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The low response rate of immune checkpoint blockade in

breast cancer has highlighted the need for predictive

biomarkers to identify responders. While a number of clinical

trials are ongoing, testing all possible combinations is not

feasible. In this study, a quantitative systems pharmacology

model is built to integrate immune–cancer cell interactions in

patients with breast cancer, including central, peripheral,

tumour-draining lymph node (TDLN) and tumour

compartments. The model can describe the immune

suppression and evasion in both TDLN and the tumour

microenvironment due to checkpoint expression, and mimic
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the tumour response to checkpoint blockade therapy. We investigate the relationship between the

tumour response to checkpoint blockade therapy and composite tumour burden, PD-L1 expression

and antigen intensity, including their individual and combined effects on the immune system,

using model-based simulations. The proposed model demonstrates the potential to make

predictions of tumour response of individual patients given sufficient clinical measurements, and

provides a platform that can be further adapted to other types of immunotherapy and their

combination with molecular-targeted therapies. The patient predictions demonstrate how this

systems pharmacology model can be used to individualize immunotherapy treatments. When

appropriately validated, these approaches may contribute to optimization of breast cancer treatment.
rnal/rsos
R.Soc.open

sci.6:190366
1. Introduction
Immune checkpoint blockade including antibodies targeting cytotoxic T lymphocyte antigen-4 (CTLA-4)

and programmed death-1 (PD-1) proteins, have demonstrated anti-cancer activity in multiple cancer

types [1]. Breast cancer is the second leading cause of cancer-related death in women, and despite the

need for better therapies, has shown limited response to immune checkpoint therapy [2,3]. Numerous

clinical trials of checkpoint blockade combined with novel agents have consistently demonstrated

response rates in metastatic breast cancer ranging from 4 to 59% in triple-negative breast cancer

(TNBC) [4–7]. The wide range of efficacy of checkpoint blockade therapy in breast cancer reflects

an unmet need for predictive biomarkers that can help identify potential responders to the therapy.

Studies of breast tumour microenvironment (TME), and specifically tumour immune microenvironment

(TIME) provide a better understanding of the immune evasion mechanisms in breast tumours and help

identify potential biomarkers and targets for future therapies [8].

Breast cancer cells have several mechanisms of immune evasion, which help them survive the attack

by cytotoxic T lymphocytes (CTLs). Among these mechanisms, the checkpoint interactions are identified

to be one of the key mechanisms, and thus the expression of PD-L1 on tumour cells is considered to be a

predictive biomarker [9]. Although the interaction between PD-1 and its ligand PD-L1 inhibits CTLs

proliferation and effector function, PD-L1 upregulation correlates to higher metastasis-free and overall

survival rate and higher response rate to chemotherapy in TNBC [10]. In recent clinical studies, high

PD-L1 expression on tumour-infiltrating immune cells also correlates to higher survival rates to both

anti-PD-L1 monotherapy and combination therapy with nanoparticle albumin-bound (nab)-paclitaxel

in metastatic TNBC [11,12]. The better survival and response rate are possibly due to the fact that

high PD-L1 expression on tumour cells reflects a high level of tumour-infiltrating lymphocytes (TILs),

which serves as a negative feedback mechanism. Thus, in concurrent treatment with chemotherapy,

PD-L1 blockade is expected to restore effector function of CD8þ CTLs in TME, resulting in an even

higher response rate in PD-L1 upregulated subtypes [13].

Another possible factor that leads to the limited efficacy of immune checkpoint blockade therapy is

the low mutational load of breast cancer [14,15]. To eradicate a tumour, highly immunogenic antigens

expressed by tumour cells are required to trigger T-cell activation and recognition. Multiple studies

have indicated that high non-synonymous mutation burden in non-small cell lung cancer (NSCLC)

correlates to a better objective response and progression-free survival rate in anti-PD-1/PD-L1 therapy

[16,17]. In a PD-1 blockade therapy of NSCLC using pembrolizumab, the cohort with low mutational

burden had an overall response rate (ORR) of 0%. Although the correlation between mutational load

in breast cancer and its response to immunotherapy is still under investigation, the low mutation

frequency of breast cancer may be responsible for the limited efficacy of checkpoint blockade therapy

[14]. In fact, TNBC, which has significantly higher mutational load than non-TNBC, has consistently

higher complete response rates to neoadjuvant chemotherapy than hormone receptor-positive breast

therapy [4,5]. This correlation between mutational load and response rate makes it a possible

biomarker of interest in checkpoint blockade therapy.

