQ files and
demultiplexed using the Illumina bcl2fastq v2 software.

Salmon was used for mapping reads to the reference genome, using default parameters
(Patro et al. 2017). As reference genome, we used the Ensemble annotation based on
the genome build GRCh38, found at ftp://ftp.ensembl.org/pub/release-90/fasta/homo_
sapiens//cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz. To normalize between samples the
TMM (trimmed mean of M values) function of the edgeR R/bioconductor package was
used on the number of reads per transcript (Robinson et al. 2010; Robinson and Oshlack
2010). To identify transcripts differentially expressed after treatment, we used the voom
function of the limma R/bioconductor using default parameters (Law et al. 2014; Ritchie
et al. 2015). Transcripts with Benjamini Hochberg false discovery rate values (q-values)
less than 0.1 were taken to functional analysis using IPA (QIAGEN Inc., https://www
.qiagenbioinformatics.com/products/ingenuity-pathway-analysis). R code can be found at
GitHub repository https://github.com/staaln/mesothelioma.

smallRNA Sequencing
RNA from two tumor samples (before and after treatment) with high quality were used to
prepare small RNA NGS libraries (RIN>6), using TruSeq Small RNA Library preparation
protocol. Successfully prepared libraries were sequenced using Illumina HiSeq 2500 High-
Throughput Sequencer using single end sequencing (50 bp).

3′ adapter sequences were automatically identified and trimmed; reads were quality-fil-
tered (Q 33) and reads within length of 18 and 27 nt were retained for mapping using
sRNAbench (Rueda et al. 2015), fastx-toolkit and custom perl scripts. Reads were mapped
to MirGeneDB (Fromm et al. 2015) using bowtie1.2 (Langmead et al. 2009), requiring an
18 nt seed sequence of zero mismatches to avoid cross-mapping. Mapped reads were
counted using “summarizeOverlaps()” function from the “GenomicAlignments” Bioconduc-
tor package (Lawrence et al. 2013).

ADDITIONAL INFORMATION

Data Deposition and Access
All data that support the findings of this study and that do not compromise research partic-
ipant privacy are available as Supplemental Data. All data that may compromise research
participant privacy, subject to GDPR regulations (e.g., raw sequence data), are available
for inspection upon request to the corresponding author on nondisclosure terms. The vari-
ants have been submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and can be
found under accession numbers SCV000886625–SCV000886627.
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