Skip to main content
. 2018 May 8;1:18. doi: 10.1038/s41746-018-0029-1

Fig. 2.

Fig. 2

The area under the receiver operating characteristic curves are shown for predictions of inpatient mortality made by deep learning and baseline models at 12 h increments before and after hospital admission. For inpatient mortality, the deep learning model achieves higher discrimination at every prediction time compared to the baseline for both the University of California, San Francisco (UCSF) and University of Chicago Medicine (UCM) cohorts. Both models improve in the first 24 h, but the deep learning model achieves a similar level of accuracy approximately 24 h earlier for UCM and even 48 h earlier for UCSF. The error bars represent the bootstrapped 95% confidence interval