Although the correlation between individual factors above and tumour response to immunotherapy

is well characterized in some cancer types, their combined effects remain unclear. PD-L1 expression

has not consistently correlated with response to immunotherapy; likely because immune–cancer cell

interactions are exceedingly complex and not captured by a single biomarker [1,18]. Computational

systems pharmacology models may be able to integrate the numerous interacting parts and processes

and help unravel the complexity of cancer and the immune system [19]. This study proposes a systems

pharmacology model including compartments that together represent comprehensive cancer–immune
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cell interactions in patients with breast cancer. This model is our first attempt to integrate various

compartments involved in cancer–immune cell interactions, including tumour-draining lymph node

and tumour microenvironments, to study the effects of checkpoint blockade therapy, which can help

improve the screening and immunotherapeutic strategies in clinical trials.

The proposed model aims to identify potential predictive biomarkers, hypothesize the possible

immune evasion mechanism, and eventually predict the response of patient cohorts or even

individual patients to immunotherapy. In this study, we will focus on the combination therapy using

durvalumab and tremelimumab using the dosing regimen in a clinical trial of metastatic breast cancer

by Santa-Maria et al. [20]. Tremelimumab is an anti-CTLA-4 monoclonal antibody (mAb) that blocks

CTLA-4 interaction with CD80/86, and durvalumab is an anti-PD-L1 mAb that blocks PD-L1

interaction with PD-1 and CD80 [21,22]. In this pilot study of durvalumab and tremelimumab in

metastatic breast cancer, 18 evaluable patients were enrolled, and 75 mg tremelimumab was

administered with 1500 mg durvalumab monthly for four cycles followed by 750 mg durvalumab

monotherapy every two weeks for up to 2 years. Among the 18 patients who were eligible for

primary analysis, 11 TNBC and 7 estrogen receptor-positive (ERþ) patients exhibited overall response

rates of 43% and 0%, respectively.
pen
sci.6:190366
2. Methods
2.1. Model overview and cell dynamics
The quantitative systems pharmacology (QSP) model consists of four compartments: central, peripheral,

tumour and tumour-draining lymph node (TDLN). Central and peripheral compartments represent the

total volume of blood and peripheral tissues, respectively. Tumour compartment represents the total

tumour volume, which is assumed to be constant for the purpose of antibody pharmacokinetics and

effector T-cell transport. TDLN compartment represents a lumped lymph node assuming that the

antibody will be evenly distributed among multiple TDLNs that have the same antibody and T-cell

dynamics. The model comprises 275 ordinary differential equations (ODEs) and 206 algebraic

equations and is implemented using SimBiology toolbox in MATLAB (MathWorks, Nathick, MA).

Figure 1a illustrates the dynamics of major species in the model. To ensure reproducibility of the

model, the complete set of governing ODEs, model parameters and SBML code are presented in the

electronic supplementary material.

2.2. Immune activation
The immune response is initiated from the tumour where neoantigens are produced. Neoantigens can be

either engulfed by antigen-presenting cells (APCs) via phagocytosis in the tumour or transported into the

lymph node via lymphatic vessels, where they can be taken up by resident APCs in TDLNs [18]. Mature

APCs (mAPCs) in the tumour can migrate back to the lymph node via lymphatic vessels and there

initiate T-cell priming and activation to produce effector T cells [23]. The effector T cells then

intravasate into the circulatory system and are transported to the tumour where they extravasate into

the TME and where they kill tumour cells via cytotoxic activity [24]. Killed tumour cells can release

more neoantigens, which will further promote maturation of APCs and activation of effector T cells,

forming a feedforward loop until all tumour cells are eradicated [25]; alternatively, the process may

stabilize or even reverse depending on the systems parameters and dynamics (e.g. a rapidly growing

tumour may overcome the immune stress and continue to grow albeit at lower rate than in the

absence of the feedforward loop).

2.3. Immune suppression
Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), which contribute to the

immunosuppressive tumour microenvironment, are included in the tumour compartment [26]. The

number of MDSC is estimated by the number of cancer cells in the tumour, and the number of Tregs

in TDLN and tumour compartment are estimated by the total number of T lymphocytes in lymph

node and as a function of MDSC level in the tumour, all based on the literature evidence [27]. Their

inhibitory functions are implemented through checkpoint expression including PD-1, PD-L1 and

CTLA-4. The inhibitory effects of Tregs and MDSCs on effector T-cell activity and mAPC maturation
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Figure 1. Diagram of model. (a) Diagram of all the molecular and cellular dynamics in each compartment. (b) Diagram of all
ligand – receptor interactions in the model, focusing on immune checkpoints and their blockade by antibody treatment using
anti-PD-1/PD-L1/CTLA-4 antibodies.
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are partially due to the checkpoint expression, calculated by receptor occupancies and a limiting factor

describing the maximum inhibitory effect. In addition, tumour cells are able to partially inhibit CTL

proliferation and cytotoxic activity, either transiently or permanently, via checkpoint expression of PD-

L1 and PD-L2 [28]. All the ligand–receptor interactions are illustrated in figure 1b. While all ligands

and receptors are expressed on cell surfaces, whose interactions occur within the immunological

synapses, CTLA-4 can also be secreted and released from Treg cell surfaces into the TME, where it

can bind CD80/86 receptors on mAPCs [29–31]. These inhibitory signals suppress the feedforward

loop of cancer-killing and T-cell activation in the host immune system.
2.4. T-cell priming
All the ligand–receptor interactions are implemented using two steps. First, the engagement between

two cell types forms a cell–cell complex. Then, the cell–cell complex can either dissociate without

any effect or results in the activation/inhibition of either cell. This decision is dependent on

the checkpoint signals, calculated by receptor occupancies or antigen intensity, which refers to the

binding affinity between the T cell receptor (TCR) and neoantigen-specific MHC. For example,

the T-cell priming occurs in three distinct stages in TDLNs [32]. Naive T cells first engage in

transient interactions with mAPCs to become primed naive T cells, followed by stable contacts

inducing constant chemokine production to become proliferating T cells, and finally become

effector T cells with high motility and rapid proliferation [32]. Each time the interaction between

mAPCs and T cells occurs, the two cells can either disengage without activation of naive T cell or

disengage with naive T cells moving on to the next stage, which depends on both antigen

intensity and PD-L1 receptor occupancy.
2.5. T-cell transport
Once T cells are produced from TDLNs, they are transported into the tumour compartment through

the circulatory system. The T-cell transport is implemented as a three-step mechanism: reversible

attachment of free CTLs onto the vascular wall, irreversible adhesion of attached CTLs and

transmigration into the extracellular space, adopted from the physiologically based kinetic model by

Zhu et al. [24]. The T-cell migration from central to both peripheral and tumour compartments is
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described by the following ODEs:

d(Effector Tf )

dt
¼� kf � BT �

EffectorTB

Vv
� EffectorTa

Vv

� �
� EffectorTf þ kr � EffectorTbþ Q

Vv

� EffectorTB �Q� kL

Vv
� EffectorTf,

d(EffectorTb)

dt
¼� Eff TTurnover � EffectorTb þ kf � B� EffectorTB

Vv
� EffectorTa

Vv

� �
� EffectorTf

� kr � EffectorTb� AR � EffectorTb

and
d(EffectorTa)

dt
¼ �J � EffectorTa� Eff TTurnover � EffectorTa þ AR � EffectorTb:

Here EffectorTB is the number of T cells in the central (blood) compartment, EffectorTf is the number

of free T cells in the vascular space, EffectorTb is the number of captured T cells in the vascular space, and

EffectorTa is the number of arrested T cells in the vascular space. Transport parameters, kf and kr,

attachment and detachment rate, kL, lymphatic transport rate, AR, adhesion rate, J, transmigration

rate, B, ad hoc adhesion site density, Vv, vascular space volume, Q, blood flow rate, and EffTTurnover,

cell death rate, are estimated based on the literature data [24,33].
:190366
2.6. Pharmacokinetic/pharmacodynamic model of antibody
There are published population pharmacokinetic (PK) models of tremelimumab and durvalumab built

using pharmacokinetic data from clinical trials [34,35]. The PK models were rebuilt with the same

parameters using SimBiology toolbox in MATLAB, and the model predictions of antibody plasma

concentration with different doses were recorded to optimize the kinetic parameters in our model

using pattern search in the Global Optimization Toolbox (electronic supplementary material, figure

S5). For example, the ODEs governing the PK/pharmacodynamic (PD) of tremelimumab between

compartments are described as follows:

d(CTLA4mabB)

dt
¼ 1

VBlood

kDoseAd min ,AntiCTLA4 � BodyWeight � CTLA4mAb
TremelimumabMW � VBlood

� VBlood � ClCTLA4

�

� CTLA4mabB �
kCTLA4,BP � SABP

KB,CTLA4

� �
� CTLA4mabB � VPeripheral

þ kCTLA4,BP � SABP

KP,CTLA4

� �
� CTLA4mabP � VPeripheral �

kAb,BT � SABT

KB,CTLA4

� �

� CTLA4mabB � VTumour þ
kAb,BT � SABT

KT,CTLA4

� �
� CTLA4mabT � VTumor

þ kLt �
VTumour

Vtd ln � KLN
þ kAb,BLN � SABP

KLN
�NumTDLN

� �
� Vtd ln � CTLA4mab

� kAb,BLN � SABP

KB,CTLA4
CTLA4mabB � Vtd ln �NumTDLN

d(CTLA4mabP)

dt
¼ 1

VPeripheral

kCTLA4,BP � SABP

KB,CTLA4

� �
� CTLA4mabB � VPeripheral

�

� kCTLA4,BP � SABP

KB,CTLA4

� �
� CTLA4mabP � VPeripheral

�

d(CTLA4mabT)

dt
¼ 1

VTumour
kAb,BT �

SABT

KB,CTLA4
� CTLA4mabB � VTumour � kAb,BT �

SABT

KT
� CTLA4mabT

�

� VTumour � kLt �
VTumour

KT
� CTLA4mabT � kon,CTLA4mAb�CTLA4 � CTLA4TregT

� CTLA4mabT þ koff,CTLA4mAb�CTLA4 � [CTLA4:CTLA4TrT]� kon,CTLA4mAb�CTLA4

�CTLA4mabT � CTLA4TregTS þ koff,CTLA4mAb�CTLA4 � [CTLA4:aCTLA4TrTS])
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d(CTLA4mab)

dt
¼ 1

Vtd ln
kAb,BLN �

SABP

KB,CTLA4
� CTLA4mabB � Vtd ln þ kLt �

VTumour

KT

�

� CTLA4mabT

NumTDLN

� kLt �
VTumour

Vtd ln � KLN �NumTDLN
þ kAb,BLN �

SABP

KLN

� �
� Vtd ln � CTLA4mab

� kon,CTLA4mAb�CTLA4 � CTLA4mab � PNTCTLA4 þ koff,CTLA4mAb�CTLA4

� [CTLA4mAb:CTLA4]� kon,CTLA4mAb�CTLA4 � [Tr:mAPCCTLA4] � CTLA4mab

þ koff,CTLA4mAb�CTLA4 � [TrALN:CT:aCT]� kon,CTLA4mAb�CTLA4 � [TrLNCTLA4]

� CTLA4mab þ koff,CTLA4mAb�CTLA4 � [TrLN:CT:aCT]� kon,CTLA4mAb�CTLA4

�[TrLNCTLA4S] � CTLA4mab þ koff,CTLA4mAb�CTLA4 � [TrLN:CTLA4S:aCTLA4S])

Here CTLA4mabB, CTLA4mabP, CTLA4mabT and CTLA4mab refer to the concentration of tremelimumab in

central, peripheral, tumour and TDLN compartment, respectively. VBlood, total blood volume,

VPeripheral, total peripheral volume, VTumour, constant tumour volume for antibody PK only, Vtdln,

volume of each TDLN, SABP, surface area to volume ratio between the central and the peripheral and

TDLN compartments, SABT, surface area to volume ratio between blood and tumour compartments,

KT, available volume fraction in the tumour, KLN, available volume fraction in each TDLN, kCTLA4,BP,

permeability to antibody between blood and peripheral compartments, kAb,BT, permeability to

antibody between blood and tumour compartments, kAb,BLN, permeability to antibody between blood

and TDLN compartments, and kLt, lymph flow rate, are estimated based on literature data assuming

that large antibody proteins of similar sizes have the same permeability between compartments and

that surface area between TDLN and other compartments equals to SABP [36,37]. Cl, clearance rate, KB,

available volume fraction in the blood, and KP, available volume fraction in the peripheral compartment,

are optimized based on the published population PK models [34,35]. The estimation of permeability

and surface area to volume ratio is explained in detail in the electronic supplementary material. As for

the PD of tremelimumab, kon,CTLA4mAb-CTLA4 and koff,CTLA4mAb-CTLA4, association and dissociation rate of

tremelimumab with CTLA-4 are estimated based on experimental data [38]. CTLA4TregT, CTLA-4

expressed on Treg surface in the tumour, CTLA4TregTS, soluble CTLA-4 secreted by Treg in the tumour,

PNTCTLA4, CTLA-4 expressed on primed T-cell surface in TDLNs, Tr:mAPCCTLA4, CTLA-4 expressed on

Treg interacting with mAPCs in TDLNs, TrLNCTLA4, CTLA-4 expressed on non-interacting Treg surface

in TDLNs, TrLNCTLA4S, soluble CTLA-4 secreted by Treg in TDLNs, and the corresponded complexes

when bound with tremelimumab, CTLA4:CTLA4TrT, CTLA4:aCTLA4TrTS, CTLA4mAb:CTLA4,

TrALN:CT:aCT, TrLN:CT:aCT and TrLN:CTLA4S:aCTLA4S are further specified, along with the values of

other parameters for both antibodies, in electronic supplementary material, table S2.
2.7. Simulation settings
The model is used to simulate PK/PD for anti-CTLA-4, anti-PD-1 and anti-PD-L1 antibodies in monotherapy

and combination therapy. Since this study focuses on a specific clinical trial, namelyon combination therapy for

18 breast cancer patients using tremelimumab and durvalumab, the parameters, including the number of

tumour-draining lymph nodes, tumour growth rate, checkpoint expression and cancer cell diameter, are

estimated to be metastatic breast cancer-specific [20]. The values and ranges of parameters with the

references are presented in the electronic supplementary material, table S6, together with the complete

governing equations, model parameters, as well as SBML code. Figure 2 demonstrates the main outputs of

the model: time-dependent tumour size change from the start of therapy, total number of effector T cell

originating from the lymph node and the number of mature APCs in the lymph node. Simulations are

performed by setting (a) a tumour diameter at the beginning of the therapy, which is used to calculate the

initial tumour volume, (b) antigen intensity, and (c) PD-L1 expression, which refers to the percentage of

tumour cells expressing PD-L1. Although the heterogeneity of spatial distribution in each compartment is

not considered in this study, the checkpoint expression on cancer cells can be heterogeneously distributed.

Cancer cells are divided into four ‘subtypes’ in the tumour compartment: cells that do not express any

checkpoint; and cells that express PD-L1 only, or PD-L2 only, or express both. The PD-L1 expression and a

constant PD-L2 expression are used as the probability of a cancer cell expressing each checkpoint to calculate

the number of cancer cells in each ‘subtype’. Expression of CD80 and PD-1 on cancer cells is also

implemented for use on other cancer types but is set to be zero for breast cancer.
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Baseline starting tumour size, antigen intensity and PD-L1 expression are assumed to be 30 mm,

0.7 and 25%, respectively, which are selected to best illustrate the heterogeneity of tumour response

and to investigate the sensitivity of each parameter of interest. The steady-state and dynamic solutions

are calculated using the Sundials solver. The absolute tolerance and relative tolerance are set to be

10214 (day) and 10213, respectively. Within a time period typically on the order of two months, the

number of effector T cells reaches a quasi-steady state, because the T-cell activation is balanced by the

inhibition of effector T cells in the TME. Once the steady state is reached, the antibody is administered

into the central compartment through intravenous infusion, and the simulation is continued. Tumour

growth is simulated for 15 months after therapy begins.
3. Results
3.1. Effect of combination of CTLA-4 and PD-L1 blockade
Since the model aims at predicting patients’ responses to immunotherapies, we define the main outputs to

be: analysis of time-dependent tumour size change, effector T-cell production and antigen-presenting cell

maturation in TDLNs. To illustrate the predictions, we first consider a baseline case and show the dose

response to each monotherapy, anti-CTLA-4 and anti-PD-L1, and to their combination, following the

regimen of the clinical trial [20]. In characterizing tumour growth, we use RECIST criteria [39], as was

done in the clinical trial. The main outputs of ‘virtual’ patients (using baseline parameters) with a

starting tumour size of 30 mm at the beginning of therapies are shown in figure 2 for various doses of

checkpoint blockade antibodies. Assuming an average body weight of 75 kg in the model,
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tremelimumab is administrated monthly four times at doses of 0, 1, 3, 10, 15, 20 mg kg21 in anti-CTLA-4

monotherapy (figure 2a). While the monotherapy causes a significant increase of effector T cells and mature

antigen-presenting cells (mAPCs), based on the tumour size, patients show progressive disease, per

RECIST criteria, for doses of 0, 1, 3 mg kg21, and for higher doses of 10, 15, 20 mg kg21 stable disease

for about five months followed by progressive disease. For anti-PD-L1 monotherapy, durvalumab is

administrated monthly four times at doses of 0, 1, 3, 10, 15, 20 mg kg21, where 3, 10, 15, 20 mg kg21

doses are followed by 1, 3, 5, 10 mg kg21 every two weeks up to 15 months, respectively. Although

anti-PD-L1 monotherapy did not increase T-cell production and APC maturation as much as anti-

CTLA-4 monotherapy, patients show responses with four doses of 1 mg kg21 and higher (figure 2b).

When durvalumab is combined with a fixed dose of 1 mg kg21 tremelimumab, T-cell production is

increased by three- to fourfold compared to the beginning of the therapy, which is higher than that in

anti-PD-L1 monotherapy (figure 2c). The results suggest that the PD-1/PD-L1 pathway plays a vital role

in the TME as a resistance mechanism to protect tumour cells from tumour-infiltrating lymphocytes. In

combination therapy, the upregulation of T-cell production by CTLA-4 blockade in TDLNs is observed,

and the effect on tumour size is moderately enhanced, compared to the anti-PD-L1 monotherapy.

3.2. Factors influencing tumour response to immunotherapy
To investigate the effects of starting tumour size, PD-L1 expression and antigen intensity on tumour

response, we plot the time-dependent tumour size, percentage change of tumour size with respect to

the starting tumour size, average number of effector T cells and mAPCs in TDLN over the 15 months

by changing one parameter at a time in figures 3–5. Four doses of 1 mg kg21 tremelimumab are
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administrated monthly in anti-CTLA-4 therapy, four doses of 20 mg kg21 durvalumab are administrated

monthly followed by 10 mg kg21 every two weeks up to 15 months in anti-PD-L1 therapy. As shown in

figure 3, as starting tumour size increases, the tumours progressively grow with anti-CTLA-4

monotherapy, while in response to anti-PD-L1 monotherapy and combination therapy tumours with

initial size of 35 mm and smaller regress, whereas tumours with initial size above 40 mm grow.

Notably, the response time of the smallest starting tumour size of 15 mm is slightly longer than that

of 20 mm, possibly because a smaller tumour produces a smaller amount of neoantigen, which is vital

for T-cell activation.

In figure 4, the PD-L1 expression on tumour cells is varied between 0 and 60%. Since experimental

studies have shown that PD-L1 expression in early breast cancer is associated with higher T-cell

infiltration, we assume that PD-L1-negative tumour cells are able to inhibit effector T cells by either

the physical barrier of breast TME or non-PD-1/PD-L1 suppression pathways [40–42]. While no

response is found in tremelimumab monotherapy, durvalumab therapy results in a complete

response at the highest PD-L1 expression and tumour response becomes weaker as PD-L1

expression decreases. Next, we test the effect of antigen intensity in figure 5. While anti-CTLA-4

monotherapy at the selected dose and regimen still shows only minimal tumour response, anti-PD-

L1 monotherapy and combination therapy suggest that the stronger the neoantigen is, the better the

tumour response is.
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3.3. Personalized prediction of tumour response to combination therapy
Now that we have investigated the correlations between the tumour response and each parameter of

interest individually, we would like to simulate the combined effect of multiple parameters on each

patient with ERþ and TNBC subtype in the clinical trial [20]. For each patient, we used the baseline

tumour size and PD-L1 expression as initial conditions and for each subtype we use the average

tumour growth rate and PD-L1 expression based on clinical data [43,44]. The contour plots in

figure 6a,b show the relationship between the antigen intensity and PD-L1 expression and the tumour

response to combination therapy, demonstrated by the percentage change of tumour size at the end of

simulations, at 15 months. Both high PD-L1 expression and strong antigen intensity are required to

induce a partial response in both subtypes. In figure 6c,d, the relationship between the antigen

intensity and starting tumour size and the tumour response illustrates that antigen intensity is more

critical to tumour response than the tumour size at the beginning of the therapy.

To further investigate the effect of antigen intensity, its threshold for partial response is plotted

against PD-L1 expression in figure 7a. Not surprisingly, a higher antigen intensity is required for

TNBC to have a partial response to combination therapy since TNBC has a higher tumour growth

rate than ERþ breast cancer [44]. Similarly, antigen intensity threshold for partial response is plotted

against starting tumour size (figure 7b). Interestingly, given the difference of tumour growth rate and

PD-L1 expression between the two subtypes, the antigen intensity required for ERþ breast cancer is

higher than that for TNBC and becomes similar to the starting tumour size increases. This result

suggests that its high antigen intensity requirement may account for the fact that ERþ breast cancer

has a lower response rate to immunotherapy due to its low immunogenicity [26].
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The clinical measurements of tumour size change [20] allow us to make our first attempt to make

personalized predictions of tumour response to combination therapy. Four patients are selected from

each subtype who have the most number of measurements available. First, we test whether a single

factor can be used to recapitulate the heterogeneity of tumour response among the patients. The effect

of each factor on tumour response is simulated by varying one factor at a time (electronic
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supplementary material, figures S2 and S4); the results demonstrate that any single factor above is not

sufficient to describe the diversity of tumour response. In figure 8, black dash lines represent the

average lesion size from clinical measurements, and the shade includes a range of prediction results.

Since the antigen intensity and PD-L1 expression data are not available for each patient, we assume

antigen intensity in the range 0.4–0.6 for both subtypes. The PD-L1 expression is assumed to be 20–

40% and 40–60% for ERþ and TNBC, respectively, estimated based on human data [43]; the tumour

growth rate of each subtype is estimated using the mean tumour doubling time and standard deviation

from clinical measurements [44]. Here we assume a uniform distribution for both PD-L1 expression and

antigen intensity and keep tumour growth rate within one standard deviation. Alternatively, we further

assume a normal distribution for PD-L1 expression and antigen intensity with the same mean values

and estimate their standard deviations so that the areas under the curves are the same as uniform

distributions within their ranges. Figure 9 demonstrates the prediction results with 95%, 65% and 35%

confidence intervals. Both figures represent an admittedly rough and preliminary prediction of

individual patients’ response to combination therapy, with the red line showing the median model

prediction. While the clinical measurements of tumour size mostly fall into the range of our prediction

results and the trends are instructive, the median predicted tumour size changes of TNBC patients are

stronger than the clinical results, especially at large starting tumour sizes.
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We further perform a Latin hypercube sampling and partial rank correlation coefficient (LHS\PRCC)

analysis using a sample size of 1000 to examine the uncertainty and sensitivity of predicted tumour

response against potential biomarkers that have not been confirmed by clinical studies [45]. As shown

in figure 10, tumour response to anti-CTLA-4 and anti-PD-L1 therapy is sensitive to effector T-cell

apoptosis, Treg/MDSC level in the tumour, T-cell clonality and the effect of checkpoint expression by

Tregs on effector T cells and mAPCs, in addition to the parameters discussed above.
4. Discussion
The heterogeneity of response to checkpoint blockade therapy among the subtypes of breast cancer has

highlighted the need for predictive biomarkers to identify responders. As single-agent monotherapies

result in limited efficacy among most of the subtypes, combination strategies will be required [2].

While a number of ongoing clinical trials are investigating the efficacy of combination therapies in

breast cancer and the correlation between responders and potential biomarkers, the large number of
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possible targets, biomarkers and cancer subtypes, and high cost of these trials all underscore the need for

computational models that can describe the complexity of physiological processes in patients and mimic

their response to mono- and combination therapies. Recently, several models have been developed that

focus on the tumour microenvironment to investigate the immune evasion mechanisms and how

blockade agents interfere with them [46–53]. However, the effects of immune checkpoint blockade in

tumour-draining lymph nodes have not been elucidated, and the amount of molecular and cellular

mechanistic detail is not as comprehensive as in the present model. As tumour cells are not

intrinsically resistant to immune response, the proposed model aims to analyse the immune

suppression and evasion in TDLNs and TME, both of which are important for tumour progression

[54]. The present model integrates the processes involved in the patient, including APC maturation,

T-cell activation, T-cell trafficking and tumour rejection, which allows us to investigate the effects of

several factors such as pretreatment tumour size, tumour growth rate, PD-L1 expression and antigen

intensity on a more comprehensive scale.

Starting from factors including the composite tumour burden, PD-L1 expression and antigen

intensity, we investigate correlations between each factor and the tumour response to monotherapy

and combination therapy. By changing one factor at a time, we confirm that each factor is critical to

inducing tumour response to both anti-PD-L1 monotherapy and combination therapy using

characteristics of an average breast cancer patient. However, it is difficult to conclude whether the

starting tumour size has a strong correlation with tumour response to immunotherapy as small

tumour size is unlikely to trigger enough T-cell production for tumour eradication; this question

requires further investigation, especially since there is evidence that pretreatment tumour size

correlates poorly with treatment outcome in the metastatic setting [55,56]. Further, clinically the high

response rate is not always observed among patients with high neoantigen load, PD-L1 expression or

antigen intensity, and the correlations between each factor and the tumour response are also different

among the different subtypes of breast cancer [2]. For example, the majority of patients in the PD-L1

positive cohort do not respond to the blockade therapy even though they have higher ORR than the

PD-L1-negative cohort, possibly due to the immune suppression in TDLN or other resistance

mechanisms [57]. Thus, we further investigate the combined effects of more than one factor in tumour

response in each subtype.

According to model-based analysis, the tumour response to combination therapy is highly sensitive

to both PD-L1 expression on tumour cells and antigen intensity. A higher PD-L1 expression and antigen

intensity are required by TNBC patients than ERþ breast cancer patients due to the higher tumour

growth rate of TNBC; the relatively high response rate of TNBC to immunotherapy may be related to

its relatively higher PD-L1 expression on average [43]. Notably, the model assumes that PD-L1-

negative tumour cells are able to inhibit the infiltration and function of a majority of effector T cells

through physical barrier or other pathways, which accounts for the inhibition of TIL recruitment. In

addition, the calculated antigen intensity threshold for partial response suggests that a higher antigen

intensity is required for ERþ breast cancer patients with tumour size smaller than 30 mm, which may

account for the fact that lower ORRs are observed in clinical trials on ERþ breast cancer [58]. In fact,
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the low immunogenicity of ERþ breast cancer has been recognized to be a reason for the low immune

activation in TDLN, which leads to an immune-suppressive TME [59].

In addition, we present personalized simulations of tumour response to combination therapy using

a range of parameters, within the limitations of the available data from the pilot clinical trial [20].

By controlling the PD-L1 expression, antigen intensity and tumour growth rate within a reasonable

range based on published clinical data, we find that these three factors are able to describe the

tumour response to combination therapy of both subtypes. Notably, an overestimation of tumour

response is observed in TNBC patients with tumour size smaller than 20 mm. While a smaller tumour

size with high PD-L1 expression is likely to have a complete response based on model predictions, the

clinical measurements show only partial responses. This phenomenon suggests that there may exist

additional resistance mechanisms in breast TME or TDLNs that are not incorporated into the model.

Furthermore, the small sample size included in the clinical study and our selection of patients with

the most clinical measurements for personalized prediction may lead to a bias towards the

responders. However, due to the lack of clinical measurement of PD-L1 expression and other clinical

data, most of the parameters are set to be the average value among all cancer patients, which limits a

more comprehensive investigation of potential biomarkers. Due to the small number of patients and

measurements of tumour size in this pilot trial, the distribution of parameters of interest cannot be

determined and they are assumed to have normal distributions within their physiologically reasonable

ranges for personalized simulations. By focusing on the antibody drugs, dose regimen and the

available measurements in this particular pilot trial, we believe that with an extensive sensitivity

analysis the model allows us to investigate the characteristics and resistance mechanisms in breast

cancer that affect the therapy outcome.

In the current model, we focus on the immunosuppression in TDLNs and TME due to the inhibition

of host immune response by Tregs and MDSCs, and their inhibitory effect on both T cells and APCs

are heavily dependent on checkpoint expression. As a result, simulated checkpoint blockade therapy

can result in a robust immune response that leads to a complete response in patients with high PD-L1

expression and antigen intensity. Although this result aligns with the strong correlation between the

tumour response and the factors above reported by clinical studies, the additional resistance

mechanisms that are independent of checkpoint expression should be incorporated into the model. An

important factor that should be considered is the effects of heterogeneous expression of cytokines

among patients. As suggested by the global sensitivity analysis (figure 10), effector T-cell apoptosis,

induced by IL-10 secretion from MDSCs and tumour cells, inhibition of cytotoxic activity of effector T

cells through arginase or NO production by MDSCs that do not require antigen-specific interactions,

and Treg induction and expansion by IL-10 and TGF-b may also contribute to the

immunosuppressive TME in breast cancer patients [60–62]. MDSC level in each breast cancer subtype

and the inhibitory effect of checkpoint expression by Tregs/MDSCs on effector T cells and mAPCs are

also needed to be quantitatively determined by experiments. In fact, the MDSC level has shown a

significant negative correlation with the production of pro-inflammatory cytokines and the overall

survival of patients with breast cancer [63].

Although the model aims to focus on a metastatic setting, the difference in metastatic site, agents used

in previous chemotherapy, and their unknown effects on immune system among patients make it

difficult to estimate their effects on the efficacy of adjuvant checkpoint blockade therapy. The

pharmacokinetics of the antibody may also vary due to the difference in permeability and surface area

between blood capillaries and metastatic lesions. In addition, the model has only one type of

neoantigen-specific effector T cell produced from TDLNs that has a constant binding affinity with

neoantigens, defined by a normalized antigen intensity, due to the lack of clinical measurements of

tumour-specific effector T-cell level and the binding affinity of TCR with neoantigen peptides in

breast cancer. As more data become available, a detailed antigen presentation mechanism can be

incorporated into the model. Importantly, the model provides a platform that can be adapted to

other therapies to investigate synergies with the checkpoint blockade therapy [64]. In recent studies,

entinostat treatment, which significantly reduces circulating MDSC levels, demonstrates a strong

correlation with overall survival rate of breast cancer patients and is involved in ongoing clinical trials

with immune checkpoint blockade. The addition of cytokine expression and MDSCs in the future

version of the model would allow us to investigate tumour response to the recent therapies in

advanced breast cancer [65].

In addition to our proposed ODE-based model, there are other ODE-based and agent-based models

that aim to predict the efficacy of cancer vaccines and small-molecule modulators of cancer immunity

[66–69]. Based on recent success of preclinical studies of epigenetic modulators in breast cancer these
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models can be adapted to predict optimal dosing schedules. Although our proposed model

demonstrated its potential to predict the tumour response given the distribution of physiological

parameters at population level, one of the challenges of ODE-based models is to capture the

heterogeneity of tumour microenvironment. Although we capture the differential checkpoint

expression on tumour cells by dividing them into different subtypes, the number of ligands and

receptors on cell surfaces are assumed to be constant for the checkpoint-positive subtypes. To account

for all the possible differential expression of checkpoints within the same cell type requires a much

greater number of parameters and equations, which increases the model complexity and data

requirement for model calibration. For the same reason, the present model only includes major species

of interest in TME, including T-cell subtypes (Teff and Tregs), APCs, MDSCs and tumour cells; the

modelling of spatial distribution of cells, immune repertoire and their specificity requires a different

approach, e.g. agent-based modelling [70].
 os
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5. Conclusion
The proposed quantitative systems pharmacology model integrates relevant immune and cancer-related

compartments and processes of individual breast cancer patients and specifies a number of immune

suppression and evasion mechanisms in both TDLN and TME. It aims to identify potential

biomarkers, additional resistance mechanisms, and provide a basis for future predictions of tumour

response to immunotherapy for cohorts of patients and eventually for personalized therapy.
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